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Abstract

In this note we prove the following useful fact that seems to be missing from
the literature: the co-category of coherent ordinary topoi is equivalent to the co-
category of coherent 1-localic co-topoi. We also collect a number of examples of
coherent geometric morphisms between co-topoi coming from algebraic geometry.
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Overview

Let f: X — Y be a morphism between quasicompact quasiseparated schemes. It fol-
lows from [11, Example 7.1.7] that the induced geometric morphism

St Shys(X; Set) — Shy, (Y Set)

on proétale topoi is a coherent geometric morphism between coherent topoi in the sense
of [SGA 4,,, Exposé VI]. It is often helpful to be able to apply methods of homotopy
theory to topos theory, especially if one needs to work with stacks. To do this, one works
with the 1-localic co-topos associated to an ordinary topos, obtained by taking sheaves
of spaces rather than sheaves of sets. There is again an induced geometric morphism

Jet Shp s (X5 Spe) — Shy,,4 (Y5 Spe) ,



and these co-topoi are coherent in the sense of [SAG, Appendix A]. One naturally ex-
pects this geometric morphism to satisfy the same kinds of good finiteness conditions
as the morphism of ordinary topoi does, i.e., be coherent in the sense of [SAG, Appendix
A]. However, a proof of this fact is not currently in the literature. This claim is not com-
pletely obvious either: from the perspective of higher topos theory, the pullback in a co-
herent geometric morphisms of ordinary topoi is only required to preserve 0-truncated
coherent objects, rather than all coherent objects.

In this note we fill this small gap in the literature. We show that the theories of co-
herent ordinary topoi and coherent geometric morphisms (in the sense of [SGA 4,
Exposé VI]) and of coherent 1-localic co-topoi and coherent geometric morphisms (in
the sense of [SAG, Appendix A]) are equivalent (Proposition 2.11). This point is surely
known to experts, but does not seem to be explicitly addressed in [SAG, Appendix A]
or elsewhere. Our main aim in proving this equivalence is to make the co-categorical
version of sheaf theory more accessible to (non-derived) algebraic geometers who are
interested in applying results from [SAG, Appendix A] to ordinary coherent topoi.

The proof of this equivalence reduces to showing that a coherent geometric mor-
phism of ordinary coherent topoi induces a coherent geometric morphism of corre-
sponding 1-localic co-topoi. This follows from the more general fact that a morphism
of finitary co-sites induces a coherent gometric morphism on corresponding co-topoi
(Corollary 2.9). In ordinary topos theory this is well-known [SGA 4,,, Exposé VI, Corol-
laire 3.3], but the co-toposic version seems to be missing from the literature.

Our original motivation for proving Proposition 2.11 was the following. In recent
work with Barwick and Glasman [2] we proved a basechange theorem for oriented fiber
product squares of bounded coherent co-topoi [2, Theorem 8.1.4]. In the original ver-
sion of [2], we claimed [2, Corollary 8.1.6] that this implies the basechange theorem for
oriented fiber products of coherent topoi of Moerdijk and Vermeulen [12, Theorem 2(i)]
(which is the nonabelian refinement of a result of Gabber [6, Exposé X1, Théoréme 2.4]).
While this is true, our original proof implicitly used that a coherent geometric morphism
of ordinary topoi induces a coherent geometric morphism on corresponding 1-localic
00-topoi.

In §1 we review the classification of coherent topoi in terms of pretopoi as well as
the classification of bounded coherent co-topoi in terms of bounded co-pretopoi. This
review is aimed at readers familiar with [SGA 4,,, Exposé VI], but not necessarily with
pretopoi or coherent co-topoi; the familiar reader should skip straight to § 2. At the
end of §2 we collect a number of examples of coherent geometric morphisms between
co-topoi coming from algebraic geometry.
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insights about this material. We also gratefully acknowledge support from both the m1T
Dean of Science Fellowship and Nsr Graduate Research Fellowship.

Terminology & notations

> We write N for the poset of nonnegative integers, and N” == N U {oo}.

> We write Cat,, for the co-category of co-categories.
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> We write Top,, < Cat,, for the co-category of co-topoi and geometric mor-
phisms. We typically write f,: X — Y to denote a geometric morphism from
an co-topos X to an co-topos Y and write f* for the left exact left adjoint of f,.

> We write Cat for the (2, 1)-category of (ordinary) categories, functors, and natural
isomorphisms, which we tacitly regard as an co-category (via the Duskin nerve
[Ker, Tag 0o9P]). We write Top C Cat for the subcategory of topoi and geometric
morphisms.

1 Premilinaries on (higher) coherent topoi & pretopoi

In this section we review the classification of coherent topoi in terms of pretopoi, as well
as the theory of coherent co-topoi and the classification of bounded coherent co-topoi
in terms of bounded co-pretopoi.

Classification of coherent topoi

We assume that the reader is familiar with coherent topoi in the sense of [SGA 4,,, Exposé
VI]. Excellent accounts of coherent topoi can also be found in [8; 11, §§C.5 & C.6]. The
classification of coherent topoi in terms of pretopoi is sketched in [SGA 4,,, Exposé VI,
Exercise 3.11]; a self-contained account can be found in [9].

1.1 Definition. Let X be a topos.
(1.1.1) AnobjectU e X is quasicompact if every covering of U has a finite subcovering.

(1.1.2) AnobjectU € X is quasiseparated if for every pair of morphisms U’ — U and
U" — U where U' and U” are quasicompact, the fiber product U’ x, U" is
quasicompact.

(1.1.3) An objectU € X is coherent if U is quasicompact and quasiseparated.

(1.1.4) The topos X is coherent if the terminal object 1x € X is coherent, every object
of X admits a cover by coherent objects, and the coherent objects of X are closed
under finite products.

We write X" ¢ X for the full subcategory spanned by the coherent objects.

A geometric morphism of topoi f,: X — Y is coherent if and only if, for every
coherent object F € Y, the object f*(F) € X is coherent. We write Top®" for the sub-
category of Top whose objects are coherent topoi and whose morphisms are coherent
geometric morphisms.

1.2 Definition ([11, Definition A.4.1]). A category X is a pretopos if X satisfies the
following conditions:

(1.2.1) The category X admits finite limits.

(1.2.2) The category X admits finite coproducts, which are universal and disjoint.
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(1.2.3) Equivalence relations in X are effective.
(1.2.4) Effective epimorphisms in X are stable under pullback

If X and Y are pretopoi, we say that a functor f*: Y — X is a morphism of pre-
topoi if f* preserves finite limits, finite coproducts, and effective epimorphisms. Write
preTop ¢ Cat for the subcategory consisting of essentially small pretopoi and morphisms
of pretopoi.

1.3 Example ([11, Corollary C.5.14]). Let X be a coherent topos. Then the full subcat-
egory X" ¢ X of coherent objects is an essentially small pretopos. If f, : X — Y isa
coherent geometric morphism of coherent topoi, then the functor f*: Y — X js
a morphism of pretopoi.

If X is the étale topos of a quasicompact quasiseparated scheme X, then X is coherent
and X is the category of constructible étale sheaves of sets on X.

1.4 Definition ([11, Definition B.5.3]). Let X be a pretopos. The effective epimorphism
topology on X is the Grothendieck topology eff on X where a collection of morphisms
{U; — Ul is a covering if and only if there exists a finite subset I, ¢ I such that the
induced morphism [ [, 1, Ui = U is an effective epimorphism in X.

The effective epimorphism topology is subcanonical [11, Corollary B.5.6].

1.5 Theorem ([9, Corollary 7; 11, Proposition C.6.3]). The constructions X — X" and
X > Shy(X; Set) are mutually inverse equivalences of (2, 1)-categories

Top*" ~ preTop” .

1.6 Remark. The equivalence of Theorem 1.5 is really an equivalence of (2, 2)-categories,
but we do not need noninvertible 2-morphisms in this note.

Classification of bounded coherent co-topoi

Coherent co-topoi admit a classification in terms of a higher-categorical analogue of
pretopoi, as long as they can be recovered from the collection of their n-topoi of (n — 1)-
truncated objects. This subsection is a breif summary of [SAG, §SA.2, A.3, A.6, & A.7].

1.7 Notation. We use here the theory of n-topoi for n € N”; see [HTT, Chapter 6]. We
write Top,, € Cat,, for the subcategory of #-topoi and geometric morphisms.

1.8 Example. Recall that 1-topoi are topoi in the classical sense [HT T, Remark 6.4.1.3].

1.9 Example. Let m,n € N” with m < n. An m-site is a small m-category' X equipped
with a Grothendieck topology 7. Attached to this m-site is the n-topos Sh, _(,_;)(X) of
sheaves of (n — 1)-truncated spaces on X. We simply write Sh_(X) for the co-topos of
sheaves of spaces on X.

Not all co-topoi are of the form Sh,(X) for some co-site X; however, if n € N,
then every n-topos is of the form Sh, _,_1)(X) for some n-site (X, 7) [HTT, Theorem
6.4.1.5(1)].

!By an m-category we mean an co-category whose mapping spaces are (m — 1)-truncated.
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1.10 Definition ([HTT, §6.4.5]). For any integer n > 0, passage to (n — 1)-truncated
objects defines a functor 7,,_; : Top, — Top,. The functor 7,_; admits admits a fully
faithful right adjoint Top,, — Top_, whose essential image we denote by Top., C Top_.
The co-category Top/. is the co-category of n-localic co-topoi.

1.11 Example. For any topological space T, the co-topos Sh(T') of sheaves on T is 0-
localic.

1.12 Example. If X is a topos presented as sheaves of sets on a site (X, 7) with finite
limits, then the 1-localic co-topos associated to X is the co-topos Sh,(X) of sheaves of
spaces on (X, 7).

1.13. Letn € N.The proof of [HT'T, Proposition 6.4.5.9] demonstrates that an co-topos
X is n-localic if and only if X = Sh_(X) for some n-site (X, 7) with finite limits.

1.14 Warning. If (X, 1) is an n-site and the n-category X does not have finite limits,
then the co-topos Sh,(X) is not generally N-localic for any integer N > 0. See [SAG,
Counterexample 20.4.0.1] for a basis B for the topology on the Hilbert cube [],.,[0, 1]
for which the co-topos of sheaves on B is not N-localic for any N > 0.

1.15 Definition ([SAG, Definition A.7.1.2]). An co-topos X is bounded if X can be
written as the limit of a diagram Y : I — Top_, where I?” is a filtered co-category and
for each i € I the co-toposY; is »; localic for some #; € N.

1.16 Definition ([SAG, Definition A.2.0.12]). Let X be an co-topos. We say that X is 0-
coherent or quasicompact if and only if every cover {U; — 1x};; of the terminal object
1y € X admits a finite subcover. Let n > 1 be an integer, and define n-coherence of
oo-topoi and their objects recursively as follows:

(1.16.1) AnobjectU € X is n-coherent if and only if the co-topos X ; is n-coherent.

(1.16.2) The co-topos X is locally n-coherent if and only if every object U € X admits
a cover {U; — U},; where each U, is n-coherent.

(1.16.3) The co-topos X is (n + 1)-coherent if and only if X is locally n-coherent, and
the n-coherent objects of X are closed under finite products.

An co-topos X is coherent if and only if X is n-coherent for every n > 0. An object
U of an co-topos X is coherent if and only if X, is a coherent co-topos. Finally, an co-
topos X is locally coherent if and only if every object U € X admits a cover {U; — U},
where each U; is coherent.

1.17 Definition. A geometric morphism of co-topoi f, : X — Y is coherent if and only
if, for every coherent object F € Y, the object f*(F) € X is coherent. We write Topcoi')h
for the subcategory of Top . whose objects are coherent co-topoi and whose morphisms
are coherent geometric morphisms.

Write Tong C Topf;;h for the full subcategory spanned by those coherent co-topoi

that are also bounded, that is, the bounded coherent co-topoi
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1.18 Notation. If X is an co-topos, then write X" ¢ X for the full subcategory of X
spanned by the coherent objects and X% ¢ X for the full subcategory of X spanned by

the truncated coherent objects.

1.19 Example. The co-topos Spc of spaces is coherent. An object U € Spc is truncated
coherent if and only if U is a 7-finite space, i.e., U is truncated, has finitely many con-
nected components, and all of the homotopy groups of U are finite.

1.20 Definition ([SAG, Definition A.3.1.1]). An co-site (X, 7) is finitary if and only if X
admits all fiber products, and, for every object U € X and every covering sieve S ¢ X,
there is a finite subset {U;};; € S that generates a covering sieve.

Let (X, 7y) and (Y, 7y) be finitary co-sites. A morphism of co-sites f*: (Y, 1y) —
(X, Tx) is a morphism of finitary co-sites if ™ is preserves fiber products.

1.21 Proposition ([SAG, Proposition A.3.1.3]). Let (X, 1) be a finitary co-site. Then
the co-topos Sh (X) locally coherent, and for every object x € X, the sheaf £(x) is a
coherent object of Sh,(X), where & : X — Sh_(X) is the sheafified Yoneda embedding. If,
in addition, X admits a terminal object, then Sh_(X) is coherent.

1.22 Definition ([SAG, Definition A.6.1.1]). An co-category X is an co-pretopos if X
satisfies the following conditions:

(1.22.1) The category X admits finite limits.
(1.22.2) The category X admits finite coproducts, which are universal and disjoint.

(1.22.3) Groupoid objects in X are effective, and their geometric realizations are uni-
versal.

If X and Y are co-pretopoi, we say that a functor f*: Y — X is a morphism of co-
pretopoi if f* preserves finite limits, finite coproducts, and effective epimorphisms. We
write preTop, C Cat,, for the subcategory consisting of co-pretopoi and morphisms
of co-pretopoi.

1.23 Example ([SAG, Corollary A.6.1.7]). If X is a coherent co-topos, then the full
subcategory X" ¢ X spanned by the coherent objects is an co-pretopos.

1.24 Definition ([SAG, Definition A.6.2.4]). Let X be an co-pretopos. The effective
epimorphism topology on X is the Grothendieck topologyeff where a collection of mor-
phisms {U; — U},; is a covering if and only if there exists a finite subset I, < I such
that the induced morphism [ [, , Ui = Ulsan effective epimorphism in X.

The effective epimorphism topology is finitary and subcanonical [SAG, Corollary
A.6.2.6].

1.25 Definition ([SAG, Definition A.7.4.1]). An oco-pretopos X is bounded if and only if
X is essentially small and every object of X is truncated. We write pr’eTopg0 C preTop,
for the full subcategory spanned by the bounded co-pretopoi.

1.26 Theorem ([SAG, Theorem A.7.5.3]). The constructions X +—> ng;fg and X
Sh,(X) are mutually inverse equivalences of co-categories

Top™ = preTop?” .
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2 Coherence for 1-localic co-topoi

In this section we show that the co-category of coherent ordinary topoi is equivalent to
the co-category of coherent 1-localic co-topoi (Proposition 2.11). This follows from the
fact that morphisms of finitary co-sites induce coherent geometric morphisms (Corol-
lary 2.9). First we'll have to give co-toposic versions of a number of points from [SGA
4., Exposé VI, §§1-3], which follow easily from [SAG, SA.2.1].

2.1 Definition. Let n € N and let X be a locally n-coherent co-topos. A morphism
U — V in X is relatively n-coherent if for every n-coherent object V' € X and every
morphism V' — V, the fiber product U x,, V' is also n-coherent.

2.2 Example ([SAG, Example A.2.1.2]). Let X be a locally n-coherent co-topos and
f: U — V amorphism in X. If U is n-coherent and V is (n + 1)-coherent, then f is
relatively n-coherent.

2.3 Lemma. Let X be an co-topos. Ife: U — V is an effective epimorphism in X and U
is quasicompact, then V is quasicompact.

Proof. This is a special case of [SAG, Proposition A.2.1.3]. O

2.4 Lemma. Letn > 1 be an integer and X a locally (n— 1)-coherent co-topos. Let U € X
andlete: [[;.; U; — U be a cover of U where I is finite and U, is n-coherent for eachi € I.
The following are equivalent:

(2.4.1) The effective epimorphism e is relatively (n — 1)-coherent.
(2.4.2) Foralli,j € I, the object U; x; U; is (n — 1)-coherent.
(2.4.3) The object U is n-coherent.

Proof. If e is relatively (n — 1)-coherent, then since coproducts in X are universal, the

fiber product
(Lier U) xu (]_[jeI UJ) = ]_[ Ui xy U;
ijel
is (n — 1)-coherent. Thus U; x U; is (n — 1)-coherent for all 4, j € I [SAG, Remark
A.2.0.16].
If each Uj; xy Uj is (n — 1)-coherent, then since each Uj is n-coherent the pullback of

e along itself

[Vt~ ]]U

i,jel icl
is relatively (n — 1)-coherent (Example 2.2). Applying [SAG, Corollary A.2.1.5] we de-
duce thate: [[,,; U; - U is relatively (n — 1)-coherent.

To conclude, note that ife: [[,.; U; - U is relatively (n — 1)-coherent, then [SAG,

Proposition A.2.1.3] shows that U is n-coherent. On the other hand, if U is n-coherent,
then e is (n — 1)-coherent by Example 2.2. O

2.5 Proposition. Let f,: X — Y be a geometric morphism of co-topoi and n € N.
Assume that:
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(2.5.1) There exists a collection of n-coherent objects Y, ¢ Obj(Y) of Y such that for every
n-coherent object U € Y there exists a cover | [,.; U; > U where U; € Y, for each
i€l

i€l

(2.5.2) The pullback functor f*: Y — X takes objects of Yy to n-coherent objects of X.

(2.5.3) Ifn =1, the co-topoi X and Y are locally (n — 1)-coherent and f*: Y — X takes
(n — 1)-coherent objects of Y to (n — 1)-coherent objects of X.

Then f* takes n-coherent objects of Y to n-coherent objects of X.

Proof. LetU € Y be an n-coherent object; we show that f*(U) is n-coherent. By assump-
tion there exists a cover
e: ]_[ U -»U

i€l
where U; € Y|, for each i € I and I is finite (since U is, in particular, 0-coherent). For

alli € I the object f*(U;) is n-coherent by assumption, so since n-coherent objects are
closed under finite coproducts [SAG, Remark A.2.0.16], the object

[ (it Ui) = ]_[f*(Ui)

i€l

is n-coherent.
Note that
fr@: [[fw) - fw
iel
is an effective epimorphism in X. If n = 0, this proves the claim (Lemma 2.3). If n > 1,
then Lemma 2.4 shows that it suffices to show that for all , j € I, the object

£ O) %) £ U) = £ WU U

is (n — 1)-coherent. This follows from the fact that U; Xy U; is (n — 1)-coherent (by
Lemma 2.4) and the assumption that f* sends (n — 1)-coherent objects of Y to (n — 1)-
coherent objects of X. O

Proposition 2.5 shows that coherence of a geometric morphism between locally co-
herent co-topoi (Definition 1.17) is equivalent to the a priori stronger condition that
the pullback functor preserve n-coherent objects for all n > 0:*

2.6 Corollary. Let f,: X — Y be a geometric morphism between locally coherent co-
topoi. Then f, is coherent if and only if f* takes n-coherent objects of Y to n-coherent
objects of X for alln > 0.

Proposition 2.5 also shows that coherence of a geometric morphism can be checked
on a generating set of coherent objects.

*This second notion is how Grothendieck and Verdier originally defined coherence for ordinary topoi
[SGA 4,,, Exposé VI, Définition 3.1].
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2.7 Corollary. Let f,: X — Y be a geometric morphism between locally coherent co-
topoi. Let Y, ¢ Obj(Y") be a collection of coherent objects such that for every object
U €Y there exists a cover | [,.; U; - U where U; € Y, for each i € I. If for allU € Y, the
object f*(U) is coherent, the geometric morphism f,: X — 'Y is coherent.

For the next result, we need the following lemma.

2.8 Lemma. Let f*: (Y, 17y) — (X, Tx) be a morphism of co-sites, and write &y : Y —
Sh, (Y) for the sheafified Yoneda embedding. If the topology Ty is finitary, then

fr&y: Y = Sh (X)

factors through Sh,_ (X)°h ¢ Sh, (X).

Proof. We have a commutative square

Yy —— X

| [

Shy, (Y) —— Sh, (X)

where the vertical functors are sheafified Yoneda embeddings. The claim now follows
from the fact that & : X — Sh,_(X) factors through Sh, (X )<t since the topology Ty
is finitary (Proposition 1.21). O

2.9 Corollary. Let f*: (Y,1y) — (X, 1x) be a morphism of finitary co-sites. Then the
geometric morphism
fi: ShTX (X) — ShTY Y)

is coherent.

Proof. By Proposition 1.21, both Sh, (X) and Sh, (Y) are locally coherent. The image
&y (Y) of Y under the sheafified Yoneda embedding generates Sh, (Y) under colimits, so
by Corollary 2.7 it suffices to check that f* carries objects in &y (Y’) to coherent objects
of X;; this the content of Lemma 2.8. O

1,coh

2.10 Notation. Write Top ™" C Topc"h for the full subcategory spanned by the 1-localic

coherent co-topoi.
Corollary 2.9 and the definitions immediately imply the following:

2.11 Proposition. The equivalence of co-categories T : Top., = Top (Definition 1.10)
restricts to an equivalence
Teg: Topé;)wh =, Top*"

2.12 Corollary. The following are equivalent for a geometric morphism f,: X — Y be-
tween 1-localic coherent co-topoi:

(2.12.1) The geometric morphism f,: X — Y is coherent.



(2.12.2) The pullback functor f*:Y — X carries O-truncated 1-coherent objects of Y to
1-coherent objects of X.

2.13 Remark. Ifn > 2, there doesn't already exist a notion of ‘coherent n-topos’ (other
than saying that the corresponding n-localic co-topos is coherent). However, if one de-
clares that an n-topos X is ‘coherent’ if X is ‘(1 + 1)-coherent, then Corollary 2.9 allows
one to immediately deduce variants of Proposition 2.11 and Corollary 2.12 for coherent
n-topoi. Sections 5.4 through 5.6 of the newest version of [2] address this more general
point.

The co-pretopos associated to an ordinary pretopos

In this subsection we exploit the equivalence of Proposition 2.11 to show how to asso-
ciate a bounded co-pretopos to an essentially small pretopos. Lurie briefly touches upon
this point (without details) in [10].

2.14. If X is a bounded coherent co-topos, then the associated ordinary topos 7.y X is
coherent. Moreover, if f,: X — Y is a coherent geometric morphism of bounded co-
herent co-topoi, then the induced geometric morphsim f, : 70X — 7Y isa coherent
geometric morphism of ordinary topoi. Hence the adjunction Top _ = Top restricts to
an adjunction

T<D
(2.15) Topf;g pr— Top“’h )
2.16. Transporting the adjunction (2.15) across the equivalences
()" Top™" = preTop® and (—)k Topgg = preTopf;;’P

of Theorems 1.5 and 1.26 we see that the functor 7 : preTopZ0 — preTop admits a fully
faithful right adjoint

(=)*: preTop < preTop’,
given by X* = Sheﬂ(X)i“(f‘o.

2.17 Example. The bounded co-pretopos Fin* associated to the pretopos Fin of finite
sets is the co-pretopos Spc_ of 7r-finite spaces.

Examples from algebraic geometry

We conclude with a few examples from algebraic geometry that Corollary 2.9 puts on
the same footing.

2.18 Example. For a spectral topological space’ S, write Open?(S) ¢ Open(S) for the
locale of quasicompact opens in S. Since the quasicompact opens of S form a basis for the

3 A topological space S is spectral if and only if S is homeomorphic to the underlying topological space of
a quasicompact quasiseparated scheme.

10



topology on S that is closed under finite intersections, the co-topos Sh(Open?“(S)) is 0-
localic. Applying [11, Proposition B.6.4] we see that the inclusion Open?‘(S) ¢ Open(S)
induces an equivalence of 0-localic co-topoi

Sh(S) = Sh(Open’*(S)) .

The Grothendieck topology on Open?(S) is finitary, so the co-topos Sh(S) of sheaves
on S is a coherent co-topos. (Cf. [SAG, Lemma 2.3.4.1]).

If f: S — T isa quasicompact continuous map of spectral topological spaces, the
inverse image map f~': Open(T) — Open(S) restricts to a map

f71: Open?(T) — Open?*(S) .

Corollary 2.9 shows that the induced geometric morphism f, : Sh(S) — Sh(T') is coher-
ent. Since spectral topological spaces are sober, a continuous map f: S — T of spectral
topological spaces induces a coherent geometric morphism on the level of co-topoi if
and only if f is quasicompact.

2.19. If X is a coherent co-topos, then the underlying topological space of X is spectral
[7, Chapter II, §§3.3-3.4].

Combining the fact that the Zariski, Nisnevich*, étale, and proétale® topoi of a scheme
all have the same underlying topological space with the fact that if a scheme X is quasi-
compact and quasiseparated, then the topoi of sheaves on X in each of these topologies
is coherent [SAG, Proposition 2.3.4.2 & Remark 3.7.4.2; 1, Appendix A; 11, Example
7.1.7], we deduce the following:

2.20 Proposition. The following are equivalent for a scheme X:

(2.20.1) The scheme X is quasicompact and quasiseparated.
(2.20.2) The Zariski co-topos X, of X is a coherent co-topos.
(2.20.3) The Nisnevich co-topos X,,;; of X is a coherent co-topos.
(2.20.4) The étale co-topos X, of X is a coherent co-topos.

(2.20.5) The proétale co-topos X,,o¢ of X is a coherent co-topos.

2.21 Example ([2, Example 10.4.13]). Let X be a quasicompact quasiseparated scheme.
Then the bounded co-pretopos of truncated coherent objects of the coherent co-topos
Xy is the co-category of constructible étale sheaves of spaces on X.

2.22 Example. Let f: X — Y be amorphism of quasicompact quasiseparated schemes
and let T € {zar, nis, ét, proét}. Then the induced geometric morphism f,: X, — Y, on
oo-topoi of T-sheaves is a coherent geometric morphism of coherent co-topoi.

2.23 Example. Let X be a quasicompact quasiseparated scheme. Then the natural geo-
metric morphisms

X

proét - Xét > Xét - Xm's ’ and Xnis - Xzar

are all coherent geometric morphisms of coherent co-topoi.

4For background on the Nisnevich topology, see [SAG, §3.7; 55 45 13].
5For background on the proétale topology, see [STK, Tags 0988 & 099R; 3].
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