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Abstract

In this note we prove the following useful fact that seems to be missing from
the literature: the ∞-category of coherent ordinary topoi is equivalent to the ∞-
category of coherent 1-localic∞-topoi. We also collect a number of examples of
coherent geometric morphisms between∞-topoi coming from algebraic geometry.
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Overview
Let 𝑓∶ 𝑋 → 𝑌 be a morphism between quasicompact quasiseparated schemes. It fol-
lows from [11, Example 7.1.7] that the induced geometric morphism

𝑓∗ ∶ Shproét(𝑋; Set) → Shproét(𝑌; Set)

on proétale topoi is a coherent geometricmorphism between coherent topoi in the sense
of [SGA 4ii, Exposé VI]. It is often helpful to be able to apply methods of homotopy
theory to topos theory, especially if one needs to work with stacks. To do this, one works
with the 1-localic∞-topos associated to an ordinary topos, obtained by taking sheaves
of spaces rather than sheaves of sets. There is again an induced geometric morphism

𝑓∗ ∶ Shproét(𝑋; Spc) → Shproét(𝑌; Spc) ,
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and these∞-topoi are coherent in the sense of [SAG, Appendix A]. One naturally ex-
pects this geometric morphism to satisfy the same kinds of good finiteness conditions
as themorphism of ordinary topoi does, i.e., be coherent in the sense of [SAG, Appendix
A]. However, a proof of this fact is not currently in the literature. This claim is not com-
pletely obvious either: from the perspective of higher topos theory, the pullback in a co-
herent geometric morphisms of ordinary topoi is only required to preserve 0-truncated
coherent objects, rather than all coherent objects.

In this note we fill this small gap in the literature. We show that the theories of co-
herent ordinary topoi and coherent geometric morphisms (in the sense of [SGA 4ii,
Exposé VI]) and of coherent 1-localic∞-topoi and coherent geometric morphisms (in
the sense of [SAG, Appendix A]) are equivalent (Proposition 2.11). This point is surely
known to experts, but does not seem to be explicitly addressed in [SAG, Appendix A]
or elsewhere. Our main aim in proving this equivalence is to make the∞-categorical
version of sheaf theory more accessible to (non-derived) algebraic geometers who are
interested in applying results from [SAG, Appendix A] to ordinary coherent topoi.

The proof of this equivalence reduces to showing that a coherent geometric mor-
phism of ordinary coherent topoi induces a coherent geometric morphism of corre-
sponding 1-localic∞-topoi. This follows from the more general fact that a morphism
of finitary∞-sites induces a coherent gometric morphism on corresponding∞-topoi
(Corollary 2.9). In ordinary topos theory this is well-known [SGA 4ii, Exposé VI, Corol-
laire 3.3], but the∞-toposic version seems to be missing from the literature.

Our original motivation for proving Proposition 2.11 was the following. In recent
work with Barwick and Glasman [2] we proved a basechange theorem for oriented fiber
product squares of bounded coherent∞-topoi [2, Theorem 8.1.4]. In the original ver-
sion of [2], we claimed [2, Corollary 8.1.6] that this implies the basechange theorem for
oriented fiber products of coherent topoi ofMoerdijk andVermeulen [12,Theorem 2(i)]
(which is the nonabelian refinement of a result of Gabber [6, Exposé XI,Théorème 2.4]).
While this is true, our original proof implicitly used that a coherent geometricmorphism
of ordinary topoi induces a coherent geometric morphism on corresponding 1-localic
∞-topoi.

In §1 we review the classification of coherent topoi in terms of pretopoi as well as
the classification of bounded coherent∞-topoi in terms of bounded∞-pretopoi. This
review is aimed at readers familiar with [SGA 4ii, Exposé VI], but not necessarily with
pretopoi or coherent ∞-topoi; the familiar reader should skip straight to § 2. At the
end of §2 we collect a number of examples of coherent geometric morphisms between
∞-topoi coming from algebraic geometry.

Acknowledgments. We thank Clark Barwick for his guidance and sharing his many
insights about this material. We also gratefully acknowledge support from both the mit
Dean of Science Fellowship and nsf Graduate Research Fellowship.

Terminology & notations
→ We write𝑵 for the poset of nonnegative integers, and𝑵▹ ≔ 𝑵 ∪ {∞}.

→ We write Cat∞ for the∞-category of∞-categories.
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→ We write Top∞ ⊂ Cat∞ for the ∞-category of ∞-topoi and geometric mor-
phisms. We typically write 𝑓∗ ∶ 𝑿 → 𝒀 to denote a geometric morphism from
an∞-topos𝑿 to an∞-topos 𝒀 and write 𝑓∗ for the left exact left adjoint of 𝑓∗.

→ WewriteCat for the (2, 1)-category of (ordinary) categories, functors, and natural
isomorphisms, which we tacitly regard as an∞-category (via the Duskin nerve
[Ker, Tag 009P]). We write Top ⊂ Cat for the subcategory of topoi and geometric
morphisms.

1 Premilinaries on (higher) coherent topoi & pretopoi
In this section we review the classification of coherent topoi in terms of pretopoi, as well
as the theory of coherent∞-topoi and the classification of bounded coherent∞-topoi
in terms of bounded∞-pretopoi.

Classification of coherent topoi
Weassume that the reader is familiarwith coherent topoi in the sense of [SGA4ii, Exposé
VI]. Excellent accounts of coherent topoi can also be found in [8; 11, §§C.5 & C.6]. The
classification of coherent topoi in terms of pretopoi is sketched in [SGA 4ii, Exposé VI,
Exercise 3.11]; a self-contained account can be found in [9].

1.1 Definition. Let𝑿 be a topos.

(1.1.1) An object𝑈 ∈ 𝑿 is quasicompact if every covering of𝑈 has a finite subcovering.

(1.1.2) An object 𝑈 ∈ 𝑿 is quasiseparated if for every pair of morphisms 𝑈′ → 𝑈 and
𝑈″ → 𝑈 where 𝑈′ and 𝑈″ are quasicompact, the fiber product 𝑈′ ×𝑈 𝑈″ is
quasicompact.

(1.1.3) An object 𝑈 ∈ 𝑿 is coherent if 𝑈 is quasicompact and quasiseparated.

(1.1.4) The topos 𝑿 is coherent if the terminal object 1𝑿 ∈ 𝑿 is coherent, every object
of𝑿 admits a cover by coherent objects, and the coherent objects of𝑿 are closed
under finite products.

We write𝑿coh ⊂ 𝑿 for the full subcategory spanned by the coherent objects.
A geometric morphism of topoi 𝑓∗ ∶ 𝑿 → 𝒀 is coherent if and only if, for every

coherent object 𝐹 ∈ 𝒀, the object 𝑓∗(𝐹) ∈ 𝑿 is coherent. We write Topcoh for the sub-
category of Top whose objects are coherent topoi and whose morphisms are coherent
geometric morphisms.

1.2 Definition ([11, Definition A.4.1]). A category 𝑋 is a pretopos if 𝑋 satisfies the
following conditions:

(1.2.1) The category𝑋 admits finite limits.

(1.2.2) The category𝑋 admits finite coproducts, which are universal and disjoint.
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(1.2.3) Equivalence relations in𝑋 are effective.

(1.2.4) Effective epimorphisms in𝑋 are stable under pullback

If 𝑋 and 𝑌 are pretopoi, we say that a functor 𝑓∗ ∶ 𝑌 → 𝑋 is a morphism of pre-
topoi if 𝑓∗ preserves finite limits, finite coproducts, and effective epimorphisms. Write
preTop ⊂ Cat for the subcategory consisting of essentially small pretopoi andmorphisms
of pretopoi.

1.3 Example ([11, Corollary C.5.14]). Let 𝑿 be a coherent topos. Then the full subcat-
egory 𝑿coh ⊂ 𝑿 of coherent objects is an essentially small pretopos. If 𝑓∗ ∶ 𝑿 → 𝒀 is a
coherent geometric morphism of coherent topoi, then the functor 𝑓∗ ∶ 𝒀coh → 𝑿coh is
a morphism of pretopoi.

If𝑿 is the étale topos of a quasicompact quasiseparated scheme𝑋, then𝑿 is coherent
and𝑿coh is the category of constructible étale sheaves of sets on𝑋.

1.4 Definition ([11, Definition B.5.3]). Let𝑋 be a pretopos. The effective epimorphism
topology on 𝑋 is the Grothendieck topology eff on 𝑋 where a collection of morphisms
{𝑈𝑖 → 𝑈}𝑖∈𝐼 is a covering if and only if there exists a finite subset 𝐼0 ⊂ 𝐼 such that the
induced morphism∐𝑖∈𝐼0 𝑈𝑖 → 𝑈 is an effective epimorphism in𝑋.

The effective epimorphism topology is subcanonical [11, Corollary B.5.6].

1.5Theorem ([9, Corollary 7; 11, Proposition C.6.3]). The constructions𝑿 ↦ 𝑿coh and
𝑋 ↦ Sheff(𝑋; Set) are mutually inverse equivalences of (2, 1)-categories

Topcoh ≃ preTopop .

1.6Remark. Theequivalence ofTheorem1.5 is really an equivalence of (2, 2)-categories,
but we do not need noninvertible 2-morphisms in this note.

Classification of bounded coherent∞-topoi
Coherent ∞-topoi admit a classification in terms of a higher-categorical analogue of
pretopoi, as long as they can be recovered from the collection of their 𝑛-topoi of (𝑛 − 1)-
truncated objects. This subsection is a breif summary of [SAG, §§A.2, A.3, A.6, & A.7].

1.7 Notation. We use here the theory of 𝑛-topoi for 𝑛 ∈ 𝑵▹; see [HTT, Chapter 6]. We
write Top𝑛 ⊂ Cat∞ for the subcategory of 𝑛-topoi and geometric morphisms.

1.8 Example. Recall that 1-topoi are topoi in the classical sense [HTT, Remark 6.4.1.3].

1.9 Example. Let𝑚, 𝑛 ∈ 𝑵▹ with𝑚 ≤ 𝑛. An𝑚-site is a small𝑚-category1 𝑋 equipped
with a Grothendieck topology 𝜏. Attached to this 𝑚-site is the 𝑛-topos Sh𝜏,≤(𝑛−1)(𝑋) of
sheaves of (𝑛 − 1)-truncated spaces on 𝑋. We simply write Sh𝜏(𝑋) for the∞-topos of
sheaves of spaces on𝑋.

Not all ∞-topoi are of the form Sh𝜏(𝑋) for some ∞-site 𝑋; however, if 𝑛 ∈ 𝑵,
then every 𝑛-topos is of the form Sh𝜏,≤(𝑛−1)(𝑋) for some 𝑛-site (𝑋, 𝜏) [HTT, Theorem
6.4.1.5(1)].

1By an𝑚-category we mean an∞-category whose mapping spaces are (𝑚 − 1)-truncated.
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1.10 Definition ([HTT, §6.4.5]). For any integer 𝑛 ≥ 0, passage to (𝑛 − 1)-truncated
objects defines a functor 𝜏≤𝑛−1 ∶ Top∞ → Top𝑛. The functor 𝜏≤𝑛−1 admits admits a fully
faithful right adjointTop𝑛 ↪ Top∞ whose essential image we denote byTop𝑛∞ ⊂ Top∞.
The∞-category Top𝑛∞ is the∞-category of 𝑛-localic∞-topoi.

1.11 Example. For any topological space 𝑇, the∞-topos Sh(𝑇) of sheaves on 𝑇 is 0-
localic.

1.12 Example. If 𝑿 is a topos presented as sheaves of sets on a site (𝑋, 𝜏) with finite
limits, then the 1-localic∞-topos associated to 𝑿 is the∞-topos Sh𝜏(𝑋) of sheaves of
spaces on (𝑋, 𝜏).

1.13. Let 𝑛 ∈ 𝑵.The proof of [HTT, Proposition 6.4.5.9] demonstrates that an∞-topos
𝑿 is 𝑛-localic if and only if𝑿 ≃ Sh𝜏(𝑋) for some 𝑛-site (𝑋, 𝜏) with finite limits.

1.14 Warning. If (𝑋, 𝜏) is an 𝑛-site and the 𝑛-category 𝑋 does not have finite limits,
then the∞-topos Sh𝜏(𝑋) is not generally 𝑁-localic for any integer 𝑁 ≥ 0. See [SAG,
Counterexample 20.4.0.1] for a basis 𝐵 for the topology on the Hilbert cube∏𝑖∈𝒁[0, 1]
for which the∞-topos of sheaves on 𝐵 is not𝑁-localic for any𝑁 ≥ 0.

1.15 Definition ([SAG, Definition A.7.1.2]). An ∞-topos 𝑿 is bounded if 𝑿 can be
written as the limit of a diagram 𝒀∶ 𝐼 → Top∞ where 𝐼op is a filtered∞-category and
for each 𝑖 ∈ 𝐼 the∞-topos 𝒀𝑖 is 𝑛𝑖 localic for some 𝑛𝑖 ∈ 𝑵.

1.16 Definition ([SAG, Definition A.2.0.12]). Let𝑿 be an∞-topos. We say that𝑿 is 0-
coherent or quasicompact if and only if every cover {𝑈𝑖 → 1𝑿}𝑖∈𝐼 of the terminal object
1𝑿 ∈ 𝑿 admits a finite subcover. Let 𝑛 ≥ 1 be an integer, and define 𝑛-coherence of
∞-topoi and their objects recursively as follows:

(1.16.1) An object 𝑈 ∈ 𝑿 is 𝑛-coherent if and only if the∞-topos𝑿/𝑈 is 𝑛-coherent.

(1.16.2) The∞-topos 𝑿 is locally 𝑛-coherent if and only if every object 𝑈 ∈ 𝑿 admits
a cover {𝑈𝑖 → 𝑈}𝑖∈𝐼 where each 𝑈𝑖 is 𝑛-coherent.

(1.16.3) The∞-topos 𝑿 is (𝑛 + 1)-coherent if and only if 𝑿 is locally 𝑛-coherent, and
the 𝑛-coherent objects of𝑿 are closed under finite products.

An∞-topos 𝑿 is coherent if and only if 𝑿 is 𝑛-coherent for every 𝑛 ≥ 0. An object
𝑈 of an∞-topos𝑿 is coherent if and only if𝑿/𝑈 is a coherent∞-topos. Finally, an∞-
topos𝑿 is locally coherent if and only if every object𝑈 ∈ 𝑿 admits a cover {𝑈𝑖 → 𝑈}𝑖∈𝐼
where each 𝑈𝑖 is coherent.

1.17Definition. A geometric morphism of∞-topoi𝑓∗ ∶ 𝑿 → 𝒀 is coherent if and only
if, for every coherent object 𝐹 ∈ 𝒀, the object 𝑓∗(𝐹) ∈ 𝑿 is coherent. We write Topcoh∞
for the subcategory ofTop∞ whose objects are coherent∞-topoi andwhosemorphisms
are coherent geometric morphisms.

Write Topbc∞ ⊂ Top
coh
∞ for the full subcategory spanned by those coherent∞-topoi

that are also bounded, that is, the bounded coherent∞-topoi
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1.18 Notation. If 𝑿 is an∞-topos, then write 𝑿coh ⊂ 𝑿 for the full subcategory of 𝑿
spanned by the coherent objects and𝑿coh<∞ ⊂ 𝑿 for the full subcategory of𝑿 spanned by
the truncated coherent objects.

1.19 Example. The∞-topos Spc of spaces is coherent. An object 𝑈 ∈ Spc is truncated
coherent if and only if 𝑈 is a 𝜋-finite space, i.e., 𝑈 is truncated, has finitely many con-
nected components, and all of the homotopy groups of 𝑈 are finite.
1.20Definition ([SAG, DefinitionA.3.1.1]). An∞-site (𝑋, 𝜏) is finitary if and only if𝑋
admits all fiber products, and, for every object𝑈 ∈ 𝑋 and every covering sieve 𝑆 ⊂ 𝑋/𝑈,
there is a finite subset {𝑈𝑖}𝑖∈𝐼 ⊂ 𝑆 that generates a covering sieve.

Let (𝑋, 𝜏𝑋) and (𝑌, 𝜏𝑌) be finitary∞-sites. A morphism of∞-sites 𝑓∗ ∶ (𝑌, 𝜏𝑌) →
(𝑋, 𝜏𝑋) is amorphism of finitary∞-sites if 𝑓∗ is preserves fiber products.
1.21 Proposition ([SAG, Proposition A.3.1.3]). Let (𝑋, 𝜏) be a finitary ∞-site. Then
the ∞-topos Sh𝜏(𝑋) locally coherent, and for every object 𝑥 ∈ 𝑋, the sheaf よ(𝑥) is a
coherent object of Sh𝜏(𝑋), whereよ ∶ 𝑋 → Sh𝜏(𝑋) is the sheafified Yoneda embedding. If,
in addition,𝑋 admits a terminal object, then Sh𝜏(𝑋) is coherent.
1.22 Definition ([SAG, Definition A.6.1.1]). An∞-category 𝑋 is an∞-pretopos if 𝑋
satisfies the following conditions:

(1.22.1) The category𝑋 admits finite limits.

(1.22.2) The category𝑋 admits finite coproducts, which are universal and disjoint.

(1.22.3) Groupoid objects in 𝑋 are effective, and their geometric realizations are uni-
versal.

If 𝑋 and 𝑌 are∞-pretopoi, we say that a functor 𝑓∗ ∶ 𝑌 → 𝑋 is a morphism of∞-
pretopoi if 𝑓∗ preserves finite limits, finite coproducts, and effective epimorphisms. We
write preTop∞ ⊂ Cat∞ for the subcategory consisting of∞-pretopoi and morphisms
of∞-pretopoi.
1.23 Example ([SAG, Corollary A.6.1.7]). If 𝑿 is a coherent ∞-topos, then the full
subcategory𝑿coh ⊂ 𝑿 spanned by the coherent objects is an∞-pretopos.
1.24 Definition ([SAG, Definition A.6.2.4]). Let 𝑋 be an ∞-pretopos. The effective
epimorphism topology on𝑋 is the Grothendieck topologyeff where a collection of mor-
phisms {𝑈𝑖 → 𝑈}𝑖∈𝐼 is a covering if and only if there exists a finite subset 𝐼0 ⊂ 𝐼 such
that the induced morphism∐𝑖∈𝐼0 𝑈𝑖 → 𝑈 is an effective epimorphism in𝑋.

The effective epimorphism topology is finitary and subcanonical [SAG, Corollary
A.6.2.6].

1.25Definition ([SAG,DefinitionA.7.4.1]). An∞-pretopos𝑋 is bounded if and only if
𝑋 is essentially small and every object of𝑋 is truncated. We write preTopb∞ ⊂ preTop∞
for the full subcategory spanned by the bounded∞-pretopoi.
1.26 Theorem ([SAG, Theorem A.7.5.3]). The constructions 𝑿 ↦ 𝑿coh<∞ and 𝑋 ↦
Sheff(𝑋) are mutually inverse equivalences of∞-categories

Topbc∞ ≃ preTop
b,op
∞ .
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2 Coherence for 1-localic∞-topoi
In this section we show that the∞-category of coherent ordinary topoi is equivalent to
the∞-category of coherent 1-localic∞-topoi (Proposition 2.11).This follows from the
fact that morphisms of finitary∞-sites induce coherent geometric morphisms (Corol-
lary 2.9). First we’ll have to give∞-toposic versions of a number of points from [SGA
4ii, Exposé VI, §§1–3], which follow easily from [SAG, §A.2.1].

2.1 Definition. Let 𝑛 ∈ 𝑵 and let 𝑿 be a locally 𝑛-coherent ∞-topos. A morphism
𝑈 → 𝑉 in 𝑿 is relatively 𝑛-coherent if for every 𝑛-coherent object 𝑉′ ∈ 𝑿 and every
morphism 𝑉′ → 𝑉, the fiber product 𝑈 ×𝑉 𝑉′ is also 𝑛-coherent.

2.2 Example ([SAG, Example A.2.1.2]). Let 𝑿 be a locally 𝑛-coherent ∞-topos and
𝑓∶ 𝑈 → 𝑉 a morphism in 𝑿. If 𝑈 is 𝑛-coherent and 𝑉 is (𝑛 + 1)-coherent, then 𝑓 is
relatively 𝑛-coherent.

2.3 Lemma. Let 𝑿 be an∞-topos. If 𝑒∶ 𝑈 ↠ 𝑉 is an effective epimorphism in 𝑿 and 𝑈
is quasicompact, then 𝑉 is quasicompact.

Proof. This is a special case of [SAG, Proposition A.2.1.3].

2.4 Lemma. Let 𝑛 ≥ 1 be an integer and𝑿 a locally (𝑛−1)-coherent∞-topos. Let𝑈 ∈ 𝑿
and let 𝑒∶ ∐𝑖∈𝐼𝑈𝑖 ↠ 𝑈 be a cover of𝑈 where 𝐼 is finite and𝑈𝑖 is 𝑛-coherent for each 𝑖 ∈ 𝐼.
The following are equivalent:

(2.4.1) The effective epimorphism 𝑒 is relatively (𝑛 − 1)-coherent.

(2.4.2) For all 𝑖, 𝑗 ∈ 𝐼, the object 𝑈𝑖 ×𝑈 𝑈𝑗 is (𝑛 − 1)-coherent.

(2.4.3) The object 𝑈 is 𝑛-coherent.

Proof. If 𝑒 is relatively (𝑛 − 1)-coherent, then since coproducts in 𝑿 are universal, the
fiber product

(∐𝑖∈𝐼𝑈𝑖) ×𝑈 (∐𝑗∈𝐼𝑈𝑗) ≃ ∐
𝑖,𝑗∈𝐼
𝑈𝑖 ×𝑈 𝑈𝑗

is (𝑛 − 1)-coherent. Thus 𝑈𝑖 ×𝑈 𝑈𝑗 is (𝑛 − 1)-coherent for all 𝑖, 𝑗 ∈ 𝐼 [SAG, Remark
A.2.0.16].

If each𝑈𝑖 ×𝑈 𝑈𝑗 is (𝑛 − 1)-coherent, then since each𝑈𝑖 is 𝑛-coherent the pullback of
𝑒 along itself

∐
𝑖,𝑗∈𝐼
𝑈𝑖 ×𝑈 𝑈𝑗 ↠∐

𝑖∈𝐼
𝑈𝑖

is relatively (𝑛 − 1)-coherent (Example 2.2). Applying [SAG, Corollary A.2.1.5] we de-
duce that 𝑒∶ ∐𝑖∈𝐼𝑈𝑖 ↠ 𝑈 is relatively (𝑛 − 1)-coherent.

To conclude, note that if 𝑒∶ ∐𝑖∈𝐼𝑈𝑖 ↠ 𝑈 is relatively (𝑛 − 1)-coherent, then [SAG,
Proposition A.2.1.3] shows that 𝑈 is 𝑛-coherent. On the other hand, if 𝑈 is 𝑛-coherent,
then 𝑒 is (𝑛 − 1)-coherent by Example 2.2.

2.5 Proposition. Let 𝑓∗ ∶ 𝑿 → 𝒀 be a geometric morphism of ∞-topoi and 𝑛 ∈ 𝑵.
Assume that:
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(2.5.1) There exists a collection of 𝑛-coherent objects 𝒀0 ⊂ Obj(𝒀) of 𝒀 such that for every
𝑛-coherent object 𝑈 ∈ 𝒀 there exists a cover∐𝑖∈𝐼𝑈𝑖 ↠ 𝑈 where 𝑈𝑖 ∈ 𝒀0 for each
𝑖 ∈ 𝐼.

(2.5.2) The pullback functor 𝑓∗ ∶ 𝒀 → 𝑿 takes objects of 𝒀0 to 𝑛-coherent objects of𝑿.

(2.5.3) If 𝑛 ≥ 1, the∞-topoi𝑿 and 𝒀 are locally (𝑛 − 1)-coherent and 𝑓∗ ∶ 𝒀 → 𝑿 takes
(𝑛 − 1)-coherent objects of 𝒀 to (𝑛 − 1)-coherent objects of𝑿.

Then 𝑓∗ takes 𝑛-coherent objects of 𝒀 to 𝑛-coherent objects of𝑿.

Proof. Let𝑈 ∈ 𝒀 be an 𝑛-coherent object; we show that𝑓∗(𝑈) is 𝑛-coherent. By assump-
tion there exists a cover

𝑒∶ ∐
𝑖∈𝐼
𝑈𝑖 ↠ 𝑈

where 𝑈𝑖 ∈ 𝒀0 for each 𝑖 ∈ 𝐼 and 𝐼 is finite (since 𝑈 is, in particular, 0-coherent). For
all 𝑖 ∈ 𝐼 the object 𝑓∗(𝑈𝑖) is 𝑛-coherent by assumption, so since 𝑛-coherent objects are
closed under finite coproducts [SAG, Remark A.2.0.16], the object

𝑓∗ (∐𝑖∈𝐼𝑈𝑖) ≃ ∐
𝑖∈𝐼
𝑓∗(𝑈𝑖)

is 𝑛-coherent.
Note that

𝑓∗(𝑒) ∶ ∐
𝑖∈𝐼
𝑓∗(𝑈𝑖) ↠ 𝑓∗(𝑈)

is an effective epimorphism in 𝑿. If 𝑛 = 0, this proves the claim (Lemma 2.3). If 𝑛 ≥ 1,
then Lemma 2.4 shows that it suffices to show that for all 𝑖, 𝑗 ∈ 𝐼, the object

𝑓∗(𝑈𝑖) ×𝑓∗(𝑈) 𝑓∗(𝑈𝑗) ≃ 𝑓∗(𝑈𝑖 ×𝑈 𝑈𝑗)

is (𝑛 − 1)-coherent. This follows from the fact that 𝑈𝑖 ×𝑈 𝑈𝑗 is (𝑛 − 1)-coherent (by
Lemma 2.4) and the assumption that 𝑓∗ sends (𝑛 − 1)-coherent objects of 𝒀 to (𝑛 − 1)-
coherent objects of𝑿.

Proposition 2.5 shows that coherence of a geometric morphism between locally co-
herent∞-topoi (Definition 1.17) is equivalent to the a priori stronger condition that
the pullback functor preserve 𝑛-coherent objects for all 𝑛 ≥ 0:2

2.6 Corollary. Let 𝑓∗ ∶ 𝑿 → 𝒀 be a geometric morphism between locally coherent∞-
topoi. Then 𝑓∗ is coherent if and only if 𝑓∗ takes 𝑛-coherent objects of 𝒀 to 𝑛-coherent
objects of𝑿 for all 𝑛 ≥ 0.

Proposition 2.5 also shows that coherence of a geometric morphism can be checked
on a generating set of coherent objects.

2This second notion is how Grothendieck and Verdier originally defined coherence for ordinary topoi
[SGA 4ii, Exposé VI, Définition 3.1].
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2.7 Corollary. Let 𝑓∗ ∶ 𝑿 → 𝒀 be a geometric morphism between locally coherent∞-
topoi. Let 𝒀0 ⊂ Obj(𝒀coh) be a collection of coherent objects such that for every object
𝑈 ∈ 𝒀 there exists a cover∐𝑖∈𝐼𝑈𝑖 ↠ 𝑈 where 𝑈𝑖 ∈ 𝒀0 for each 𝑖 ∈ 𝐼. If for all 𝑈 ∈ 𝒀0 the
object 𝑓∗(𝑈) is coherent, the geometric morphism 𝑓∗ ∶ 𝑿 → 𝒀 is coherent.

For the next result, we need the following lemma.

2.8 Lemma. Let 𝑓∗ ∶ (𝑌, 𝜏𝑌) → (𝑋, 𝜏𝑋) be a morphism of∞-sites, and writeよ𝑌 ∶ 𝑌 →
Sh𝜏𝑌(𝑌) for the sheafified Yoneda embedding. If the topology 𝜏𝑋 is finitary, then

𝑓∗よ𝑌 ∶ 𝑌 → Sh𝜏𝑋(𝑋)

factors through Sh𝜏𝑋(𝑋)
coh ⊂ Sh𝜏𝑋(𝑋).

Proof. We have a commutative square

𝑌 𝑋

Sh𝜏𝑌(𝑌) Sh𝜏𝑋(𝑋)

𝑝∗

ょ𝑌 ょ𝑋

𝑝∗

where the vertical functors are sheafified Yoneda embeddings. The claim now follows
from the fact thatよ𝑋 ∶ 𝑋 → Sh𝜏𝑋(𝑋) factors through Sh𝜏𝑋(𝑋)

coh, since the topology 𝜏𝑋
is finitary (Proposition 1.21).

2.9 Corollary. Let 𝑓∗ ∶ (𝑌, 𝜏𝑌) → (𝑋, 𝜏𝑋) be a morphism of finitary∞-sites. Then the
geometric morphism

𝑓∗ ∶ Sh𝜏𝑋(𝑋) → Sh𝜏𝑌(𝑌)
is coherent.

Proof. By Proposition 1.21, both Sh𝜏𝑋(𝑋) and Sh𝜏𝑌(𝑌) are locally coherent. The image
よ𝑌(𝑌) of𝑌 under the sheafifiedYoneda embedding generates Sh𝜏𝑌(𝑌) under colimits, so
by Corollary 2.7 it suffices to check that 𝑓∗ carries objects inよ𝑌(𝑌) to coherent objects
of𝑿; this the content of Lemma 2.8.

2.10Notation. WriteTop1,coh∞ ⊂ Top
coh
∞ for the full subcategory spanned by the 1-localic

coherent∞-topoi.

Corollary 2.9 and the definitions immediately imply the following:

2.11 Proposition. The equivalence of∞-categories 𝜏≤0 ∶ Top1∞ ⥲ Top (Definition 1.10)
restricts to an equivalence

𝜏≤0 ∶ Top1,coh∞ ⥲ Topcoh

2.12 Corollary. The following are equivalent for a geometric morphism 𝑓∗ ∶ 𝑿 → 𝒀 be-
tween 1-localic coherent∞-topoi:

(2.12.1) The geometric morphism 𝑓∗ ∶ 𝑿 → 𝒀 is coherent.
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(2.12.2) The pullback functor 𝑓∗ ∶ 𝒀 → 𝑿 carries 0-truncated 1-coherent objects of 𝒀 to
1-coherent objects of𝑿.

2.13 Remark. If 𝑛 ≥ 2, there doesn’t already exist a notion of ‘coherent 𝑛-topos’ (other
than saying that the corresponding 𝑛-localic∞-topos is coherent). However, if one de-
clares that an 𝑛-topos𝑿 is ‘coherent’ if𝑿 is ‘(𝑛 + 1)-coherent’, then Corollary 2.9 allows
one to immediately deduce variants of Proposition 2.11 and Corollary 2.12 for coherent
𝑛-topoi. Sections 5.4 through 5.6 of the newest version of [2] address this more general
point.

The∞-pretopos associated to an ordinary pretopos
In this subsection we exploit the equivalence of Proposition 2.11 to show how to asso-
ciate a bounded∞-pretopos to an essentially small pretopos. Lurie briefly touches upon
this point (without details) in [10].

2.14. If 𝑿 is a bounded coherent∞-topos, then the associated ordinary topos 𝜏≤0𝑿 is
coherent. Moreover, if 𝑓∗ ∶ 𝑿 → 𝒀 is a coherent geometric morphism of bounded co-
herent∞-topoi, then the induced geometric morphsim𝑓∗ ∶ 𝜏≤0𝑿 → 𝜏≤0𝒀 is a coherent
geometric morphism of ordinary topoi. Hence the adjunction Top∞ ⇄ Top restricts to
an adjunction

(2.15) Topbc∞ Topcoh .
𝜏≤0

2.16. Transporting the adjunction (2.15) across the equivalences

(−)coh ∶ Topcoh ⥲ preTopop and (−)coh<∞ ∶ Topbc∞ ⥲ preTopb,op∞

ofTheorems 1.5 and 1.26 we see that the functor 𝜏≤0 ∶ preTopb∞ → preTop admits a fully
faithful right adjoint

(−)+ ∶ preTop↪ preTopb∞
given by𝑋+ ≔ Sheff(𝑋)coh<∞.

2.17 Example. The bounded∞-pretopos Fin+ associated to the pretopos Fin of finite
sets is the∞-pretopos Spc𝜋 of 𝜋-finite spaces.

Examples from algebraic geometry
We conclude with a few examples from algebraic geometry that Corollary 2.9 puts on
the same footing.

2.18 Example. For a spectral topological space3 𝑆, write Openqc(𝑆) ⊂ Open(𝑆) for the
locale of quasicompact opens in 𝑆. Since the quasicompact opens of 𝑆 form a basis for the

3A topological space 𝑆 is spectral if and only if 𝑆 is homeomorphic to the underlying topological space of
a quasicompact quasiseparated scheme.
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topology on 𝑆 that is closed under finite intersections, the∞-topos Sh(Openqc(𝑆)) is 0-
localic. Applying [11, Proposition B.6.4] we see that the inclusion Openqc(𝑆) ⊂ Open(𝑆)
induces an equivalence of 0-localic∞-topoi

Sh(𝑆) ≃ Sh(Openqc(𝑆)) .
The Grothendieck topology on Openqc(𝑆) is finitary, so the∞-topos Sh(𝑆) of sheaves
on 𝑆 is a coherent∞-topos. (Cf. [SAG, Lemma 2.3.4.1]).

If 𝑓∶ 𝑆 → 𝑇 is a quasicompact continuous map of spectral topological spaces, the
inverse image map 𝑓−1 ∶ Open(𝑇) → Open(𝑆) restricts to a map

𝑓−1 ∶ Openqc(𝑇) → Openqc(𝑆) .
Corollary 2.9 shows that the induced geometric morphism𝑓∗ ∶ Sh(𝑆) → Sh(𝑇) is coher-
ent. Since spectral topological spaces are sober, a continuous map 𝑓∶ 𝑆 → 𝑇 of spectral
topological spaces induces a coherent geometric morphism on the level of∞-topoi if
and only if 𝑓 is quasicompact.

2.19. If𝑿 is a coherent∞-topos, then the underlying topological space of𝑿 is spectral
[7, Chapter II, §§3.3–3.4].

Combining the fact that theZariski,Nisnevich4, étale, andproétale5 topoi of a scheme
all have the same underlying topological space with the fact that if a scheme𝑋 is quasi-
compact and quasiseparated, then the topoi of sheaves on𝑋 in each of these topologies
is coherent [SAG, Proposition 2.3.4.2 & Remark 3.7.4.2; 1, Appendix A; 11, Example
7.1.7], we deduce the following:

2.20 Proposition. The following are equivalent for a scheme𝑋:
(2.20.1) The scheme𝑋 is quasicompact and quasiseparated.

(2.20.2) The Zariski∞-topos𝑋zar of𝑋 is a coherent∞-topos.

(2.20.3) The Nisnevich∞-topos𝑋nis of𝑋 is a coherent∞-topos.

(2.20.4) The étale∞-topos𝑋ét of𝑋 is a coherent∞-topos.

(2.20.5) The proétale∞-topos𝑋proét of𝑋 is a coherent∞-topos.
2.21 Example ([2, Example 10.4.13]). Let𝑋 be a quasicompact quasiseparated scheme.
Then the bounded∞-pretopos of truncated coherent objects of the coherent∞-topos
𝑋ét is the∞-category of constructible étale sheaves of spaces on𝑋.
2.22 Example. Let𝑓∶ 𝑋 → 𝑌 be amorphism of quasicompact quasiseparated schemes
and let 𝜏 ∈ {zar, nis, ét, proét}. Then the induced geometric morphism 𝑓∗ ∶ 𝑋𝜏 → 𝑌𝜏 on
∞-topoi of 𝜏-sheaves is a coherent geometric morphism of coherent∞-topoi.
2.23 Example. Let 𝑋 be a quasicompact quasiseparated scheme. Then the natural geo-
metric morphisms

𝑋proét → 𝑋ét , 𝑋ét → 𝑋nis , and 𝑋nis → 𝑋zar
are all coherent geometric morphisms of coherent∞-topoi.

4For background on the Nisnevich topology, see [SAG, §3.7; 5; 4; 13].
5For background on the proétale topology, see [STK, Tags 0988 & 099R; 3].
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