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1 Introduction

These notes are for a seminar run by David Nadler on derived symplectic geometry in Fall 2021. We introduce
the basics of derived categories of sheaves.

2 Basics of Sheaves

Given a topological space X and some algebraic category A, like ModR, we can define a category of sheaves
on X with values in A. For the most part, A will be some set-based category so we’ll be able to talk about
elements in the objects of A.

Let’s we denote by Open(X) the category whose objects are open sets in X, and whose morphisms are
inclusions of open sets.

First, a preliminary definition.

2.1 Presheaves

Definition 2.1: Presheaf

A presheaf P on X with values in A is a functor P : Open(X)
op → A. Let Psh(X;A) denote the

category of all such presheaves. The morphisms in the category are just morphisms of functors (or,
natural transformations).

We also write Psh(X) if A is known from context.

Unpacking the definition, this means we must assign to each open U ⊆ X an object P (U) in A and to each
inclusion V ⊆ U a “restriction” P (U)→ P (V ), subject to compatibility with the composition of inclusions,
ie given W ⊆ V ⊆ U we get that the composition of restrictions P (U) → P (V ) → P (W ) is equal to the
direct restriction P (U)→ P (W ). Elements s ∈ P (U) are usually called “sections of P at U”, because of the
function sheaf and sheaf of sections examples below.

Example 2.1.1: Constant presheaf

Take any topological space X and any object A ∈ A, just take the constant functor at A, usually
denoted by A : Open(X)

op → A which just always evaluates to A ∈ A. Unpacking, we get that
A(U) = A for any U ⊆ X. The restriction maps are just the identity on A.

Example 2.1.2: Function sheaf

Take a topological space X, and we’ll let A be ModR. Let F : Open(X)
op →ModR assign to each

open U ⊆ X the R-module of (continuous, smooth, etc) functions Map(U,R). Then given V ⊆ U the
restriction F (U)→ F (V ) is literally the restriction of functions. This clearly also works for C instead
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of R.

Example 2.1.3: Sheaf of sections

Given a C-vector bundle E → B, we can create a presheaf S on B with values in ModC by assigning
to each U ⊆ B the C-vector space of sections U → E|U . In other words, maps U → E|U such that each
x ∈ U is assigned an element of the fiber E|x (in some continuous manner). This example encapsulates
the above one by considering the vector bundle C×X → X.

Example 2.1.4: Sheaf of solutions to a differential equation

Given a differential equation (for example, y′(x) = sin(y)), we can create a presheaf Sol on R with
values in ModR as follows: for each U ⊆ R we let Sol(U) be the R-vector space of solutions to the given
differential equation on U . Once again, the “restriction” morphisms are actual restriction of solutions
to the differential equation.

Example 2.1.5: Integral at most 1 presheaf

Let’s create a presheaf on R with values in ModR by assigning to each open U ⊆ R the R-vector space
of integrable functions f : U → R with

∫
U
f(x) dx ≤ 1. For the restriction maps, we once again use

function restriction just like the function sheaf example above. Notice that if
∫
U
f(x) dx ≤ 1, then the

restriction of f to a subset V ⊆ U also has integral at most 1.

2.2 Sheaves

Notice that the function sheaf, sheaf of sections, and sheaf of solutions to differential equations are called
sheaves instead of presheaves. These geometric examples actually satisfy an additional property called
the “sheaf condition” or the “descent condition” which basically says that given several different sections
si ∈ P (Ui) such that their restrictions agree on intersection, you can glue them together to get a section
s ∈ P (U) where U =

⋃
i Ui.

Definition 2.2: Sheaf

A sheaf F on X with values in A is a presheaf that satisfies the following condition: Given any open
U ⊆ X and any family of opens Ui ⊆ U that covers U , we have:

F (U)
∼−→ lim

 ∏
i

F (Ui)
∏
i,j

F (Ui ∩ Uj)
r1

r2


The morphism from F (U) to the limit is induced by the restrictions F (U)→ F (Ui) is an isomorphism,
and the limit is the equalizer.

We denote the category of all such sheaves as Sh(X,A), or Sh(X) is A is known from context. The
morphisms are again the natural transformations of functors.

Unpacking, this means that every section in F (U) corresponds uniquely (via the restriction maps) to a
family of choices si ∈ F (Ui) such that the restrictions of si and sj to F (Ui ∩ Uj) are equal. In other words,
this exactly corresponds to the gluing construction mentioned above.
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2.3 Scolion: why stop at double intersections?

Given an open cover Ui ⊆ U of U and a presheaf F , we get a cosimplicial structure

∏
i0

F (Ui0)
∏
i0,i1

F (Ui0,i1)
∏

i0,i1,i2

F (Ui0,i1,i2) . . .
r0

r1

r0
r1
r2

Here Ui0,i1 is the intersection of Ui0 and Ui1 , etc.
So what happened with the rest of the diagram? Why don’t we consider triple intersections, quadruple

intersections, and so on? The answer is due to the following ∞-categorical lemma:

Lemma 2.1

Let ∆ be the simplex category, and ∆≤n be the full subcategory of ∆ whose objects are [0], [1], . . . , [n].
Then given an (n, 1)-category C and a ∞ functor F : ∆→ C, the natural comparison

lim
∆

F → lim
∆≤n

F

is an equivalence. In other words, the inclusion ∆≤n → ∆ is an “n-initial” morphism.

Since our presheaves currently take values in 1-categories, we only need to care about the 1-truncation
∆≤1 of ∆, which corresponds to only caring about the first two terms!

On the other hand, when gluing sheaves together, one might have seen the need to include a cocycle
condition. It’s not too difficult to see that this cocycle condition has to do with including back in the
third term, in other words using ∆≤2. This is because the functor we are considering here is the functor
Sh : ∆→ Cat, defined by:

[n] 7→
∏

i0,...,in

Sh(Ui0,...,in)

is a functor to the 2-category Cat! This is why we need the triple intersections.
If you want to think of ∞ sheaves with values in ∞-categories then, you’d need the entire cosimplicial

diagram.

2.4 Examples of sheaves

For some examples, the function sheaf 2.1.2, sheaf of sections 2.1.3, and sheaf of solutions of a differential
equation 2.1.4 are standard ones, which motivated the definition in the first place.

The constant presheaf 2.1.1 isn’t always a sheaf! Note what happens when the underlying space is not
connected. The integral at most 1 presheaf 2.1.5 isn’t a sheaf either. Every presheaf however presents a
sheaf via a procedure called sheafification.

We can define sheafification in (at least) two ways: one using stalks and the other more general method,
which can be extended to the context of sheaves on a site. We discuss here the stalk perspective for simplicity.

Definition 2.3: Stalks of presheaves

Given a presheaf F , we define the stalk at a point x ∈ X as the following filtered colimit

F |x = colim
U3x

F (U)

where the colimit ranges over opens U containing x.

This definition, in the most important examples of the sheaf of functions and solutions to differential equa-
tions, corresponds to taking the germs of functions at certain points.

Now we can define the sheafification:
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Definition 2.4: Sheafification

Given a presheaf P , we can construct a sheaf P ∗ called its sheafification as follows: let P ∗(U) be the
set of “functions” which maps x ∈ U to sx ∈ P |x, such that for all x ∈ U , there’s an open V ⊆ U and
section s ∈ P (V ) where for all y ∈ V , the stalk of s at y is equal to sy.

Sheafification is functorial, in that it defines a functor from Psh(X)→ Sh(X). It is in fact the left adjoint
to the natural inclusion Sh(X) → Psh(X), in that it satisfies the following universal property: Given a
presheaf P and a sheaf F , along with a presheaf map P → F , there’s a unique morphism from P ∗ → F that
fills the diagram:

P F

P ∗

iP
!

Here iP is the natural inclusion P → P ∗.

Example 2.4.1: Constant sheaf

Take the constant presheaf AP , which evaluates to A ∈ A for any open U ⊆ X. If we sheafify,
we get what’s called the constant sheaf A. For example, let X = {a, b} be a discrete set. Then
A({a}) = A({b}) = A, but by the sheaf condition, A({a, b}) = A×A.
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