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Abstract. The purpose of this paper is to explain why the functor that sends a strati�ed topological space S to
the∞-category of constructible (hyper)sheaves on S with coe�cients in a large class of presentable∞-categories
is homotopy-invariant. To do this, we �rst establish a number of results in the unstrati�ed setting, i.e., the setting
of locally constant (hyper)sheaves. For example, if X is a locally weakly contractible topological space and ℰ is a
presentable∞-category, then we give a concrete formula for the constant hypersheaf functor ℰ → Sh

hyp
(X; ℰ).

This formula lets us show that the constant hypersheaf functor is a right adjoint, and is fully faithful if X is also
weakly contractible. It also lets us prove a general monodromy equivalence and categorical Künneth formula for
locally constant hypersheaves.
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0. Introduction

A classical result from sheaf theory says that the functor S ↦ LC(S; Set) sending a topological space S
to the category of locally constant sheaves of sets on S is homotopy-invariant. More generally, if P is a poset
then the functor

S ↦ ConsP(S; Set)
sending a P-strati�ed topological space S to the category of sheaves of sets on S that are constructible with
respect to the strati�cation S → P is invariant under strati�ed homotopy equivalences. Lurie’s work on
the topological exodromy equivalence (see [HA, Theorems A.1.15 & A.4.19]) generalizes these results by
considering sheaves with values in the ∞-category of spaces, provided that we restrict to the following
classes of well-behaved (strati�ed) topological spaces:
(1) For locally constant sheaves, we take topological spaces S that are locally of singular shape.

(2) For constructible sheaves, we take strati�ed topological spaces S → P forwhich the posetP isNoetherian,
the strati�cation is conical, S is paracompact, and all of the strata of S are locally of singular shape.

The goal of this paper is to establish the homotopy-invariance result for the∞-categories of locally constant
and constructible sheaves with coe�cients in the∞-category of spaces removing all of the above hypotheses.

In the higher-categorical world, alongside with sheaves, it is often important to also consider hyper-
sheaves. Depending on the situation, one is better behaved than the other (see the discussion in [HTT,
§6.5.4]). In the main body of the paper, we prove two versions of the homotopy-invariance theorem: one in
the setting of hypersheaves and one in the setting of sheaves. The hypersheaf one is stronger, requiring fewer
assumptions than its sheaf-theoretic counterpart. The precise statements are given later in this introduction,
but the main advantages can be summarized as follows:
(1) Working with hypersheaves, we establish invariance not only with respect homotopy equivalences, but

to a large class of weak homotopy equivalences (a result that seems new even for sheaves of sets).

(2) Working with hypersheaves, we can drop the Noetherianity assumption on the poset P.
We expect both of these statements to fail in the sheaf-theoretic setting. Furthermore, both facts have
interesting consequences. The �rst is needed, at this level of generality, in the companion paper of Porta–
Teyssier [18] concerning a strengthening of the exodromy equivalence of [HA, Theorem A.9.3]. The second
lets us apply the homotopy-invariance theorem to key examples like in�nite Grassmannians or the Ran
space of a manifold [HTT, §5.5.1; 3, §3.7; 6; 7; 15], whose natural strati�cation is not Noetherian. This was
one of the motivations behind Lejay’s work on the exodromy equivalence [14].

Finally, we do not limit ourselves to sheaves of spaces. Rather, our results apply to more general pre-
sentable (not necessarily compactly generated)∞-categories: the methods of this paper are explicit enough
that we can handle any stable presentable∞-category, and any∞-topos without any added di�culty.

Statement of results. Before giving the precise statements of the main homotopy-invariance results of
this paper, let us be precise about what we mean by homotopy-invariance. Fix a poset P, that we regard as a
topological space via the Alexandro� topology (where the open subsets are the upwards-closed subsets, see
Notation 5.1). A P-strati�ed topological space is the data of a topological space S together with a continuous
map S → P. When P = ∗, a P-strati�ed space is just a topological space. Given S ∊ Top

∕P
and X ∊ Top, we

regard S × X as a P-strati�ed space via the projection S × X → S → P. Consider the following de�nition:

0.1.De�nition. LetP be a poset. A functorC∶ Topop
∕P

→ Cat∞ is homotopy-invariant if for eachP-strati�ed
space S, the functor

C(pr
S
)∶ C(S) → C(S × [0, 1])

induced by the projectionpr
S
∶ S×[0, 1] → S is an equivalence of∞-categories. A functorC∶ Topop

∕P
→ Cat∞

is strongly homotopy-invariant if for eachP-strati�ed spaceS and eachweakly contractible and locallyweakly
contractible1 topological space X, the induced functor

C(pr
S
)∶ C(S) → C(S × X)

1Starting from here on we shorten “weakly contractible and locally weakly contractible” to wclwc.

http://www.math.ias.edu/~lurie/papers/HA.pdf#atheorem.A.1.15
http://www.math.ias.edu/~lurie/papers/HA.pdf#atheorem.A.4.19
http://www.math.ias.edu/~lurie/papers/HTT.pdf#subsection.6.5.4
http://www.math.ias.edu/~lurie/papers/HA.pdf#atheorem.A.9.3
http://www.math.ias.edu/~lurie/papers/HTT.pdf#subsection.5.5.1
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is an equivalence of∞-categories.

Let ℰ be a presentable∞-category and S a topological space. We write LC(S; ℰ) for the∞-category of
locally constant ℰ-valued sheaves on S, and write LChyp(S; ℰ) for the hypersheaf variant of this∞-category
(see §§1.1 and 1.3). Beware that, in general, the notions of local constancy for sheaves and hypersheaves are
not the same and LChyp(S; ℰ) is not a subcategory of LC(S; ℰ).

0.2. Theorem (Theorem 3.18 & Corollary 4.13). The functors

LC(−; ℰ), LC
hyp

(−; ℰ)∶ Topop → Cat∞

are homotopy-invariant. Moreover, LChyp(−; ℰ) is strongly homotopy invariant

Passing to global sections, Theorem 0.2 implies that cohomology with coe�cients in a locally constant sheaf
valued in any presentable∞-category is homotopy-invariant.

0.3. Remark. The same kind of techniques involved in the proof of Theorem 0.2 allow to show that the
functor LChyp(−; ℰ) inverts all weak homotopy equivalences between locally weakly contractible topolog-
ical spaces (see Observation 3.9). However, the functors LC(−; ℰ) and LChyp(−; ℰ) do not invert all weak
homotopy equivalences between arbitrary topological spaces: sheaf cohomology with constant coe�cients
is not an invariant of the weak homotopy type of a topological space. Indeed, for paracompact spaces, Čech
cohomology and sheaf cohomology agree [9, Théorème 5.10.1]. Now, the Warsaw circle is weakly con-
tractible, but the quotient map from it to the circle induces an isomorphism on Čech cohomology, hence
sheaf cohomology. Note that this doesn’t fall into the setting of Theorem 0.2: the Warsaw circle is not even
locally path-connected.

Fix a poset P. Given a P-strati�ed topological space S → P, we write ConsP(S; ℰ) for the∞-category of
constructible ℰ-valued sheaves on S, and write Conshyp

P
(S; ℰ) for the hypersheaf variant of this∞-catego-

ry (see §5.1 for precise de�nitions). Since constructible sheaves are locally constant along a strati�cation,
as long as the poset P and coe�cients ℰ allow to check equivalences after pulling back to strata, then
Theorem 0.2 implies that constructible sheaves are homotopy-invariant. We o�er two ways of checking this:

0.4. Theorem (Corollaries 5.16 and 5.22). Consider the functors

ConsP(−; ℰ), Cons
hyp

P
(−; ℰ)∶ Topop

∕P
→ Cat∞ .

(0.4.1) If ℰ is compactly generated, then the functor Conshyp
P

(−; ℰ) is strongly homotopy-invariant.

(0.4.2) If P is Noetherian and ℰ is compactly generated, stable, or an∞-topos, then the functor ConsP(−; ℰ) is
homotopy-invariant, and Conshyp

P
(−; ℰ) is strongly homotopy-invariant.

0.5. Remark. Theorem 0.4 holds under much weaker assumptions than Lurie’s exodromy equivalence
[HA, Theorem A.9.3]. For instance, it holds for strati�ed spaces that are not necessarily conical.

Again, passing to global sections, Theorem 0.4 implies that (under the above hypotheses) sheaf cohomology
with coe�cients in a constructible sheaf is homotopy-invariant. Also note that Theorem 0.4 generalizes the
following existing results about the homotopy-invariance of constructible sheaves:
(1) In the setting of topologically strati�ed spaces in the sense of Goresky–MacPherson [10, §1.1], Treumann

showed that constructible sheaves with values in the 2-category Cat1 of 1-categories is homotopy-
invariant [21, Theorem 3.11].

(2) When P is Noetherian, Clausen–Ørsnes Jansen proved that ConsP(−; Spc) is homotopy-invariant [8,
Proposition 3.2]. Our proof for ConsP(−; ℰ) is a mild extension of their work.
One of the key ingredients of the proofs of Theorems 0.2 and 0.4 is the notion of topological family of

locally hyperconstant hypersheaves. Concretely, if X is a wclwc topological space (e.g. X = [0, 1]), and S is
any topological space, we are led to consider the full subcategory

LC
hyp

S
(S × X; ℰ) ⊂ Sh

hyp
(S × X; ℰ)

http://www.math.ias.edu/~lurie/papers/HA.pdf#atheorem.A.9.3
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spanned by those hypersheaves that are, locally on X, pulled back from hypersheaves on S (see De�ni-
tion 1.18 for the precise de�nition). When ℰ = Spc, this de�nition recovers the usual notion of foliated
hypersheaf (see §2.4), but it is better behaved for general coe�cients. The main theorem concerning these
objects is the following:

0.6. Theorem (Proposition 2.5 and Theorem 2.13). Let X be a locally weakly contractible topological space
and let ℰ be a presentable∞-category. Then for every topological space S, the pullback functor

pr
∗,hyp

S
∶ Sh

hyp
(S; ℰ) → Sh

hyp
(S × X; ℰ)

admits a left adjoint. Moreover, ifX is also weakly contractible, then pr∗,hyp
S

is fully faithful with essential image
LC

hyp

S
(S × X; ℰ).

It is easy to explain the idea behind this theoremwhen S = ∗ and ℰ = Spc. Let ΓX ∶ X → ∗ be the unique
map, and let

Π∞ ∶ Sh
hyp

(X) → Spc
be the left Kan extension of the functor sending an open U ⊂ X to its underlying homotopy type Π∞(U).
For formal reasons, Π∞ admits a right adjoint, that we denote Π∞. Given K ∊ Spc, the hypersheaf Π∞(K)

is given by the assignment
U ↦ Π∞(K)(U) ≔ MapSpc(Π∞(U), K) .

There is a natural comparison map Γ∗,hyp
X

→ Π∞, and the fact that we are working in the hypercomplete
setting and thatX is locally weakly contractible implies that this map is an equivalence (see Proposition 2.5).
Note that if X is also weakly contractible, then the full faithfulness part follows from the assumption that
Π∞(X) ≃ ∗.

Besides Theorems 0.2 and 0.4, Theorem 0.6 hasmany other consequences; we discuss them in §3. Among
them are: a general form of the monodromy equivalence (Corollary 3.7), a Künneth formula for locally
hyperconstant hypersheaves (Corollary 3.15), and the comparison between sheaf and singular cohomology
on locally weakly contractible spaces (Corollary 3.31). We also establish the following handy recognition
criterion:

0.7. Corollary (Proposition 3.1). Let X be a locally weakly contractible topological space and let ℰ be a
presentable∞-category. For a hypersheaf F ∊ Sh

hyp
(X; ℰ), the following statements are equivalent:

(0.7.1) The hypersheaf F is locally hyperconstant.

(0.7.2) For every pair of weakly contractible open subsetsU ⊂ V of X, the restriction map F(V) → F(U) is an
equivalence in ℰ.

In particular, it immediately follows that if X is locally weakly contractible, then locally hyperconstant
hypersheaves are closed under arbitrary limits in Shhyp(X; ℰ).

Linear overview. Section 1 recalls background from sheaf theory. In §2, we prove Theorem 0.6. Subsec-
tion 2.1 provides an alternative construction of the hyperconstant hypersheaf functor; in §2.2, we use this
characterization to introduce the exceptional pushforward and study its properties. In §2.3 we establish
Theorem 0.6, and in §2.4 we discuss the relationship between the∞-category LCS(S × X; ℰ) and the∞-cat-
egory of foliated hypersheaves. Section 3 is dedicated to the many consequences of Theorem 0.6: in §3.1
we deduce many unexpected categorical properties of LCS(S × X; ℰ); in §3.2 we establish a general form
of the monodromy equivalence, as well as a Künneth formula for the∞-category of locally hyperconstant
hypersheaves. In §3.3 we deduce the hypersheaf part of Theorem 0.2, and in §3.5 we obtain a comparison
result between sheaf and singular cohomology. In Section 4 we partially adapt these results to the setting of
sheaves, �rst establishing the existence of the exceptional pushforward under certain additional assump-
tions, and then proving the sheaf part of Theorem 0.2. Section 5 is dedicated to the homotopy-invariance
results for strati�ed spaces. To begin with, we establish a “formal”, unconditional version: for every strati�ed
space S → P, any presentable∞-category ℰ and any wclwc topological space X, we identify the essential
image of the fully faithful the pullback functor

pr
∗,hyp

S
∶ Cons

hyp

P
(S; ℰ) ↪ Cons

hyp

P
(S × X; ℰ)
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(Theorem 5.11). We also provide several criteria to establish its essential surjectivity (Corollary 5.13). Finally,
in §5.3 we show how various combinations of assumptions on ℰ and on P can be used to verify one of these
criteria.
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1. Sheaf-theoretic background

The purpose of this section is to explain our sheaf-theoretic conventions and notation as well as re-
call some background on hypersheaves. We recall the basics in § 1.1. In § 1.2, we recall the interaction
between hypersheaves and bases for Grothendieck topologies. In §1.3, we provide background on locally
(hyper)constant (hyper)sheaves.

1.1. Background on sheaves & hypersheaves. Throughout this subsection, we �x an∞-site (C, �) and
a presentable∞-category ℰ.

1.1.Notation. We write
PSh(C; ℰ) ≔ Fun(Cop, ℰ)

for the∞-category of ℰ-valued presheaves onC. We also write Sh�(C; ℰ) ⊂ PSh(C; ℰ) for the full subcategory
spanned by ℰ-valued presheaves that satisfy �-descent. When ℰ = Spc, we simply write

PSh(C) ≔ PSh(C; Spc) and Sh�(C) ≔ Sh�(C; Spc) .

1.2. The ∞-categories PSh(C; ℰ) and Sh�(C; ℰ) are naturally identi�ed with the tensor products of pre-
sentable∞-categories PSh(C) ⊗ ℰ and Sh�(C) ⊗ ℰ [SAG, Remark 1.3.1.6 & Proposition 1.3.1.7]. We refer
the reader to [HA, §4.8.1] for a thorough treatment of the tensor product of presentable∞-categories. As
both points of view have their own advantages, in this paper we use both descriptions interchangeably.

1.3. Crucial to the current paper is the notion of hypersheaf. When ℰ is the∞-category of spaces, hyper-
sheaves can be de�ned intrinsically in the∞-topos Sh�(C) as hypercomplete objects, that is, objects that are lo-
cal with respect to∞-connected morphisms. Hypersheaves thus form a full subcategory Shhyp� (C) ⊂ Sh�(C).
It is then possible to de�ne hypersheaves with coe�cients in ℰ as the tensor product

Sh
hyp
� (C; ℰ) ≔ Sh

hyp
� (C) ⊗ ℰ .

Each of the inclusions
Sh

hyp
� (C) ⊂ PSh(C) and Sh

hyp
� (C) ⊂ Sh�(C)

admits a left adjoint. We refer to both left adjoints as the hypercompletion functors, and we denote them by
(−)hyp. Functoriality of the tensor product of presentable∞-categories produces functors

(−)hyp ∶ PSh(C; ℰ) → Sh
hyp
� (C; ℰ) and (−)hyp ∶ Sh�(C; ℰ) → Sh

hyp
� (C; ℰ) .

Both these functors still admit fully faithful right adjoints. We refer the reader unfamiliar with hypercom-
plete objects and hypercompletion to [HTT, §§6.5.2–6.5.4] or [4, §3.11] for further reading on the subject.

1.4. If there exists an integer n ≥ 0 such that ℰ is an n-category, then Shhyp� (C; ℰ) = Sh�(C; ℰ) [HTT, Lemma
6.5.2.9; HA, Example 4.8.1.22]. In particular, every sheaf of sets is a hypersheaf.

1.5. Notation. Let S be a topological space. We write Open(S) the poset of open subsets of S, ordered by
inclusion. We regard Open(S) as a site with the covering families given by open covers. We write

PSh(S; ℰ) ≔ PSh(Open(S); ℰ), Sh(S; ℰ) ≔ Sh(Open(S); ℰ), and Sh
hyp

(S; ℰ) ≔ Sh
hyp

(Open(S); ℰ) .

http://www.math.ias.edu/~lurie/papers/SAG-rootfile.pdf#theorem.1.3.1.6
http://www.math.ias.edu/~lurie/papers/SAG-rootfile.pdf#theorem.1.3.1.7
http://www.math.ias.edu/~lurie/papers/HA.pdf#subsection.4.8.1
http://www.math.ias.edu/~lurie/papers/HTT.pdf#subsection.6.5.2
http://www.math.ias.edu/~lurie/papers/HTT.pdf#subsection.6.5.4
http://www.math.ias.edu/~lurie/papers/HTT.pdf#theorem.6.5.2.9
http://www.math.ias.edu/~lurie/papers/HTT.pdf#theorem.6.5.2.9
http://www.math.ias.edu/~lurie/papers/HA.pdf#theorem.4.8.1.22
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1.6. Sheaves and hypersheaves on topological spaces coincide in many situations in which homotopy-
invariance is a well-behaved notion. For example, the∞-topos of sheaves on a topological space admitting
a CW structure is hypercomplete [12].

1.7. Recollection. Let S be a topological space. Then the stalk functors

{s∗ ∶ Sh
hyp

(S) → Sh({s}) ≃ Spc}s∊S
are jointly conservative [HA, Lemma A.3.9]. Since the stalk functors are left exact, [11, Lemma 2.8] shows
that for any compactly generated∞-category ℰ, the stalk functors

{s∗ ∶ Sh
hyp

(S; ℰ) → Sh({s}; ℰ) ≃ ℰ}s∊S

are jointly conservative.

1.8. Let S be a topological space and ℰ a compactly generated∞-category. Then the subcategory

Sh
hyp

(S; ℰ) ⊂ Sh(S; ℰ)

is the localization obtained by inverting all morphisms that induce equivalences on stalks.

1.9. Let R be a ring and write D(R) for the derived ∞-category of R. Since D(R) is compactly generated,
as a special case of (1.8), the∞-category Shhyp(S; D(R)) is the∞-categorical enhancement of the classical
unbounded derived category of sheaves of R-modules on S.

1.2. Hypersheaves and bases. In the rest of the paper, we make a through use of bases for∞-sites:

1.10.De�nition. Let (C, �) be an∞-site. A basis of (C, �) is a full subcategoryℬ of C such that every object
U ∊ C admits a �-covering {Ui}i∊I where for each i ∊ I, we have Ui ∊ ℬ.

1.11. Example. Let S and X be topological spaces. Write

Open
×
(S × X) ⊂ Open(S × X)

for the subposet spanned by the open subsets of the form V × U, where V ∊ Open(S) and U ∊ Open(X).
Then Open

×
(S × X) is a basis of Open(S × X).

We write
Open

all,ctr
(S × X) ⊂ Open

×
(S × X)

for the subposet spanned by the open subsets of the form V × U, where U is a weakly contractible open
subset of X. When S = ∗, we simply write Open

ctr
(X) instead of Open

all,ctr
(∗ × X).

If X is locally weakly contractible, then Open
all,ctr

(S × X) is also basis of Open(S × X).

Let (C, �) be an ∞-site and ℬ be a basis for (C, �). Write j ∶ ℬop ↪ Cop for the inclusion. Right Kan
extension along j de�nes a fully faithful functor

j∗ ∶ PSh(ℬ; ℰ) ↪ PSh(C; ℰ)

with left adjoint j∗ ∶ PSh(C; ℰ) → PSh(ℬ; ℰ) given by restriction of presheaves.

1.12. De�nition. We say that an ℰ-valued presheaf F ∊ PSh(ℬ; ℰ) on ℬ is a �-hypersheaf if j∗(F) belongs
to Shhyp� (C; ℰ). We write

Sh
hyp
� (ℬ; ℰ) ⊂ PSh(ℬ; ℰ)

for the full subcategory spanned by �-hypersheaves.

The key fact we need is that hypersheaves on a site and a basis agree:

1.13. Proposition [2, Theorem A.6; 4, Proposition 3.12.11]. Let (C, �) be an∞-site andℬ ⊂ C a basis. Then:
(1.13.1) For every F ∊ Sh

hyp
� (C; ℰ), the unit transformation u∶ F → j∗j

∗(F) is an equivalence.

(1.13.2) The functor j∗ ∶ Sh
hyp
� (ℬ; ℰ) → Sh

hyp
� (C; ℰ) is an equivalence with inverse given by the presheaf-

theoretic restriction j∗.

1.14. Remark. Let F ∊ PSh(C; ℰ). It follows directly from Proposition 1.13 that if j∗(F) is a hypersheaf in
the sense of De�nition 1.12, then the unit F → j∗j

∗(F) exhibits j∗j∗(F) as hypershea��cation of F.

http://www.math.ias.edu/~lurie/papers/HA.pdf#atheorem.A.3.9


THE HOMOTOPY-INVARIANCE OF CONSTRUCTIBLE SHEAVES 7

1.3. Backgroundon locally (hyper)constant sheaves. Inwhat followswe limit our discussion of locally
(hyper)constancy and the functoriality of sheaves to the setting of topological spaces. Throughout this
subsection, we �x a presentable∞-category ℰ.

1.15. Recollection. Let f∶ X → Y be a map of topological spaces. We write

f∗ ∶ PSh(X; ℰ) → PSh(Y; ℰ)

for the pushforward functor de�ned by the formula

f∗(F)(V) ≔ F(f−1(V)) .

Recall that the pushforward functor f∗ carries sheaves to sheaves and hypersheaves to hypersheaves (for
the latter statement, see the proof of [HTT, Proposition 6.5.2.13]).

We write
f−1 ∶ PSh(Y) → PSh(X)

for presheaf pullback functor; f−1 is the left adjoint to f∗ ∶ PSh(Y; ℰ) → PSh(X; ℰ). In general, the functor
f−1 preserves neither sheaves nor hypersheaves. We write

f∗ ∶ Sh(Y; ℰ) → Sh(X; ℰ) and f∗,hyp ∶ Sh
hyp

(Y; ℰ) → Sh
hyp

(X; ℰ)

for the composites of f−1 ∶ Sh(Y; ℰ) → PSh(X; ℰ) with (hyper)shea��cation. It follows formally that
f∗,hyp ≃ (−)hyp◦f∗. By construction, there are adjunctions f∗ ⫞ f∗ and f∗,hyp ⫞ f∗.

1.16.Notation. If f∶ X ↪ Y is the inclusion of a subspace, we simply write

(−)|X ≔ f∗ and (−)|
hyp

X
≔ f∗,hyp .

If the space-valued sheaf pullback functor f∗ ∶ Sh(Y) → Sh(X) admits a left adjoint, then for every pre-
sentable∞-category ℰ, the pullback functor f∗ ∶ Sh(Y; ℰ) → Sh(X; ℰ) carries hypersheaves to hypersheaves
[HA, LemmaA.2.6]. In particular, ifU ⊂ Y is an open subset, then the functor (−)|U ∶ Sh(Y; ℰ) → Sh(U; ℰ)

carries hypersheaves to hypersheaves.

1.17.Notation. Let S and X be topological spaces. We denote by

pr
S
∶ S × X → S and pr

X
∶ S × X → X

the projections. When S = ∗ we write ΓX instead of pr
∗
. Thus ΓX,∗ ∶ Sh(X; ℰ) → Sh(∗; ℰ) ≃ ℰ is the global

sections functor and Γ−1
X

is the constant presheaf functor. Moreover, the functors

Γ∗
X
∶ ℰ → Sh(X; ℰ) and Γ

∗,hyp

X
∶ ℰ → Sh

hyp
(X; ℰ)

are the constant sheaf and hypersheaf functors, respectively. Analogously, for every S we refer to the functor
pr−1
S

(resp. pr∗
S
, pr∗,hyp

S
) as the S-constant presheaf (resp. sheaf, hypersheaf ) functor.

1.18. De�nition. Let S and X be topological spaces and let ℰ be a presentable∞-category.
(1.18.1) We say that a sheaf L ∊ Sh(S × X; ℰ) is constant relative to S (or S-constant) if L is in the essential

image of the S-constant sheaf functor pr∗
S
∶ Sh(S; ℰ) → Sh(S × X; ℰ).

(1.18.2) We say that L ∊ Sh(S × X; ℰ) is locally constant relative to S (or locally S-constant) if there exists an
open cover {U�}�∊A of X such that for each � ∊ A, the restriction L|S×U� is a S-constant sheaf on
S × U�.

(1.18.3) We say that a hypersheaf L ∊ Shhyp(S×X; ℰ) is hyperconstant relative to S (or S-hyperconstant) if L is
in the essential image of the constant hypersheaf functor pr∗,hyp

S
∶ Sh

hyp
(S; ℰ) → Sh

hyp
(S × X; ℰ).

(1.18.4) We say that L ∊ Sh
hyp

(S × X; ℰ) is locally hyperconstant relative to S (or locally S-hyperconstant)
if there exists an open cover {U�}�∊A of X such that for each � ∊ A, the restriction L|S×U� is a
S-hyperconstant hypersheaf on S × U�.

http://www.math.ias.edu/~lurie/papers/HTT.pdf#theorem.6.5.2.13
http://www.math.ias.edu/~lurie/papers/HA.pdf#atheorem.A.2.6
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We write

LCS(S × X; ℰ) ⊂ Sh(S × X; ℰ) and LC
hyp

S
(S × X; ℰ) ⊂ Sh

hyp
(S × X; ℰ)

for the full subcategories spanned by the locally S-constant sheaves and locally S-hyperconstant hyper-
sheaves, respectively. When S = ∗ we denote these∞-categories by LC(X; ℰ) and LChyp(X; ℰ), respectively.

1.19. Warning. We emphasize that for a given object E ∊ ℰ, the constant sheaf Γ∗
X
(E) need not be hy-

percomplete. Similarly, a hyperconstant hypersheaf need not be a constant sheaf; the notions of constant
sheaves and hyperconstant hypersheaves are genuinely di�erent. Also notice that there is a containment

LC(X; ℰ) ∩ Sh
hyp

(X; ℰ) ⊂ LC
hyp

(X; ℰ) .

However, this inclusion is not generally an equality.

1.20. Remark. If X is a topological space locally of singular shape in the sense of [HA, De�nition A.4.15],
then

LC
hyp

(X) = LC(X) ∩ Sh
hyp

(X) = LC(X) .

See [HA, Corollary A.1.17; 14, Proposition 2.1].

1.21. Observation. Let S be a topological space and f∶ X → Y a map of topological spaces. Write fS ≔
idS ×f. Then the functors

f∗
S
∶ Sh(S × Y; ℰ) → Sh(S × X; ℰ) and f

∗,hyp

S
∶ Sh

hyp
(S × Y; ℰ) → Sh

hyp
(S × X; ℰ)

preserve locally S-constant and S-hyperconstant sheaves. Hence the assignments

Y ↦ LCS(S × Y; ℰ) and Y ↦ LC
hyp

S
(S × Y; ℰ)

de�ne subfunctors of the functors

Sh(S × −; ℰ), Sh
hyp

(S × −; ℰ)∶ Topop → Cat∞ .

Moreover, they are hypercomplete sheaves with respect to the open topology on Top.

1.22. Observation. Let X be a topological space and g∶ S → T a map of topological spaces. Write gX ≔

g × idX . Then the functors

g∗
X
∶ Sh(T × X; ℰ) → Sh(S × X; ℰ) and g

∗,hyp

X
∶ Sh

hyp
(T × X; ℰ) → Sh

hyp
(S × X; ℰ)

carry locally T-constant sheaves to locally S-constant sheaves and locally T-hyperconstant hypersheaves to
locally S-hyperconstant hypersheaves. In particular, objects of LChyp

S
(S × X; ℰ) can be seen as families of

objects in LChyp(X; ℰ) parametrized by the points of S.

1.23. Warning. Let S and X be topological spaces. If V∙ is a hypercover of S, we obtain a commutative
square

LC
hyp

S
(S × X; ℰ) lim

[n]∊�
LC

hyp

Vn
(Vn × X; ℰ)

Sh
hyp

(S × X; ℰ) lim
[n]∊�

Sh
hyp

(Vn × X; ℰ) .

The vertical functors are fully faithful, and the bottom horizontal functor is an equivalence. It follows that
the top horizontal functor is fully faithful as well. In general, there is no reason for it to be essentially
surjective; nonetheless we will show that this is the case if X is wclwc (see Corollary 3.4).

http://www.math.ias.edu/~lurie/papers/HA.pdf#atheorem.A.4.15
http://www.math.ias.edu/~lurie/papers/HA.pdf#atheorem.A.1.17
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2. Sheaves on locally weakly contractible topological spaces

Let S and X be wclwc topological spaces and ℰ a presentable∞-category. The �rst goal of this section is
to prove that if X wclwc, then the pullback functor

pr
∗,hyp

S
∶ Sh

hyp
(S; ℰ) → Sh

hyp
(S × X; ℰ)

is fully faithful, and to identify its essential image with the subcategory of locally S-hyperconstant hyper-
sheaves introduced in De�nition 1.18 (see Theorem 2.13). After that, we explore some important conse-
quences of this result.

In §2.1, we provide an alternative characterization of the pullback pr∗,hyp
S

. The alternative description
guarantees that pr∗,hyp

S
admits a left adjoint, whichwe refer to as the exceptional pushforward. Subsection 2.2

explores the basechange properties of the exceptional pushforward. In §2.3, we use the alternative descrip-
tion of pr∗,hyp

S
to prove Theorem 2.13. Finally, in §2.4 we reinterpret our ∞-category LChyp

S
(S × X; ℰ) in

terms of foliated hypersheaves.

2.1. Formula for the hypersheaf pullback. Fix topological spaces S and X, and a presentable∞-cate-
gory ℰ. Our �rst goal is to show that if X is locally weakly contractible, then the functor pr∗,hyp

S
admits a

left adjoint. To do this, we provide an alternative description of pr∗,hyp
S

. This is easiest to describe when
S = ∗ and ℰ = Spc. Write Π∞ ∶ Top → Spc for the functor sending a topological space to its underlying
homotopy type. In this case, we show that the constant hypersheaf functor Spc→ Sh

hyp
(X) is given by the

assignment
E ↦ [U ↦ MapSpc(Π∞(U), E)] .

The general construction is just a relative version of this functor. For the following constructions, recall the
notations for posets of open subsets introduced in Notation 1.5 and Example 1.11.

2.1. Construction. Consider the functor

Π∞(−∕S)∶ PSh(Open
×
(S × X)) → Sh

hyp
(S)

left Kan extended from the functor Open
×
(S × X) → Sh

hyp
(S) sending V × U to V ⊗Π∞(U). This functor

admits a right adjoint
Π∞(−∕S)∶ Sh

hyp
(S) → PSh(Open

×
(S × X))

given by the assignment
G ↦ [W ↦ Map

Sh
hyp

(S)
(Π∞(W∕S), G)] .

By [HA, Proposition A.3.2 & Lemma A.3.10], the functor Π∞(−∕S) takes hypercover diagrams to colimits
in Shhyp(S), and it therefore factors through

Sh
hyp

(Open
×
(S × X)) ≃ Sh

hyp
(S × X) .

(The above equivalence follows from the fact that Open
×
(S × X) is a basis for the opens of S × X; see

Proposition 1.13.) Consequently, it follows that Π∞(−∕S) factors through Shhyp(S × X). We use the same
notation for the resulting adjunction

Π∞(−∕S)∶ Sh
hyp

(S × X) ⇄ Sh
hyp

(S) ∶Π∞(−∕S) .

Given a presentable∞-category ℰ, write Πℰ
∞(−∕S)∶ Sh

hyp
(S × X; ℰ) → Sh

hyp
(S; ℰ) for the tensor prod-

uct

Sh
hyp

(S × X; ℰ) ≃ Sh
hyp

(S × X) ⊗ ℰ Sh
hyp

(S) ⊗ ℰ ≃ Sh
hyp

(S; ℰ) .
Π∞(−∕S)⊗idℰ

We write
Π∞
ℰ
(−∕S)∶ Sh

hyp
(S; ℰ) → Sh

hyp
(S × X; ℰ)

for the right adjoint ofΠℰ
∞(−∕S). Concretely,Π∞

ℰ
(−∕S) is de�ned by sendingG ∊ Sh

hyp
(S; ℰ) to the ℰ-valued

hypersheaf
V × U ↦ G(V)Π∞(U) ;

here the exponential notation denotes the cotensoring of ℰ over Spc.

http://www.math.ias.edu/~lurie/papers/HA.pdf#atheorem.A.3.2
http://www.math.ias.edu/~lurie/papers/HA.pdf#atheorem.A.3.10
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2.2. Observation. Let X be a topological space and g∶ S → T a map of topological spaces. Write gX ≔

g × idX . For V × U ∊ Open
×
(T × X) there are canonical and functorial identi�cations

g∗,hyp(Π∞(V × U∕T)) ≃ g∗,hyp(V ⊗ Π∞(U))

≃ g∗,hyp(V) ⊗ Π∞(U)

≃ Π∞(g
∗,hyp

X
(V × U)∕S) .

This implies that the diagram of left adjoints

(2.3)
Sh

hyp
(T × X) Sh

hyp
(S × X)

Sh
hyp

(T) Sh
hyp

(S)

g
∗,hyp

X

Π∞(−∕T) Π∞(−∕S)

g∗,hyp

is canonically commutative. Given a presentable∞-category ℰ, tensoring the square (2.3) with ℰ, we see
that the same commutativity holds with coe�cients in ℰ.

We now compare the functor Π∞
ℰ
(−∕S) to the hypersheaf pullback pr∗,hyp

S
.

2.4. Construction. Fix G ∊ Sh
hyp

(S; ℰ) and V ∊ Open(S). The unique map Π∞(X) → ∗ induces a map

G(V) ≃ G(V)∗ G(V)Π∞(X) ≃ Π∞
ℰ
(G∕S)(V × X) ≃ pr

S,∗
(Π∞

ℰ
(G∕S))(V) .

By adjunction, this corresponds to a map �G ∶ pr
∗,hyp

S
(G) → Π∞

ℰ
(G∕S). These maps assemble together into

a natural transformation
�∶ pr

∗,hyp

S
→ Π∞

ℰ
(−∕S)

of functors Shhyp(S; ℰ) → Sh
hyp

(S × X; ℰ).

2.5. Proposition. Let S and X be topological spaces. Assume that X is locally weakly contractible. Then the
natural transformation

�∶ pr
∗,hyp

S
→ Π∞

ℰ
(−∕S)

is an equivalence. In particular, the functorpr∗,hyp
S

is right adjoint toΠℰ
∞(−∕S)∶ Sh

hyp
(S × X; ℰ) → Sh

hyp
(S; ℰ).

Proof. First we treat the case where ℰ = Spc. Let

j ∶ Open
all,ctr

(S × X)op ↪ Open(S × X)op and i ∶ Sh
hyp

(S × X) ↪ PSh(S × X)

denote the inclusions. Write u∶ pr−1
S

→ i pr
∗,hyp

S
for the unit. Write

�̃ ∶ pr−1
S

→ iΠ∞(−∕S)

for the composite of i(�) with u. Fix F ∊ Sh
hyp

(S) and let V × U ∊ Open
all,ctr

(S × X). Unraveling the
de�nitions shows that

pr−1
S
(F)(V × U) ≃ F(V) and iΠ∞(F∕S)(V × U) ≃ F(V)Π∞(U) .

Moreover, the map �̃ is induced by the unique mapΠ∞(U) → ∗. SinceU is weakly contractible, we deduce
that for every F ∊ Sh

hyp
(S), the map j∗(�̃) is an equivalence.

SinceΠ∞(F∕S) is a hypersheaf, it follows from (1.13.1) that j∗(pr−1
S
(F)) is a hypersheaf onOpen

all,ctr
(S × X).

By Remark 1.14 we can identify the unit pr−1
S
(F) → i pr

∗,hyp

S
(F) with the unit

pr−1
S
(F) → j∗j

∗(pr−1
S
(F)) ≃ j∗j

∗(iΠ∞(F∕S)) .

Using (1.13.1) once more shows that the unit map iΠ∞(F∕S) → j∗j
∗(iΠ∞(F∕S)) is an equivalence, as

desired.
Now we treat the case where ℰ is any presentable∞-category. Since we just showed that Π∞(−∕S) is

equivalent to pr∗,hyp
S

; it follows that Π∞(−∕S) commutes with colimits. The functoriality of tensor product
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of presentable∞-categories implies therefore that Π∞
ℰ
(−∕S) ≃ Π∞(−∕S) ⊗ idℰ. Since the same holds for

the functor pr∗,hyp
S

and the map � respects such decomposition, the conclusion follows. �

2.6. Remark (truncated coe�cients). Let n ≥ 1 be an integer and let ℰ be a presentable n-category. In this
setting, to prove Proposition 2.5, we only need to assume that X is locally weakly (n − 1)-connected in the
following sense: there is a basis of opens U ⊂ X such that π0(U) = ∗ and all of the homotopy groups of
U in degrees ≤ n − 1 vanish. In this case, in Construction 2.1 we replace the underlying homotopy type
Π∞(U) by the fundamental (n − 1)-groupoid Πn−1(U). That is, we use the (n − 1)-truncation of Π∞(U). In
particular, when ℰ = Set and S = ∗, the constant sheaf functor Set→ Sh(X; Set) is given by sending a set
E to the sheaf

U ↦ MapSet(π0(U), E) .
For n = 2 and S = ∗, these results (essentially) recover results of Polesello–Waschkies [17, §§2.1–2.2].

All of the results in the rest of the paper can be formulated with coe�cients in a presentable n-category
replacing assumptions of (local) weak contractibilitywith assumptions of (local) weak (n−1)-connectedness.
The proofs are exactly the same, replacing Π∞ by Πn−1. Since we are most interested in∞-categories that
are not truncated, we will not explicitly highlight this generalization in the rest of the text.

2.2. The exceptional pushforward. Before moving on to the main result of this section, we need a brief
digression about the exceptional pushforward whose existence is guaranteed by Proposition 2.5:

2.7.Notation. Let S and X be topological spaces and assume that X is locally weakly contractible. In light
of Proposition 2.5, we write

pr
hyp

S,♯
∶ Sh

hyp
(S × X; ℰ) → Sh

hyp
(S; ℰ)

for the left adjoint to pr∗,hyp
S

. We refer to prhyp
S,♯

as the exceptional pushforward.

2.8. Corollary. Let g∶ S → T be a map of topological spaces, letX be a locally weakly contractible topological
space, and let ℰ be a presentable∞-category. Then the squares

Sh
hyp

(T; ℰ) Sh
hyp

(S; ℰ)

Sh
hyp

(T × X; ℰ) Sh
hyp

(S × X; ℰ)

g∗,hyp

pr
∗,hyp

S
pr
∗,hyp

T

g
∗,hyp

X

and

Sh
hyp

(S × X; ℰ) Sh
hyp

(T × X; ℰ)

Sh
hyp

(S; ℰ) Sh
hyp

(T; ℰ)

gX,∗

prS,∗ prT,∗

g∗

are vertically left adjointable. In particular, taking T = ∗ shows that ifF ∊ Sh
hyp

(S×X; ℰ) is a S-hyperconstant
hypersheaf on S × X, then pr

X,∗
(F) is a hyperconstant hypersheaf on X.

Proof. We have to prove that the exchange transformations

pr
hyp

T,♯
◦g

∗,hyp

X
→ g∗,hyp◦ pr

hyp

S,♯
and pr

∗,hyp

T
◦g∗ → gX,∗◦ pr

∗,hyp

S

are equivalences. The one on the right can be deduced from the one on the left by passing to right adjoints.
By Proposition 2.5,

pr
hyp

S,♯
≃ Πℰ

∞(−∕S) and pr
hyp

T,♯
≃ Πℰ

∞(−∕T) .

Hence the conclusion follows from Observation 2.2. �

2.9. Remark. In the statement of Corollary 2.8, one could ask whether the right-hand square is vertically
right adjointable (a question involving the regular pushforward instead of the exceptional one). However,
there are two problems that prevent the resulting statement from being true:
(2.9.1) The topological space X is not assumed to be compact, but only locally weakly contractible.

(2.9.2) Even when X is compact, we are working with hypersheaves, so the Proper Basechange Theorem
[HTT, Corollary 7.3.1.18] does not apply; see [HTT, Counterexample 6.5.4.2.].

http://www.math.ias.edu/~lurie/papers/HTT.pdf#theorem.7.3.1.18
http://www.math.ias.edu/~lurie/papers/HTT.pdf#theorem.6.5.4.2.
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2.10. Corollary. Let S and X be topological spaces and assume that X is locally weakly contractible. Then the
pushforward functor pr

X,∗
∶ Sh

hyp
(S × X; ℰ) → Sh

hyp
(X; ℰ) restricts to a functor

pr
X,∗

∶ LC
hyp

S
(S × X; ℰ) → LC

hyp
(X; ℰ) .

Proof. Since the formation of pr
X,∗

is compatible with restriction to an open subset of X, the question is
local onX. Thus it is enough to check that if F is a S-hyperconstant hypersheaf, then pr

X,∗
(F) ∊ LC

hyp
(X; ℰ).

This is guaranteed by Corollary 2.8. �

We conclude this section by using Corollary 2.8 to show that one can check that the unit morphism
uF ∶ F → pr∗

S
pr
hyp

S,♯
(F) is an equivalence locally. In fact, we prove a slightly more general result that applies

to the strata of a suitable strati�cation:

2.11. Corollary. Let S and X be topological spaces and {f� ∶ S� → S}�∊A a collection of maps of topological
spaces. Assume that X is wclwc and that the hypersheaf pullback functors

{(f� × idX)
∗,hyp ∶ Sh

hyp
(S × X; ℰ) → Sh

hyp
(S� × X; ℰ)}�∊A

are jointly conservative. Then the unit F → pr
∗,hyp

S
pr
hyp

S,♯
(F) is an equivalence if and only if for each � ∊ A, the

unit
(f� × idX)

∗,hyp(F) → pr
∗,hyp

S�
pr
hyp

S� ,♯
(f� × idX)

∗,hyp(F)

is an equivalence.

Proof. Corollary 2.8 implies that (f� × idX)∗,hyp takes the unit of the adjunction pr
hyp

S,♯
⫞ pr

∗,hyp

S
to the unit

of the adjunction prhyp
S� ,♯

⫞ pr
∗,hyp

S�
. The conclusion follows. �

2.3. Full faithfulness of the hypersheaf pullback. Now we prove Theorem 0.6.

2.12.Notation. We write Env ∶ Cat∞ → Spc for the left adjoint to the inclusion Spc ⊂ Cat∞. Recall that
for an∞-category C, the space Env(C) can be computed as the colimit of the constant functor C → Spc at
the terminal object ∗ ∊ Spc [8, Corollary 2.10].

2.13. Theorem. Let S and X be topological spaces and assume that X is wclwc. Then:
(2.13.1) The hypersheaf pullback pr∗,hyp

S
∶ Sh

hyp
(S; ℰ) → Sh

hyp
(S × X; ℰ) is fully faithful.

(2.13.2) The essential image of pr∗,hyp
S

consists of the locally S-hyperconstant hypersheaves.

2.14.Remark. Since the objects in the essential image of pr∗,hyp
S

are (by de�nition) globally S-hyperconstant
sheaves, we can rephrase (2.13.2) as follows: if X is wclwc, then every locally S-hyperconstant sheaf is
automatically globally S-hyperconstant.

Proof. For (2.13.1), note that since pr∗,hyp
S

is left adjoint to pr
S,∗

, it su�ces to provide a natural equivalence
pr
S,∗
pr
∗,hyp

S
≃ id [5, Lemma 3.3.1]. Now note that since X is weakly contractible, applying Proposition 2.5

we see that for G ∊ Sh
hyp

(S; ℰ) and V ∊ Open(S) we have natural equivalences
(
pr
S,∗
pr
∗,hyp

S
(G)

)
(V) ≃

(
Π∞
ℰ
(G∕S)

)
(V × X)

≃ G(V)Π∞(X) ≃ G(V)∗ ≃ G(V) .

Now we prove (2.13.2). Let F ∊ LC
hyp

S
(S × X; ℰ). It su�ces to prove that the counit

c∶ pr
∗,hyp

S
pr
S,∗
(F) → F

is an equivalence. Let ℬF be the full subposet of Open
ctr
(X) formed by those weakly contractible opens U

such that F|S×U is hyperconstant. Since X is locally weakly contractible and F is locally S-hyperconstant,
the inclusion

Open(S) × ℬF ↪ Open
all,ctr

(S × X) ↪ Open(S × X)
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is a basis forOpen(S×X). Since both the source and target of c are hypersheaves, (1.13.1) shows that it su�ces
to check that c is an equivalence when restricted to Open(S) × ℬF . Fix U ∊ ℬF and write qU ∶ S × U → S

for the projection; note that we have a natural identi�cation
(
pr
∗,hyp

S
pr
S,∗
(F)

)
||||S×U

≃ q
∗,hyp

U
pr
S,∗
(F) .

Since U is wclwc, statement (2.13.1) implies that the pushforward of q∗,hyp
U

pr
S,∗
(F) along qU canonically

coincides with pr
S,∗
(F). It follows that the counit transformation c evaluated on V × U ∊ Open(S) × ℬF is

identi�ed with the restriction morphism

(2.15) F(V × X) → F(V × U) .

Setting

FV ≔ pr
X,∗
(F|V×X) ∊ Sh

hyp
(X; ℰ) ,

we are reduced to proving that for every �xed V ∊ Open(S) and every U ∊ Open
ctr
(X), the restriction map

FV(X) → FV(U)

is an equivalence. Corollary 2.8 implies that FV ∊ LC
hyp

(X; ℰ); we are therefore reduced to the case S = ∗.
Let j ∶ ℬop

F
↪ Open

ctr
(X)op denote the inclusion. Proposition 1.13 guarantees that the unit transforma-

tion FV → j∗j
∗(FV) is an equivalence. It follows that for every V ∊ Open(S), the natural map

FV(X) → lim
U∊ℬF

FV(U)

is an equivalence. We claim that the functor j∗(FV) = FV◦j inverts every morphism in ℬF . To see this,
let i ∶ W ↪ U be a morphism in ℬF . Since U ∊ ℬF , there exists an object E ∊ ℰ and an equivalence
Γ
∗,hyp

U
(E) ≃ FV|U . Since ΓW = ΓU◦i, it follows that FV|W ≃ Γ

∗,hyp

W
(E). Consider the commutative triangle

E

ΓU,∗

(
Γ
∗,hyp

U
(E)

)
ΓW,∗

(
Γ
∗,hyp

W
(E)

)
.

The bottom horizontal morphism is naturally identi�ed with the restriction map FV(i)∶ FV(U) → FV(W).
On the other hand, since bothW and U are wclwc, (2.13.1) implies that both the diagonal morphisms are
equivalences. The 2-of-3 property implies that FV(i) is an equivalence as well.

Thus, the functor j∗(FV) factors through Env(ℬF). Observe that the functor Π∞ ∶ ℬF → Spc is equiva-
lent to the constant functor sending every object of ℬF to ∗ ∊ Spc. It follows from Notation 2.12 that

Env(ℬF) ≃ colim
V∊ℬF

Π∞(V) .

Van Kampen’s Theorem identi�es this colimit with Π∞(X). Since X is weakly contractible, we conclude
that Env(ℬF) ≃ ∗, and therefore that j∗(FV) is a constant functor. Finally, since Env(ℬF) is contractible,
the restriction maps

FV(X) ≃ lim
U∊ℬF

F(U) → F(U)

are equivalences for every U ∊ ℬF . The conclusion follows. �

Taking S = ∗ we obtain:

2.16. Corollary. Let X be a wclwc topological space and let ℰ be a presentable∞-category. Then:
(2.16.1) The constant hypersheaf functor Γ∗,hyp

X
∶ ℰ → Sh

hyp
(X; ℰ) is fully faithful.

(2.16.2) The essential image of Γ∗,hyp
X

consists of the locally hyperconstant hypersheaves.
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2.4. Foliatedhypersheaves. Weend this sectionwith an alternative description of locallyS-hyperconstant
hypersheaves on S × X. The idea is that in order to check local S-hyperconstancy, it su�ces to check hyper-
constancy on the ‘leaves’ {s} × X.

2.17. De�nition. Let S and X be topological spaces and assume that X is wclwc. Let ℰ be a presentable
∞-category. A hypersheaf F ∊ Sh

hyp
(S × X; ℰ) is foliated if for each s ∊ S, the restriction F|hyp

{s}×X
is a hyper-

constant hypersheaf.

2.18. Example. Given a hypersheaf G ∊ Sh
hyp

(S; ℰ), the pullback pr∗,hyp
S

(G) is foliated.

The following generalizes [HA, Proposition A.2.5] from X = R to any wclwc topological space.

2.19. Proposition. Let S and X be topological spaces and assume that X is wclwc. Let ℰ be a compactly
generated∞-category. For F ∊ Sh

hyp
(S × X; ℰ), the following statements are equivalent:

(2.19.1) The hypersheaf F is in the essential image of pr∗,hyp
S

∶ Sh
hyp

(S; ℰ) ↪ Sh
hyp

(S × X; ℰ).

(2.19.2) The hypersheaf F is foliated.

Proof. The implication (2.19.1)⇒ (2.19.2) is the content of Example 2.18.
To see that (2.19.2)⇒ (2.19.1),weneed to show that ifF is foliated, then the unituF ∶ F → pr

∗,hyp

S
pr
hyp

S,♯
(F)

is an equivalence. Notice that since ℰ is compactly generated, the restriction functors
{
(−)|

hyp

{s}×X
∶ Sh

hyp
(S × X; ℰ) → Sh

hyp
({s} × X; ℰ)

}

s∊S

are jointly conservative (Recollection 1.7). Applying Corollary 2.11, we see that to prove that uF is an
equivalence, it su�ces to show that for each s ∊ S, the unit

F|
hyp

{s}×X
pr
∗,hyp

{s}
pr
hyp

{s},♯

(
F|

hyp

{s}×X

)
≃ Γ

∗,hyp

X
Γ
hyp

X,♯

(
F|

hyp

{s}×X

)

is an equivalence. The claim now follows from the assumption that F|hyp
{s}×X

is hyperconstant combined with
Corollary 2.16. �

3. Consequences of the full faithfulness of the hypersheaf pullback

In this section, we explore some immediate consequences of Theorem 2.13. We begin in §3.1 by deducing
several structural results concerning the ∞-category LChyp

S
(S × X; ℰ). In §3.2 we deduce a monodromy

equivalence and prove a Künneth formula for locally hyperconstant hypersheaves. In §3.3 we establish
the �rst homotopy-invariance result of the paper, and in §3.4 we analyze the behavior of the exceptional
pushforward on locally hyperconstant hypersheaves. Finally, in §3.5 we obtain a general comparison result
for sheaf and singular cohomology for locally weakly contractible spaces.

3.1. Structural results for locally hyperconstant hypersheaves. Theorem 2.13 can be used to prove
that the∞-category LChyp

S
(S × X; ℰ) enjoys many nice properties. We start with the following recognition

criterion:

3.1. Proposition. Let S and X be topological spaces and let ℰ be a presentable∞-category. Assume that X is
locally weakly contractible. For F ∊ Sh

hyp
(S × X; ℰ), the following statements are equivalent:

(3.1.1) The sheaf F is locally S-hyperconstant.

(3.1.2) For every pair of weakly contractible open subsets V ⊂ U of X and every open subset W ⊂ S, the
restriction map F(W × U) → F(W × V) is an equivalence in ℰ.

Proof. We �rst prove that (3.1.1) implies (3.1.2). Write

qV ∶ W × V → W and qU ∶ W × U → W

for the projections. Since U is weakly contractible, Theorem 2.13 implies that F|W×U isW-hyperconstant.
We can then choose a hypersheaf G ∊ Sh

hyp
(W; ℰ) and an equivalence

F|W×U ≃ q
∗,hyp

U
(G)

http://www.math.ias.edu/~lurie/papers/HA.pdf#atheorem.A.2.5
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It follows that F|W×V ≃ q
∗,hyp

V
(G). Now consider the commutative triangle

G

qU,∗q
∗,hyp

U
(G) qV,∗q

∗,hyp

V
(G) .

Since U and V are weakly contractible, the full faithfulness part of Theorem 2.13 implies that the diagonal
maps are equivalences. Thus the horizontal map is an equivalence. To conclude, note that, unraveling the
de�nitions, this horizontal map coincides with the restriction map F(W × U) → F(W × V).

We now prove that (3.1.2) implies (3.1.1). By choosing an open cover ofX by wclwc opens, we are reduced
to the case that X is wclwc. Let F be a hypersheaf satisfying assumption (3.1.2). Since X is wclwc, is enough
to prove that the counit

cF ∶ pr
∗,hyp

S
pr
S,∗
(F) → F

is an equivalence. In the �rst segment of the proof of (2.13.2) we proved that this is the same as saying
that the for every U ∊ Open

ctr
(X) and W ∊ Open(S), the restriction map F(W × X) → F(W × U) is an

equivalence. Since X and U are weakly contractible, this is guaranteed by our hypothesis. �

3.2. Corollary. Let S and X be topological spaces, and assume that X is locally weakly contractible. Then the
full subcategory

LC
hyp

S
(S × X; ℰ) ⊂ Sh

hyp
(S × X; ℰ)

is closed under limits and colimits.

3.3. Remark. Corollary 3.2 implies that LChyp
S

(S × X; ℰ) is both a re�ective and core�ective subcategory
of Shhyp(S × X; ℰ).

Proof of Corollary 3.2. Let A be a small∞-category and let F∙ ∶ A → LC
hyp

S
(S × X; ℰ) be a diagram. First

we treat the case of limits. By Proposition 3.1, it is enough to prove that for every V ⊂ U in Open
ctr
(X), and

everyW ∊ Open(S), the restriction map

lim
�∊A

F�(W × U) → lim
�∊A

F�(W × V)

is an equivalence. Since limits in Shhyp(X; ℰ) are computed objectwise, the abovemap is the limit of the indi-
vidual restriction maps F�(W ×U) → F�(W ×V). Since each F� is locally S-hyperconstant, Proposition 3.1
implies that all these maps are equivalences. Thus, the same goes for their limit.

For the case of colimits, we have to check that the colimit colim�∊A F� computed in Shhyp(S × X; ℰ) is
locally S-hyperconstant. The question is local on X, and we can assume that X is weakly contractible. In
this case, Theorem 2.13 shows the functor pr∗,hyp

S
is fully faithful; thus there exists a diagram

F′∙ ∶ A → Sh
hyp

(S; ℰ)

and an equivalence F∙ ≃ pr
∗,hyp

S
◦F′∙. The fact that pr

∗,hyp

S
commutes with colimits completes the proof. �

3.4. Corollary. Let S and X be topological spaces and let ℰ be a presentable∞-category. Assume that X is
wclwc. Then for every hypercover V∙ of S, the natural functor

LC
hyp

S
(S × X; ℰ) → lim

[n]∊�
LC

hyp

Vn
(Vn × X; ℰ)

is an equivalence.
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Proof. Consider the commutative square

Sh
hyp

(S; ℰ) lim
[n]∊�

Sh
hyp

(Vn; ℰ)

LC
hyp

S
(S × X; ℰ) lim

[n]∊�
LC

hyp

Vn
(Vn × X; ℰ) .

pr
∗,hyp

S pr
∗,hyp

V∙

Since Shhyp(−; ℰ) satis�es hyperdescent, the top horizontal functor is an equivalence. Theorem 2.13 implies
that both vertical functors are equivalences. The conclusion follows. �

3.2. Monodromy equivalence and Künneth formula. Let X be a topological space. There is a natural
map from the underlying homotopy type Π∞(X) of X to the shape of the∞-topos Shhyp(X). However, this
map is typically not an equivalence. Our work in §2 implies that these invariants agree when X is locally
weakly contractible:

3.5. Corollary. Let X be a locally weakly contractible topological space. Then the∞-topos Shhyp(X) is locally
of constant shape, and its shape coincides withΠ∞(X).

Proof. This is a direct consequence of Proposition 2.5 and [HA, Proposition A.1.8 & Remark A.1.10]. �

3.6. Notation. Write Toplwc ⊂ Top for the full subcategory spanned by the locally weakly contractible
topological spaces.

3.7. Corollary (monodromy equivalence). Let X be a locally weakly contractible topological space. Then the
functor

(3.8) Π∞ ∶ LC
hyp

(X) → Spc
∕Π∞(X)

is an equivalence.

Proof. Proposition 2.5 shows that Γ∗,hyp
X

is right adjoint to the functor Π∞ ∶ Sh
hyp

(X) → Spc. The conclu-
sion follows then from [HA, Theorem A.1.15] �

3.9. Observation. Unraveling the proof of [HA, Theorem A.1.15], we see that the inverse to (3.8) is given
by sending a map K → Π∞(X) to the sheaf

U ↦ Map
∕Π∞(X)

(Π∞(U), K) .

Straightening/unstraightening puts the monodromy equivalence (3.8) into a more familiar form:

(3.10) LC
hyp

(X) ≃ Fun(Π∞(X), Spc) .

Moreover, the equivalence (3.10) re�nes to an equivalence of functors Toplwc,op → Cat∞. In particular,
the functor LChyp ∶ Toplwc,op → Cat∞ inverts weak homotopy equivalences between locally weakly con-
tractible topological spaces.

3.11. Observation. Let ℰ be a presentable ∞-category. Since restriction of sheaves to an open subset is
both a left and a right adjoint, the equivalence

Sh
hyp

(X) ⊗ ℰ ⥲ Sh
hyp

(X; ℰ)

restricts to an equivalence

LC
hyp

(X) ⊗ ℰ ⥲ LC
hyp

(X; ℰ) .

Thus tensoring (3.10) with ℰ provides a monodromy equivalence

(3.12) LC
hyp

(X; ℰ) ≃ Fun(Π∞(X), ℰ)

for ℰ-valued locally hyperconstant hypersheaves. Also note that the functoriality of the equivalence (3.12)
implies that given L ∊ LChyp(X; ℰ), the associated functor Π∞(X) → ℰ carries x ∊ X to the stalk x∗L ∊ ℰ.

http://www.math.ias.edu/~lurie/papers/HA.pdf#atheorem.A.1.8
http://www.math.ias.edu/~lurie/papers/HA.pdf#atheorem.A.1.10
http://www.math.ias.edu/~lurie/papers/HA.pdf#atheorem.A.1.15
http://www.math.ias.edu/~lurie/papers/HA.pdf#atheorem.A.1.15
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3.13. Remark (the classical monodromy equivalence). Write Π1(X) for the fundamental groupoid of X.
Since Π1(X) is the homotopy 1-category of Π∞(X), if ℰ is a presentable 1-category, then

LC
hyp

(X; ℰ) = LC(X; ℰ) and Fun(Π∞(X), ℰ) ≃ Fun(Π1(X), ℰ) .

In particular, Observation 3.11 recovers the classical monodromy equivalence for locally weakly contractible
topological spaces.

In the classical monodromy equivalence, only local 1-connectedness is needed, so this seems to use
stronger hypotheses than the classical result. However, the truncated variants of our results (see Remark 2.6)
recover and generalize the classical monodromy equivalence. Let n ≥ 1 and let ℰ be a presentable n-category.
If X is a locally weakly (n − 1)-connected topological space, then the constant sheaf functor ℰ → Sh(X; ℰ)

admits a left adjoint. In particular, the ∞-topos Shhyp(X) is locally (n − 1)-connected in the sense of [13,
De�nition 3.2]. WriteΠn Sh

hyp
(X) for the n-truncation of the shape of the∞-topos Shhyp(X). Applying [13,

Theorem 3.13] provides a monodromy equivalence

(3.14) LC(X; ℰ) ≃ Fun(Πn Sh
hyp

(X), ℰ) .

IfX is locallyweaklyn-connected, then the formula for the constant sheaf functor Spc
≤n

→ Sh(X; Spc
≤n
)

provided by Proposition 2.5 shows that Πn Sh
hyp

(X) coincides with the fundamental n-groupoid Πn(X) of
X. (This is the truncated variant of Corollary 3.5.) Hence (3.14) becomes an equivalence

LC(X; ℰ) ≃ Fun(Πn(X), ℰ) .

Setting n = 1 we obtain a generalization of the classical monodromy equivalence to locally weakly 1-
connected topological spaces.

We conclude this subsection with a categorical Künneth formula for locally hyperconstant hypersheaves.
Given topological spaces X and Y, note that the functors

Sh(X) × Sh(Y) → Sh(X × Y) and Sh
hyp

(X) × Sh
hyp

(Y) → Sh
hyp

(X × Y)

given by

(F, G) ↦ pr∗
X
(F) × pr∗

Y
(G) and (F, G) ↦ pr

∗,hyp

X
(F) × pr

∗,hyp

Y
(G)

preserve colimits separately in each variable. Since the coproduct in the∞-category of∞-topoi and left exact
left adjoints is given by the tensor product of presentable∞-categories [HA, Example 4.8.1.19; 1, Theorem
2.15], these functors induce left exact colimit-preserving functors

Sh(X) ⊗ Sh(Y) → Sh(X × Y) and Sh
hyp

(X) ⊗ Sh
hyp

(Y) → Sh
hyp

(X × Y) .

In general, neither of these functors is an equivalence.2 Nonetheless, locally hyperconstant hypersheaves
on X × Y do decompose as a tensor product:

3.15. Corollary (Künneth formula). Let X and Y be a locally weakly contractible topological spaces. The
natural functor LChyp(X) × LChyp(Y) → LC

hyp
(X × Y) induces an equivalence of∞-categories

LC
hyp

(X) ⊗ LC
hyp

(Y) ⥲ LC
hyp

(X × Y) .

Proof. Since Π∞ preserves �nite products and Fun(−, Spc) carries products of∞-categories to tensor prod-
ucts of presentable∞-categories, the conclusion follows from the monodromy equivalence (3.10). �

3.3. Homotopy-invariance for locally hyperconstant hypersheaves. Our next goal is to use Theo-
rem 2.13 to show that, for every presentable∞-category ℰ, the functor

LC
hyp

(−; ℰ)∶ Topop → Cat∞
is strongly homotopy invariant in the sense of De�nition 0.1. We need the following two preliminary results:

3.16. Lemma. Let S and X be topological spaces, and assume that X is wclwc. Then

LC
hyp

(S × X; ℰ) ⊂ LC
hyp

S
(S × X; ℰ) .

2IfX orY is locally compact Hausdor�, then the functor Sh(X)⊗Sh(Y) → Sh(X×Y) is an equivalence [HTT, Proposition 7.3.1.11].

http://www.math.ias.edu/~lurie/papers/HA.pdf#theorem.4.8.1.19
http://www.math.ias.edu/~lurie/papers/HTT.pdf#theorem.7.3.1.11
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Proof. Applying Corollary 3.4, we see that for every hypercover V∙ of S, the natural functor

LC
hyp

S
(S × X; ℰ) → lim

[m]∊�
LC

hyp

Vm
(Vm × X; ℰ)

is an equivalence. On the other hand, for every hypercover U∙ of X where each Un is wclwc, the natural
functor

LC
hyp

Vm
(Vm × X; ℰ) → lim

[n]∊�
LC

hyp

Vm
(Vm × Un)

is an equivalence. Thus, a hypersheaf F ∊ Sh
hyp

(S ×X; ℰ) belongs to the full subcategory LChyp
S

(S ×X; ℰ) if
and only if we can �nd a hypercover V∙ ×U∙ of S × X such that, for every ([n], [m]) ∊ � ×�, the restriction
F|Vm×Un belongs to LChyp

Vm
(Vm × Un; ℰ). If F ∊ LC

hyp
(S × X; ℰ), there exists a hypercover V∙ × U∙ such

that, for every ([n], [m]) ∊ � × �, the restriction F|Vm×Un is hyperconstant, hence Vm-hyperconstant. The
conclusion follows. �

3.17. Lemma. Let S and X be topological spaces, and assume that X is wclwc. Then the pushforward

pr
S,∗
∶ Sh

hyp
(S × X; ℰ) → Sh

hyp
(S; ℰ)

preserves locally hyperconstant hypersheaves.

Proof. Let F ∊ LC
hyp

(S × X; ℰ). By Lemma 3.16, we know that F ∊ LC
hyp

S
(S × X; ℰ). Thus there exists a

hypersheaf G on S and an equivalence F ≃ pr
∗,hyp

S
(G). Since pr∗,hyp

S
is fully faithful (Theorem 2.13), the unit

de�nes an equivalence G ⥲ pr
S,∗
(F). Hence our goal is to show that G is locally hyperconstant.

Since F ∊ LC
hyp

(S ×X; ℰ), there exists an open cover {V� ×U�}�∊A of S ×X such that for each � ∊ A, the
hypersheaf F|V�×U� is hyperconstant. Since X is locally weakly contractible, we can furthermore assume
that everyU� is weakly contractible. Write q� ∶ V� ×U� → V� for the projection. Since F ≃ pr

∗,hyp

S
(G), we

see that
F|V�×U� ≃ q

∗,hyp
� (G|V� ) .

Since U� is weakly contractible, using Theorem 2.13 again we see that the unit

G|V� → q�,∗(F|V�×U� )

is an equivalence.We can therefore replace S andX byU� andV�, respectively. Equivalently, we can assume
from the beginning that F is globally hyperconstant. We can therefore write F ≃ Γ

∗,hyp

S×X
(E), for some object

E ∊ ℰ. In this case, we obtain equivalences

pr
∗,hyp

S
(G) ≃ F ≃ Γ

∗,hyp

S×X
(E) ≃ pr

∗,hyp

S
(Γ
∗,hyp

S
(E)) .

Applying Theorem 2.13 once more, we deduce that

G ≃ pr
S,∗
(F) ≃ Γ

∗,hyp

S
(E) . �

3.18. Theorem. Let S and X be topological spaces, and assume that X is wclwc. Then the functors

pr
∗,hyp

S
∶ LC

hyp
(S; ℰ) ⇄ LC

hyp
(S × X; ℰ) ∶pr

S,∗

are inverse equivalences of∞-categories. In particular, the functor LChyp(−; ℰ)∶ Topop → Cat∞ is strongly
homotopy-invariant

3.19. Remark. When S is itself locally weakly contractible, Theorem 3.18 is a consequence of the mon-
odromy equivalence (see Observation 3.9). The strength of Theorem 2.13 is that we have no assumptions
on S.

Proof of Theorem 3.18. In virtue of Lemma 3.16, we can consider the following commutative square:

LC
hyp

(S; ℰ) Sh
hyp

(S; ℰ)

LC
hyp

(S × X; ℰ) LC
hyp

S
(S × X; ℰ) .

pr
∗,hyp

S
pr
∗,hyp

S
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Theorem 2.13 implies that the right vertical functor is an equivalence. Since the horizontal functors are fully
faithful, Lemma 3.17 implies that this square is vertically right adjointable. The conclusion follows. �

Although not needed in what follows, we remind the reader that the 2-of-6 property of equivalences
implies that a functor L∶ Top→ Cat∞ is homotopy-invariant in the sense of De�nition 0.1 if and only if L
inverts all homotopy equivalences of topological spaces:

3.20. Lemma. The following are equivalent for a functor L∶ Top→ Cat∞:
(3.20.1) The functor L is homotopy-invariant.

(3.20.2) For each homotopy equivalence of topological spaces f∶ T → S, the functor L(f)∶ L(S) → L(T) is
an equivalence of∞-categories.

3.4. Exceptional pushforward on locally hyperconstant hypersheaves. Wenow prove that the excep-
tional pushforward preserves locally hyperconstant hypersheaves. We start with the following observations:

3.21. Observation. Let X be a topological space and let j ∶ U → X be a local homeomorphism. Then
j−1 ∶ PSh(X; ℰ) → PSh(U; ℰ) preserves (hyper)sheaves. Furthermore, the functor

j−1 ∶ Sh
hyp

(X; ℰ) → Sh
hyp

(U; ℰ)

commutes with arbitrary limits, hence admits a left adjoint jhyp
♯

. Observe that if j is an open immersion,
then jhyp

♯
coincides with the hypershea��cation of the usual extension by zero.

3.22. Observation. Let X be a topological space and letU∙ be a hypercover of X. For every [n] ∊ �, denote
by jn ∶ Un → X the canonical morphism. Hyperdescent implies that the natural functor

j∗∙ ∶ Sh
hyp

(X; ℰ) → lim
[n]∊�

Sh
hyp

(Un; ℰ)

is an equivalence. In particular, j∗∙ admits a left adjoint, that we denote jhyp
∙,♯

. Using [19, §8.2], the left adjoint
j
hyp

∙,♯
can be described as the functor sending a descent datum {Fn}n≥0 to

j
hyp

∙,♯

(
{Fn}n≥0

)
≃ colim

[n]∊�op
j
hyp

n,♯
(Fn) .

In particular, for every hypersheaf F ∊ Sh
hyp

(X; ℰ), there is a natural equivalence

(3.23) F ≃ colim
[n]∊�op

j
hyp

n,♯
(j∗n(F)) .

3.24.Notation. For the remainder of this section, we �x topological spaces S andX, as well as a presentable
∞-category ℰ. Furthermore, we assume that X is locally weakly contractible.

3.25. Lemma. Let U∙ be a hypercover of X. For every [n] ∊ �, let jn ∶ Un → X be the canonical morphism
and set pn ≔ pr

S
◦(idS ×jn). Then for every F ∊ Sh

hyp
(S × X; ℰ), one has a natural equivalence

pr
hyp

S,♯
(F) ≃ colim

[n]∊�
p
hyp

n,♯
(idS ×jn)

∗(F) .

Proof. Since prhyp
S,♯

preserves colimits, the claim follows from applying prhyp
S,♯

to the equivalence (3.23), com-
bined with the natural equivalence

p
hyp

n,♯
≃ pr

hyp

S,♯
◦(idS ×jn)

hyp

♯
. �

3.26.Notation. We denote by
�∶ pr

hyp

S,♯
◦ pr

∗,hyp

S
→ pr

S,∗
◦ pr

∗,hyp

S

the composition of the counit prhyp
S,♯

◦ pr
∗,hyp

S
→ id with the unit id → pr

S,∗
◦ pr

∗,hyp

S
.

3.27. Lemma. In addition to the hypotheses made in Notation 3.24, assume that X is weakly contractible.
Then for each F ∊ LC

hyp

S
(S × X; ℰ), the natural transformation � induces an equivalence

pr
hyp

S,♯
(F) ⥲ pr

S,∗
(F) .
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Proof. SinceX isweakly contractible, Theorem2.13 guarantees the existence of a hypersheafG ∊ Sh
hyp

(S; ℰ)

and an equivalence F ≃ pr
∗,hyp

S
(G). Since pr∗,hyp

S
is fully faithful (again by Theorem 2.13), the morphism �

applied to G is the composite equivalence

pr
hyp

S,♯
(F) ≃ pr

hyp

S,♯
pr
∗,hyp

S
(G) G pr

S,∗
pr
∗,hyp

S
(G) ≃ pr

S,∗
(F) .∼ ∼ �

3.28. Corollary. In addition to the hypotheses made in Notation 3.24, assume that one of the following hy-
potheses is satis�ed:
(3.28.1) The topological space X is weakly contractible.

(3.28.2) The topological space S is locally weakly contractible.
Then the functor prhyp

S,♯
∶ Sh

hyp
(S × X; ℰ) → Sh

hyp
(S; ℰ) preserves locally hyperconstant hypersheaves.

Proof. Let F ∊ LC
hyp

(S × X; ℰ). To prove the claim under assumption (3.28.1), using Lemma 3.16, we see
that F belongs to LChyp

S
(S × X; ℰ). Lemma 3.27 implies that

pr
hyp

S,♯
(F) ≃ pr

S,∗
(F) .

The conclusion follows from Lemma 3.17.
To prove the claim under assumption (3.28.2), using Corollary 3.2 we see that that LChyp(S; ℰ) is closed

under small colimits in Sh
hyp

(S; ℰ). Using Lemma 3.25, we can reduce to the case where X is weakly
contractible, in which case the conclusion follows from (3.28.1). �

3.5. Comparison of sheaf and singular cohomology. Now we explain why our work implies that for
locally weakly contractible spaces, singular and sheaf cohomology agree.

3.29.Notation. Let R be a ring and X a topological space. Write D(R) for the derived∞-category of R, and
write C∗(X; R) ∊ D(R) for the complex of singular chains on X. Given an object M ∊ D(R), the cotensor
MΠ∞(X) is given by the internal Hom complex

C−∗(X;M) ≔ RHomR(C∗(X; R),M) .

If M is an ordinary R-module, then C−∗(X;M) is what is usually referred to as the complex of singular
cochains on X with values inM.

3.30. The functor Π∞

D(R)
∶ D(R) → Sh

hyp
(X;D(R)) is given by the assignmentM ↦ C−∗(−;M).

The following is an immediate consequence of Proposition 2.5:

3.31. Corollary. Let R be a ring and X a locally weakly contractible topological space. Then:

(3.31.1) The functor D(R) → Sh
hyp

(X;D(R)) given by the assignmentM ↦ C−∗(−;M) is the constant hyper-
sheaf functor.

(3.31.2) For eachM ∊ D(R), there is a natural equivalence RΓ(X;M) ⥲ C−∗(X;M) from the derived global
sections of the constant hypersheaf atM to the complex of singular cochains on X with values inM.

(3.31.3) For each ordinary R-moduleM, there is a natural isomorphism H∗
sheaf

(X;M) ⥲ H∗
sing

(X;M) from
sheaf cohomology to singular cohomology.

Hence, sheaf cohomology is an invariant of the weak homotopy type of locally weakly contractible topolog-
ical spaces.

3.32. Remark. After work of Sella [20], Petersen [16, Theorem 1.2] recently proved a comparison for
cohomology valued in ordinary R-modules. Petersen’s comparison is under slightly weaker assumptions on
the topological space X, in relation to the chosen R-module. The argument is as follows: given an ordinary
R-module M, the morphism �M ∶ Γ

∗,hyp

X
(M) → C−∗(−;M) is an equivalence if and only if it induces an

equivalence on all stalks. Given x ∊ X, the morphism x∗�M is an equivalence if and only if the �ber of x∗�M
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is zero. Since singular and sheaf cohomology agree for the point {x}, the latter requirement is equivalent to
the requirement that for each i ≥ 0, the colimit of relative singular cohomology modules

colim
U∍x

Hi
sing

(U, x;M)

vanishes. This vanishing condition is exactly the assumption under which Petersen proves the comparison
of sheaf and singular cohomology.

4. Homotopy-invariance for locally constant sheaves

The purpose of this section is to prove a non-hypercomplete variant of Theorem 3.18. Speci�cally, for a
presentable∞-category ℰ and topological space S, we prove that the pullback functor

pr∗
S
∶ LC(S; ℰ) ↪ LC(S × [0, 1]; ℰ)

is an equivalence of ∞-categories (Corollary 4.13). The proof follows the same format of Theorem 3.18
expanding on Clausen and Ørsnes Jansen’s proof of [8, Proposition 3.2].

Subsection 4.1 recalls what we need about the exceptional pushforward in the non-hypercomplete setting.
In §4.2, we show that the exceptional pushforward preserves locally constant sheaves; given previous results
this immediatly implies that the functor LC(−; ℰ) is homotopy-invariant.

4.1.Remark. Note that the above homotopy-invariance statement is with respect to the unit interval rather
than a general wclwc space. Indeed, we do not expect that LC(−; ℰ) is strongly homotopy-invariant (in the
sense of De�nition 0.1).

4.1. The exceptional pushforward. We now record the existence of the exceptional pushforward in
the non-hypercomplete setting as well as its compatibility with basechange. In this section, we are most
interested in the case where X is a subinterval of [0, 1].

4.2. Recollection. Let S and X be topological spaces. There is a natural geometric morphism of∞-topoi

Sh(S × X) → Sh(S) ⊗ Sh(X)

[HA, Example 4.8.1.19]. IfX is locally compact, then this geometric morphism Sh(S × X) → Sh(S) ⊗ Sh(X)

is an equivalence [HTT, Proposition 7.3.1.11].

4.3. Lemma. Let S be a topological space and ℰ a presentable∞-category. Let X be a locally compact topo-
logical space and assume that the constant sheaf functor Γ∗

X
∶ Spc→ Sh(X) admits a left adjoint ΓX,♯. Then:

(4.3.1) The pullback functor pr∗
S
∶ Sh(S; ℰ) → Sh(S × X; ℰ) admits a left adjoint pr

S,♯
.

(4.3.2) If Γ∗
X
∶ Spc→ Sh(X) is fully faithful, then pr∗

S
∶ Sh(S; ℰ) → Sh(S × X; ℰ) is also fully faithful.

Proof. Appealing to Recollection 4.2, this follows by tensoring the chain of adjoints

Sh(X) Spc .
ΓX,♯

ΓX,∗

Γ∗
X

with the presentable∞-category Sh(S; ℰ). �

4.4. In the situation of Lemma 4.6, we refer to pr
S,♯

as the exceptional pushforward.

4.5. Remark. In light of (1.6) and Proposition 2.5, if X is a topological space that admits a CW structure,
then the hypotheses of Lemma 4.3 are satis�ed. Moreover, if X is also contractible, then Γ∗

X
is fully faithful.

The following compatibility with basechange is immediate from the de�nition of pr
S,♯

as a tensor product
[11, Observation 1.15]. See also [22, Lemma 3.3].

http://www.math.ias.edu/~lurie/papers/HA.pdf#theorem.4.8.1.19
http://www.math.ias.edu/~lurie/papers/HTT.pdf#theorem.7.3.1.11
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4.6. Lemma. Let X be topological spaces and ℰ a presentable∞-category. Given a map g∶ T → S of topolog-
ical spaces, there is a canonically commutative square of∞-categories

Sh(S × X; ℰ) Sh(T × X; ℰ)

Sh(S; ℰ) Sh(T; ℰ) .

(g×idX)
∗

prS,♯ prT,♯

g∗

As for hypersheaves, we can check that the unit morphism F → pr∗
S
pr
S,♯
(F) is an equivalence locally.

4.7. Lemma. Let S be a topological space, {f� ∶ S� → S}�∊A a collection of maps of topological spaces, and ℰ
a presentable∞-category. Assume that the pullback functors

{(f� × id[0,1])
∗ ∶ Sh(S × [0, 1]; ℰ) → Sh(S� × [0, 1]; ℰ)}�∊A

are jointly conservative. Given F ∊ Sh(S × [0, 1]; ℰ), the unit uF ∶ F → pr∗
S
pr
S,♯
(F) is an equivalence if and

only if for each � ∊ A, the unit

(f� × id[0,1])
∗(F) → pr∗

S�
pr
S� ,♯

(f� × id[0,1])
∗(F)

is an equivalence.

Proof. By Lemma 4.6, we have a natural equivalence

(f� × id[0,1])
∗ pr∗

S
pr
S,♯
(F) ≃ pr∗

S�
pr
S� ,♯

(f� × id[0,1])
∗(F) .

Moreover, notice that the pullback

(f� × id[0,1])
∗(uF)∶ (f� × id[0,1])

∗(F) → pr∗
S�
pr
S� ,♯

(f� × id[0,1])
∗(F)

is homotopic to the unit of the adjunction pr
S� ,♯

⫞ pr∗
S�

applied to the sheaf (f� × id[0,1])∗(F). The claim
now follows from the assumption that the functors {(f� × id[0,1])∗}�∊A are jointly conservative. �

4.2. Homotopy-invariance of locally constant sheaves. We now show that pr
S,♯

preserves locally con-
stant sheaves. The compactness of [0, 1] and the fact that [0, 1] has the order topology imply the following:

4.8. Lemma. Let S be a topological space andU an open cover of S × [0, 1]. Then there exist:
(4.8.1) An open cover {U�}�∊A of S.

(4.8.2) For each � ∊ A, a positive integer n� and open subintervals I�,1, … , I�,n� of [0, 1] covering [0, 1] such
that I�,k ∩ I�,l ≠ ∅ if and only if k = l ± 1.

Such that
⋃

�∊A
{U� × I�,1, … ,U� × I�,n� } re�nes the coverU.

4.9.Observation. LetU a topological space, and I, J ⊂ [0, 1] subintervals which are open in [0, 1]. Assume
that the intersection I ∩ J is nonempty. Since {U × I,U × J} is an open cover ofU × (I ∪ J), descent and the
fact that the pullback functors

Sh(U; ℰ) → Sh(U × I; ℰ) , Sh(U; ℰ) → Sh(U × J; ℰ) , and Sh(U; ℰ) → Sh(U × (I ∩ J); ℰ)

are fully faithful (Lemma 4.3 and Remark 4.5) implies that if FI ∊ Sh(U × I; ℰ) and FJ ∊ Sh(U × J; ℰ) are
pulled back from U and

FI|U×(I∩J) ≃ FJ|U×(I∩J) ,
then there exists a unique sheaf G ∊ Sh(U; ℰ) such that

FI ≃ pr∗
U
(G) and FJ ≃ pr∗

U
(G) .

In particular, if L ∊ Sh(U × (I ∪ J); ℰ) is such that both L|U×I and L|U×J are constant, then L is constant.

4.10. Lemma. Let S be a topological space, and L ∊ Sh(S × [0, 1]; ℰ). If L ∊ LC(S × [0, 1]; ℰ), then there exists
an open cover {U�}�∊A of S such that for each � ∊ A, the sheaf L|U�×[0,1] is constant.
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Proof. Choose an open cover {U� × I�,1, … ,U� × I�,n� }�∊A of S × [0, 1] as in Lemma 4.8 such that each
restriction L|U�×I�,k is constant. We claim that for each � ∊ A, the restriction L|U�×[0,1] is constant. To see
this, apply Observation 4.9 inductively with I = I�,1 ∪⋯ ∪ I�,m and J = I�,m+1. �

4.11. Observation. Notice that
Γ∗
S×[0,1]

≃ pr∗
S
Γ∗
S
.

Hence, if F ∊ Sh(S × [0, 1]; ℰ) is constant, then the exceptional pushforward pr
S,♯
(F) is constant and the

unit F → pr∗
S
pr
S,♯
(F) is an equivalence.

4.12. Lemma. Let S be a topological space and ℰ a presentable∞-category. Then the exceptional pushforward

pr
S,♯
∶ Sh(S × [0, 1]; ℰ) → Sh(S; ℰ)

preserves locally constant sheaves.

Proof. Let F ∊ LC(S × [0, 1]; ℰ). Using Lemma 4.10, choose an open cover {U�}�∊A of S such that each
of the restrictions F|U�×[0,1] is constant. By Lemma 4.6 we have pr

S,♯
(F)|U� ≃ pr

U� ,♯
(F|U�×[0,1]). Hence

Observation 4.11 shows that the sheaf pr
S,♯
(F)|U� is constant. �

Homotopy-invariance is now an immediate consequence:

4.13. Corollary. Let S be a topological space and ℰ a presentable∞-category. Then the functors

pr
S,♯
∶ LC(S × [0, 1]; ℰ) ⇄ LC(S; ℰ) ∶pr∗

S

are inverse equivalences of∞-categories. In particular, the functor LC(−; ℰ)∶ Topop → Cat∞ is homotopy-
invariant

Proof. Since pr∗
S
is fully faithful, it su�ces to show that ifF ∊ LC(S×[0, 1]; ℰ), then the unitF → pr∗

S
pr
S,♯
(F)

is an equivalence. Using Lemma 4.10, choose an open cover {U�}�∊A of S such that each of the restrictions
F|U�×[0,1] is constant. The claim now follows from Lemma 4.7 and Observation 4.11. �

5. Homotopy-invariance for (hyper)constructible (hyper)sheaves

We now bootstrap our homotopy-invariance results (Theorem 3.18 and Corollary 4.13) from the lo-
cally constant setting to the constructible setting. In § 5.1, we review the basics of strati�ed spaces and
(hyper)constructible (hyper)sheaves. In §5.2, we prove that the exceptional pushforwards pr

S,♯
and prhyp

S,♯
preserve constructibility (Corollaries 5.9 and 5.10) and give equivalent conditions for homotopy-invariance
to hold (Corollary 5.13). Finally, in §5.3 we use these criteria to show that, in many situations of interest,
(hyper)constructible (hyper)sheaves are homotopy-invariant (Corollaries 5.16, 5.18, and 5.22).

5.1. Strati�ed spaces & constructible sheaves. We �rst recall the notion of a strati�ed space:

5.1. Notation. Let P be a poset. We also write P for the set P equipped with the Alexandro� topology in
which a subset U ⊂ P is open if and only if U is upwards-closed. Given an element p ∊ P, we write

P≥p ≔ {q ∊ P | q ≥ p} and P>p ≔ P≥p ∖ {p} .

The category of P-strati�ed topological spaces is the overcategory Top
∕P
. Given a P-strati�ed topological

space �∶ S → P and p ∊ P, we write Sp ≔ �−1(p) and call Sp the p-th stratum of S. We also write

S≥p ≔ �−1(P≥p) and S>p ≔ �−1(P>p) .

We write ip ∶ Sp → S for the inclusion of the p-th stratum.

5.2. De�nition. Let P be a poset, S → P be a P-strati�ed space, and ℰ be a presentable∞-category.
(5.2.1) We say that a sheaf F ∊ Sh(S; ℰ) is a P-constructible if F for each p ∊ P, the restriction i∗p(F) is a

locally constant sheaf on the stratum Sp.

(5.2.2) We say that a hypersheaf F ∊ Sh
hyp

(S; ℰ) is a P-hyperconstructible if F for each p ∊ P, the restriction
i
∗,hyp
p (F) is a locally hyperconstant hypersheaf on the stratum Sp.



24 PETER J. HAINE, MAURO PORTA, AND JEAN-BAPTISTE TEYSSIER

We, respectively, write

ConsP(T; ℰ) ⊂ Sh(T; ℰ) and Cons
hyp

P
(T; ℰ) ⊂ Sh

hyp
(T; ℰ)

for the full subcategories spanned by the P-constructible sheaves and P-hyperconstructible hypersheaves.

5.3.Warning. There is a containment

ConsP(S; ℰ) ∩ Sh
hyp

(S; ℰ) ⊂ Cons
hyp

P
(S; ℰ) ,

however, this inclusion need not be an equality. Also note that if F is a P-constructible sheaf, then then
Fhyp ∊ Cons

hyp

P
(S; ℰ).

5.4. Remark. Let P be a Noetherian poset and let X → P be a paracompact P-strati�ed space. Assume
that the strati�cation of X is conical in the sense of [HA, De�nition A.5.5] and that all of the strata of X are
locally of singular shape. Then

Cons
hyp

P
(X) = ConsP(X) ∩ Sh

hyp
(X) = ConsP(X) .

See [HA, Proposition A.5.9; 14, Proposition 2.11].

5.5. Observation. For any map f∶ T → S of P-strati�ed spaces, the sheaf pullback functor f∗ preserves
P-constructible sheaves and the hypersheaf pullback functor f∗,hyp preserves P-hyperconstructible hyper-
sheaves. Hence the assignments

S ↦ ConsP(S; ℰ) and S ↦ Cons
hyp

P
(S; ℰ)

de�ne subfunctors of the functors Sh(−; ℰ), Shhyp(−; ℰ)∶ Topop
∕P

→ Cat∞.

5.6. Convention. Let P be a poset and �∶ S → P be a P-strati�ed topological space. Let X be a topological
space. We write S × X for the P-strati�ed topological space with strati�cation given by the composite

S × X S P .
prS �

Themain goal of this section is to explainwhen the functorsConsP(−; ℰ), andCons
hyp

P
(−; ℰ) are homotopy-

invariant in the sense of De�nition 0.1. Again, we remind the reader that a functor C∶ Topop
∕P

→ Cat∞ is
homotopy-invariant in the sense of De�nition 0.1 if and only if C inverts all strati�ed homotopy equivalences
in the following sense.

5.7. De�nition (strati�ed homotopy). Let P be a poset.
(5.7.1) Given maps of P-strati�ed topological spaces f0, f1 ∶ T → S, a P-strati�ed homotopy from f0 to f1

is a P-strati�ed map ℎ∶ T × [0, 1] → S such that ℎ|T×{0} = f0 and ℎ|T×{1} = f1.

(5.7.2) A map of P-strati�ed topological spaces f∶ T → S is a P-strati�ed homotopy equivalence if there
exists a P-strati�ed map g∶ S → T and P-strati�ed homotopies from gf to idT and from fg to idS .

5.8. Lemma. Let P be a poset. The following are equivalent for a functor C∶ Top
∕P
→ Cat∞:

(5.8.1) The functor C is homotopy-invariant.

(5.8.2) For each P-strati�ed homotopy equivalence f∶ T → S, the functor C(f)∶ C(S) → C(T) is an equiva-
lence of∞-categories.

5.2. Formal homotopy-invariance. Bootstrapping o� of the results of §§2 and 4, we can provide a �rst,
formal version of our homotopy-invariance result. The compatibility of the exceptional pushforwards with
pullbacks immediately gives:

5.9. Corollary. Let ℰ be a presentable∞-category and let P be a poset. Let S be a P-strati�ed space and let X
be a wclwc topological space. Then the exceptional hypersheaf pushforward

pr
hyp

S,♯
∶ Sh

hyp
(S × X; ℰ) → Sh

hyp
(S; ℰ)

preserves hyperconstructible hypersheaves.

http://www.math.ias.edu/~lurie/papers/HA.pdf#theorem.A.5.5
http://www.math.ias.edu/~lurie/papers/HA.pdf#atheorem.A.5.9
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Proof. Let F ∊ Cons
hyp

P
(S × X; ℰ) be a hyperconstructible hypersheaf on S × X. We have to prove that for

every p ∊ P, the restriction
i
∗,hyp
p pr

hyp

S,♯
(F)

is a locally hyperconstant hypersheaf on Sp. By the compatibility of the exceptional pushforward with
pullbacks (Corollary 2.8), there is a natural equivalence

i
∗,hyp
p (pr

hyp

S,♯
(F)) ≃ pr

hyp

Sp ,♯
((ip × idX)

∗,hyp(F)) .

Since (ip × idX)∗,hyp(F) is locally hyperconstant on Sp × X, Corollary 3.28 completes the proof. �

5.10. Corollary. For S ∊ Top
∕P
, the functor pr

S,♯
∶ Sh(S × [0, 1]; ℰ) → Sh(S; ℰ) preserves constructible

sheaves.

Proof. As in the proof of Corollary 5.9, combine Lemma 4.12 with Lemma 4.6. �

5.11. Theorem. Under the hypotheses of Corollary 5.9, the essential image of the fully faithful functor

(5.12) pr
∗,hyp

S
∶ Cons

hyp

P
(S; ℰ) ↪ Cons

hyp

P
(S × X; ℰ)

is the intersection Conshyp
P

(S × X; ℰ) ∩ LC
hyp

S
(S × X; ℰ).

Proof. Since
pr
∗,hyp

S
∶ Sh

hyp
(S; ℰ) → LC

hyp

S
(S × X; ℰ)

is an equivalence of∞-categories and preserves constructiblity, we immediately see that the essential image
of (5.12) is contained in

Cons
hyp

P
(S × X; ℰ) ∩ LC

hyp

S
(S × X; ℰ) .

Conversely, assume thatF belongs to this intersection. SinceF ∊ LC
hyp

S
(S × X; ℰ), Theorem2.13 andLemma3.27

imply that
F ≃ pr

∗,hyp

S
(pr

hyp

S,♯
(F))

Since F belongs to Conshyp
P

(S × X; ℰ), Corollary 5.9 implies that prhyp
S,♯

(F) ∊ Cons
hyp

P
(S; ℰ). Therefore, F

belongs to the essential image of (5.12), as desired. �

5.13. Corollary. Under the hypotheses of Corollary 5.9, the following conditions are equivalent:

(5.13.1) The functor pr∗,hyp
S

∶ Cons
hyp

P
(S; ℰ) ↪ Cons

hyp

P
(S × X; ℰ) is an equivalence.

(5.13.2) For each F ∊ Cons
hyp

P
(S × X; ℰ), the unit F → pr

∗,hyp

S
(pr

hyp

S,♯
(F)) is an equivalence.

(5.13.3) We have Conshyp
P

(S × X; ℰ) ⊂ LC
hyp

S
(S × X; ℰ) as subcategories of Shhyp(S × X; ℰ).

(5.13.4) For each F ∊ Cons
hyp

P
(S × X; ℰ), each open subsetW ⊂ S, and each pair of weakly contractible open

subsetsU ⊂ V of X, the restriction map F(W × V) → F(W × U) is an equivalence.

Proof. The equivalence between (5.13.1), (5.13.2), and (5.13.3) follows from Theorem 5.11. On the other
hand, Proposition 3.1 shows that (5.13.3) and (5.13.4) are equivalent. �

In particular, we obtain the following su�cient criterion ensuring that pr∗,hyp
S

is an equivalence:

5.14. Corollary. In the situation of Theorem 5.11, assume that the hypersheaf restriction functors

{(−)|
hyp

Sp×X
∶ Cons

hyp

P
(S × X; ℰ) → LC

hyp
(Sp × X; ℰ)}

p∊P

are jointly conservative. Then the functors

pr
hyp

S,♯
∶ Cons

hyp

P
(S × X; ℰ) ⇄ Cons

hyp

P
(S; ℰ) ∶pr

∗,hyp

S

are inverse equivalences.



26 PETER J. HAINE, MAURO PORTA, AND JEAN-BAPTISTE TEYSSIER

Proof. Combine Theorem 3.18, Corollary 2.11, and (5.13.2). �

5.15. Corollary. Let P be a poset, S ∊ Top
∕P
, and ℰ a presentable∞-category. Assume that the restriction

functors
{
(−)|Sp×[0,1] ∶ ConsP(S × [0, 1]; ℰ) → LC(Sp × [0, 1]; ℰ)

}

p∊P

are jointly conservative. Then the functors

pr
S,♯
∶ ConsP(S × [0, 1]; ℰ) ⇄ ConsP(S; ℰ) ∶pr∗

S

are inverse equivalences.

Proof. Combine Lemma 4.7 and Corollaries 4.13 and 5.10. �

5.3. Detecting equivalences on strata. Corollary 5.14 shows that a su�cient criterion for the functor

pr
∗,hyp

S
∶ Cons

hyp

P
(S; ℰ) → Cons

hyp

P
(S × X; ℰ)

to be an equivalence is given by the joint conservativity of the hyperrestrictions to the strata of S × X. We
o�er two ways of checking this independently of both S and X.

The compactly generated case.
The fact that equivalences of hypersheaves on a topological space with values in a compactly generated

∞-category can be checked on stalks implies our �rst homotopy-invariance result:

5.16. Corollary. Let P be a poset, S ∊ Top
∕P
, and let ℰ be a compactly generated∞-category. Then:

(5.16.1) The restriction functors {(−)|hyp
Sp

∶ Sh
hyp

(S; ℰ) → Sh
hyp

(Sp; ℰ)}p∊P are jointly conservative.

(5.16.2) The functor Conshyp
P

(−; ℰ)∶ Topop
∕P

→ Cat∞ is strongly homotopy-invariant.

Proof. Recollection 1.7 immediately implies (5.16.1). For (5.16.2), combine (5.16.1) for the P-strati�ed space
S × X with Corollary 5.14. �

5.17.Notation. Let P be a poset and S → P be a P-strati�ed topological space. Write

ConsP(S)<∞ ⊂ Cons
hyp

P
(S)

for the full subcategory spanned by those P-constructible sheaves that are also n-truncated for some integer
n ≥ 0. Since left exact functors preserve truncated objects, the assignment S ↦ ConsP(S)<∞ de�nes a
subfunctor of Conshyp

P
.

5.18. Corollary. Let P be a poset. The functor ConsP(−)<∞ ∶ Topop
∕P

→ Cat∞ is strongly homotopy-invariant.

The Noetherian case.
In order to drop the compact generation assumption on ℰ, there are two di�culties to overcome. Recall

that a poset P is Noetherian if P satis�es the ascending chain condition: there does not exist an in�nite
strictly ascending sequence p0 < p1 < p2 < ⋯ of elements of P. The �rst issue is that there exist non-
Noetherian posets P for which the∞-topos Sh(P) = ConsP(P) is not hypercomplete; see [2, Example A.13].
Said di�erently, the functors Sh(P) → Sh({p}) given by pulling back to strata need not be jointly conservative.
Thus we restrict ourselves to Noetherian posets.

The second issue is with the coe�cient ∞-category ℰ. Consider the most simple strati�cation when
P = {0 < 1}, so that a strati�cation S → {0 < 1} is the data of a closed subspace Z = S0 and its open
complement S ∖ Z = S1. Unfortunately, in general the restriction functors

(−)|Z ∶ Sh(S; ℰ) → Sh(Z; ℰ) and (−)|S∖Z ∶ Sh(S; ℰ) → Sh(S ∖ Z; ℰ)

need not be jointly conservative. Thus, we have to assume this property:
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5.19.De�nition. We say that a presentable∞-category ℰ respects gluing if for each topological space S and
closed subspace Z ⊂ S, the restriction functors

(−)|Z ∶ Sh(S; ℰ) → Sh(Z; ℰ) and (−)|S∖Z ∶ Sh(S; ℰ) → Sh(S ∖ Z; ℰ)

and the hypersheaf restriction functors

(−)|
hyp

Z
∶ Sh

hyp
(S; ℰ) → Sh

hyp
(Z; ℰ) and (−)|S∖Z ∶ Sh

hyp
(S; ℰ) → Sh

hyp
(S ∖ Z; ℰ)

are jointly conservative.

Luckily, many presentable∞-categories that arise in nature respect gluing:

5.20.Example. If each∞-category Sh(S; ℰ) is the recollement of Sh(Z; ℰ) and Sh(S∖Z; ℰ) in the sense of [HA,
De�nition A.8.1], and each∞-category Shhyp(S; ℰ) is the recollement of Shhyp(Z; ℰ) and Shhyp(S ∖ Z; ℰ),
then ℰ respects gluing. Importantly, this is satis�ed if ℰ is stable or ℰ ≃ C ⊗ D where C is a compactly
generated∞-category andD is an∞-topos [11, Corollary 2.13, Proposition 2.21, & Remark 2.26].

5.21. Lemma. Let P be a Noetherian poset, S ∊ Top
∕P
, and let ℰ be a presentable∞-category that respects

gluing. Then:
(5.21.1) The pullback functors {(−)|Sp ∶ Sh(S; ℰ) → Sh(Sp; ℰ)}p∊P are jointly conservative.

(5.21.2) The hypersheaf pullback functors {(−)|hyp
Sp

∶ Sh
hyp

(S; ℰ) → Sh
hyp

(Sp; ℰ)}p∊P are jointly conservative.

Proof. We prove (5.21.1); the proof of (5.21.2) is exactly the same, replacing sheaves by hypersheaves. Let '
be a morphism in Sh(S; ℰ) that restricts to an equivalence on each stratum; we need to show that ' is an
equivalence. Since the open subsets {S≥p}p∊P cover S, it su�ces to show:
(∗) For each p ∊ P, the restriction '|S≥p is an equivalence in Sh(S≥p; ℰ).
We prove (∗) byNoetherian induction onp ∊ P.Weneed to show that if the restriction'|S≥q is an equivalence
for each q > p, then '|S≥p is an equivalence. Note that

S≥p ∖ Sp = S>p =
⋃

q∊P>p

S≥q .

Hence the inductive hypothesis implies that the restriction '|S>p is an equivalence. By assumption '|Sp is
also an equivalence. Since ℰ respects gluing, the restriction functors

(−)|Sp ∶ Sh(S≥p; ℰ) → Sh(Sp; ℰ) and (−)|S>p ∶ Sh(S≥p; ℰ) → Sh(S>p; ℰ)

are jointly conservative, completing the proof. �

Finally we deduce the homotopy-invariance of constructible sheaves.

5.22. Corollary. Let P be a Noetherian poset and let ℰ be a presentable∞-category that respects gluing. Then:
(5.22.1) The functor ConsP(−; ℰ)∶ Topop

∕P
→ Cat∞ is homotopy-invariant

(5.22.2) The functor Conshyp
P

(−; ℰ)∶ Topop
∕P

→ Cat∞ is strongly homotopy-invariant.

Proof. Combine Corollaries 5.14 and 5.15 with Lemma 5.21. �
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