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Abstract. In this talk we introduce higher algebraic𝐾-groups via Quillen’s plus construc-
tion.We then give a brief tour of algebraic𝐾-theory and its relation to stable homotopy the-
ory and number theory — in particular noting that a𝐾-theory computation of the integers
is equivalent to the Kummer–Vandiver conjecture. We next state Quillen’s computations
of the 𝐾-theory of F𝑞 and F𝑞. The remainder of the talk focuses on how Quillen is able to
execute these 𝐾-theory computations by using the Adams operations to relate 𝐾-theory to
modular representation theory. We finish by discussing the Brauer lift to — the main tool
that makes Quillen’s computation go — and how Quillen uses the Brauer lift to show that
𝐵GL(F𝑞)+ is homotopy equivalent to a space𝐹𝜓𝑞, defined via the Adams operations, whose
homotopy groups are easily computable using Bott periodicity.
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1. Algebraic 𝐾-theory via perfect groups and the Plus Construction

In this section we define higher algebraic 𝐾-theory via Quillen’s plus construction. To
motivate this, we recall how the group𝐾1 was first defined via elementary matrices.

1.1. Convention. For us 𝑅 always denotes a commutative (unital) ring.

1.2.Recollection. Let𝑛be a positive integer, and consider the groupGL𝑛(𝑅)of𝑛×𝑛matrices.
Given 1 ≤ 𝑖, 𝑗 ≤ 𝑛 and 𝑟 ∈ 𝑅, let 𝛿𝑖,𝑗 by the 𝑛×𝑛matrix whose only nonzero entry is 1 in the
(𝑖, 𝑗) position, and let 𝜀𝑖,𝑗(𝑟) ≔ id𝑛 +𝑟𝛿𝑖,𝑗. Thematrices 𝜀𝑖,𝑗(𝑟) are called elementary matrices.
Let 𝐸𝑛(𝑅) denote the subgroup of GL𝑛(𝑅) generated by the elementary matrices.

The infinite general linear group is the colimit

GL(𝑅) ≔ colim ( � GL1(𝑅) GL2(𝑅) GL2(𝑅) ⋯ )� .
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Similarly, define

𝐸(𝑅) ≔ colim (� 𝐸1(𝑅) 𝐸2(𝑅) 𝐸2(𝑅) ⋯ ) � .

1.3. Remark. If 𝑅 is a field, then 𝐸𝑛(𝑅) = SL𝑛(𝑅).

1.4. Preliminary Definition. Let 𝑅 be a commutative ring.The first algebraic𝐾-group of 𝑅
is the quotient

𝐾1(𝑅) ≔ GL(𝑅)/𝐸(𝑅) .

As algebraic topologists, we prefer definitions to have a homotopy-theoretic flavor. In
particular, we might try to define 𝐾1(𝑅) in terms of homotopy groups. We already know
that 𝜋1(𝐵GL(𝑅)) ≅ GL(𝑅). Moreover, 𝐵GL(𝑅) has an explicit CW-structure. One idea to
produce𝐾1 homotopy–theoretically is to add cells to𝐵GL(𝑅) to create a space whose funda-
mental group is𝐾1(𝑅)— is is precisely what the plus construction will do for us. Before we
do this, let us take a closer look at𝐸(𝑅) to see exactly what sort of group-theoretic properties
𝐸(𝑅) has.

1.5. Notation. Let 𝐺 be a group. Write [𝐺, 𝐺] for the commutator subgroup of 𝐺 and write
𝐺ab ≅ 𝐺/[𝐺, 𝐺] for the abelianization of 𝐺.

1.6. Example. For 𝑛 ≥ 3, the subgroup 𝐸𝑛(𝑅) is a normal subgroup of GL𝑛(𝑅) with the
property that [𝐸𝑛(𝑅), 𝐸𝑛(𝑅)] = 𝐸𝑛(𝑅). Moreover, [𝐸(𝑅), 𝐸(𝑅)] = 𝐸(𝑅).

1.7. Definition. A group 𝐺 is perfect if 𝐺ab = 0.

1.8. Example. The alternating group 𝐴5 ⊲ 𝛴5 is the smallest nontrivial perfect group.

1.9. Example. The infinite symmetric group is the colimit

𝛴∞ ≔ colim ( � 𝛴1 𝛴2 𝛴2 ⋯ ) � .
The infinite alternating group is the colimit

𝐴∞ ≔ colim ( � 𝐴1 𝐴2 𝐴2 ⋯ )� .
The index of 𝐴∞ in 𝛴∞ is 2, and 𝐴∞ is a perfect normal subgroup of 𝛴∞.

Acyclic spaces generate a class of examples of perfect groups.

1.10. Definition. A space𝑋 is acyclic if 𝐻̃∗(𝑋;Z) = 0.

1.11. Lemma. Let𝑋 be an acyclic space. Then𝑋 is connected and 𝜋1(𝑋) is perfect.

Proof. Since 𝑋 is acyclic, 𝐻0(𝑋) ≅ Z, hence 𝑋 is connected. Similarly, since 𝑋 is acyclic
𝐻1(𝑋) = 0, but theHurewicz homomorphism exhibits𝐻1(𝑋) as an abelianization of𝜋1(𝑋),
hence 𝜋1(𝑋)ab = 0. □

1.12. Definition. Let𝑋 and 𝑌 be pointed connected CW-complexes. A pointed map

𝑓∶ 𝑋 𝑌
is acyclic if hofib(𝑓) is acyclic.

*1.13. Lemma. Let𝑋 and𝑌 be connected CW-complexes. Amap𝑓∶ 𝑋 𝑌 is acyclic if and
only if for every local coefficient system 𝐿∶ 𝛱1(𝑌) Ab, the map 𝑓 induces an isomorphism

𝑓⋆ ∶ 𝐻∗(𝑋; 𝐿 ∘ 𝛱1(𝑓)) ∼ 𝐻∗(𝑌; 𝐿) .
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Proof Sketch. The proof is not very hard — the main tool of is the Serre spectral sequence,
and the comparison theorem for cellularmaps of fibrations. A proof can be found in [12, Ch.
4 Lem. 1.6]. □

1.14. Definition. Let 𝑋 be a pointed connected CW-complex and 𝑃 ⊲ 𝜋1(𝑋) a perfect
normal subgroup. An acyclic map 𝜄 ∶ 𝑋 𝑋+ is called a plus construction for 𝑋 (relative
to 𝑃) if 𝑃 is the kernel of 𝜄⋆ ∶ 𝜋1(𝑋) 𝜋1(𝑋+).

1.15.Theorem (Quillen). Let 𝑋 be a pointed CW-complex and 𝑃 ⊲ 𝜋1(𝑋) a perfect normal
subgroup. Then there exists a plus construction 𝜄 ∶ 𝑋 𝑋+ for𝑋 relative to 𝑃. Moreover, the
plus construction enjoys the following universal property: for every map 𝑓∶ 𝑋 𝑌 so that
𝑓⋆(𝑃) = 0, there is a map 𝑓+ ∶ 𝑋+ 𝑌, unique up to pointed homotopy, so that the triangle

𝑋 𝑋+

𝑌

𝜄

𝑓
≃
𝑓+

commutes up to pointed homotopy.

Idea of the construction of𝑋+. The idea of the construction of 𝑋+ is to attach 2-cells to 𝑋
to kill 𝑃 from 𝜋1(𝑋), then attach 3-cells to make sure that we retain the correct homology.
Proofs can be found in [6, Prop. 4.40; 9, Thé. 1.1.1]. From this explicit construction, it is
possible to use obstruction theory to show that𝑋+ has the desired universal property, which
in turn characterizes𝑋+ uniquely up to homotopy equivalence. □

The plus construction is functorial in the following sense.

1.15.1. Corollary. Let CWperf
∗ denote the category with objects pairs (𝑋, 𝑃), where 𝑋 is a

pointed connected CW-complex and𝑃 ⊲ 𝜋1(𝑋) is a perfect normal subgroup, and amorphism

𝑓∶ (𝑋, 𝑃) (𝑋′, 𝑃′)

is a map 𝑓∶ 𝑋 𝑋′ so that 𝑓⋆(𝑃) ⊂ 𝑃′. The plus construction defines a functor

(−)+ ∶ CWperf
∗ ℎCW∗ .

1.16. Notation. For a commutative ring 𝑅, let 𝐵GL(𝑅)+ denote the plus construction of
𝐵GL(𝑅) with respect to the perfect normal subgroup 𝐸(𝑅) ⊲ GL(𝑅) ≅ 𝜋1(𝐵GL(𝑅)).

1.17. Definition. Let 𝑅 be a commutative ring and 𝑛 a positive integer. The 𝑛th algebraic
𝐾-group of 𝑅 is the homotopy group

𝐾𝑛(𝑅) ≔ 𝜋𝑛(𝐵GL(𝑅)+) .

1.18. Example. By the definition of the plus construction, for any ring 𝑅 we have

𝐾1(𝑅) ≅ GL(𝑅)/𝐸(𝑅) ,

so this definition agrees with the preliminary definition of𝐾1.

1.19.Warning. Notice that we have expressly avoided mentioning anything about𝐾0!That
is because𝐾0 needs to be defined differently — Jesse will give a more careful analysis of𝐾0,
𝐾1, and 𝐾2 in his talk on 3 October.



4 PETER J. HAINE

2. A Whirlwind Tour of𝐾-theory
In this section we give one manifestation of the connections between algebraic𝐾-theory

and stable homotopy theory, via the Barratt–Priddy–Quillen theorem, as well as indicate
how difficult 𝐾-theory computations are by stating the the Kummer–Vandiver conjecture
from number theory is equivalent to a 𝐾-theory computation of the integers.

2.1.Theorem (Barratt–Priddy–Quillen [3]). Let 𝐵𝛴+∞ denote the plus construction of 𝐵𝛴∞
with respect to 𝐴∞. There is an equivalence

𝐵𝛴+∞ ≃ 𝛺∞𝛴∞𝑆0 = colim𝑛𝛺𝑛𝛴𝑛𝑆0 = colim𝑛𝛺𝑛𝑆𝑛 .
In particular, 𝐵𝛴+∞ ≅ 𝜋𝑆𝑛.
*2.2. Philosophical Remark. Now, 𝛴∞ is not the infinite general linear group of any ring,
but if there were a field F1 with one element, heuristically GL𝑛(F1) should be 𝛴𝑛, so GL(F1)
should be 𝛴∞. Then under this heuristic, 𝐾𝑛(F1) ≅ 𝜋𝑆𝑛. This is only philosophy, but later
we will see that this can be made precise with the algebraic 𝐾-theory of various types of
categories. In this setting𝐾𝑛(Fin∗) ≅ 𝜋𝑆𝑛.
2.3. Observation (Relating algebraic 𝐾-theory to stable homotopy theory). For each posi-
tive integer 𝑛, there is an inclusion 𝛴𝑛 GL𝑛(Z) given by the permutation representation,
hence this induces an inclusion 𝛴∞ GL(Z). The elementary integer matrices generate
SL𝑛(Z), and the matrix of an even permutation is 1, so we have compatible inclusions

𝐴∞ SL(Z)

𝛴∞ GL(Z) ,
so by the functoriality of the plus construction we get an induced map 𝐵𝛴+∞ 𝐵GL(Z)+.
Taking homotopy groups and using the Barratt–Priddy–Quillen theorem gives a map

𝜋𝑆𝑛 𝐾𝑛(Z) .
2.4.Observation. Since Z is the initial ring, every ring receives a unique map 𝜙𝑅 ∶ Z 𝑅.
Since taking the general linear group is a functor and the image of an elementary matrix
is an elementary matrix, by the universal property of the plus construction, 𝜙𝑅 induces
map 𝐵GL(Z)+ 𝐵GL(𝑅)+, and applying homotopy groups yields amap𝐾𝑛(Z) 𝐾𝑛(𝑅).
Hence by Observation 2.3, stable homotopy maps to the 𝐾-theory of every ring.
*2.5. Proposition (Kurihara [8]). We have that 𝐾4𝑛(Z) = 0 for all positive integers 𝑛 if and
only if the Kummer–Vandiver conjecture holds.

*2.6.Conjecture (Kummer–Vandiver). For all primes 𝑝, the prime 𝑝 does not divide the class
number of the maximal real subfield of the 𝑝th cyclotomic field Q(𝜁𝑝).
*2.7. Remark. The 𝐾-theory of Z is hair-raisingly difficult to compute — a summary of
many of the known computations can be found in [12, Ch. 6 §10].

3. The 𝐾-theory of finite fields
Our goal is to understand the main ideas of the proof of the following amazing compu-

tation of Quillen.

3.1.Theorem (Quillen). Let 𝑞 be a power of a prime 𝑝.
(3.1.a) For all 𝑛 ≥ 1 we have 𝐾2𝑛(F𝑞) = 0 and 𝐾2𝑛−1(F𝑞) ≅ Z/(𝑞𝑛 − 1).
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(3.1.b) If 𝜄 ∶ F𝑞 F𝑞𝑚 is a field extension, then 𝜄⋆ ∶ 𝐾∗(F𝑞) 𝐾∗(F𝑞𝑚) is injective.
(3.1.c) Let Fr𝑝 ∶ F𝑞 ∼ F𝑞 denote the absolute Frobenius automorphism. Then for all 𝑛 ≥ 1,

the induced homomorphism

Fr𝑝⋆ ∶ 𝐾2𝑛−1(F𝑞) 𝐾2𝑛−1(F𝑞)

is given by multiplication by 𝑝𝑛.

*3.1.1. Corollary (Quillen). Let 𝑝 be a prime.
(3.1.1.a) For all 𝑛 ≥ 1 we have 𝐾2𝑛(F𝑝) = 0 and

𝐾2𝑛−1(F𝑝) ≅ ⨁
ℓ≠𝑝
prime

Qℓ/Zℓ .

(3.1.1.b) The automorphism of 𝐾2𝑛−1(F𝑝) induced by the Frobenius automorphism is given
by multiplication by 𝑝𝑛.

(3.1.1.c) If F𝑞 ⊂ F𝑝 is a subfield, then the canonical map

𝐾∗(F𝑞) 𝐾∗(F𝑝)Gal(F𝑝/F𝑞)

is an isomorphism.

4. The Adams Operations via 𝜆-rings
In this sectionwe recall the properties of theAdams operations on𝐾-theory in the setting

of 𝜆-rings as the representation ring of a finite group also has the structure of a 𝜆-ring, and
in both cases Adams operations can be constructed using only the 𝜆-ring structure, as well
as an additional augmentation given by the dimension.

We motivate 𝜆-rings by considering the extra structure on VBC(𝑋) given by taking exte-
rior powers.

4.1. Observation (Extra structure on VBC(𝑋)). Notice that if 𝐸 and 𝐸′ are complex vector
bundles over a finite CW-complex 𝑋, we can perform the following constructions, which
give extra structure to VBC(𝑋).
(4.1.a) 𝛬0(𝐸) = 𝑋 × C.
(4.1.b) 𝛬1(𝐸) = 𝐸.
(4.1.c) 𝛬𝑛(𝐸 ⊕ 𝐸′) ≅ ⨁𝑖+𝑗=𝑛 𝛬

𝑖(𝐸) ⊗ 𝛬𝑗(𝐸′).
However, notice that these exterior power operations are not semiring homomorphisms.

4.2. Observation. Let 𝐺 be a finite group and 𝑘 a field. Notice that the set Rep𝑘(𝐺) of iso-
morphism classes of finite-dimensional 𝑘-representations of 𝐺 has the structure of a com-
mutative semiring, with the additive structure given by direct sum and the multiplicative
structure given by tensor product — this structure is analogus to the extra structure on
VBC(𝑋).

4.3. Definition. A 𝜆-structure on a commutative semiring 𝑅 is a collection of set-maps
{𝜆𝑛 ∶ 𝑅 𝑅}𝑛≥0 called 𝜆-operations so that
(4.3.a) 𝜆0 is the constant map at 1.
(4.3.b) 𝜆1 = id𝑅.
(4.3.c) The map 𝜆𝑡 ∶ 𝑅 𝑅⟦𝑡⟧× given by 𝜆𝑡(𝑟) ≔ ∑𝑛≥0 𝜆𝑛(𝑟) is a monoid map.
We call a semiring equipped with a 𝜆-structure a 𝜆-semiring.
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4.4. Remark. Condition (4.3.c) is equivalent to saying that for all 𝑟, 𝑟′ ∈ 𝑅 we have
𝜆𝑛(𝑟 + 𝑟′) = ∑

𝑖+𝑗=𝑛
𝜆𝑖(𝑟)𝜆𝑗(𝑟′) ,

which is an abstraction of (4.1.c).
*4.5.Remark (on terminology). The terminology in the literature on 𝜆-rings is quite incon-
sistent. Some call what we have called a 𝜆-ring a pre-𝜆-ring, and insist that 𝜆-rings satisfy
three additional properties. Two of these properties encode the expressions of exterior pow-
ers 𝛬𝑛(𝛬𝑛(𝑉)) and 𝛬𝑛(𝑉 ⊗ 𝑉′) of vector spaces 𝑉 and 𝑉′ as integral polynomials in the
exterior powers 𝛬1(𝑉),…,𝛬𝑚𝑛(𝑉) and 𝛬1(𝑉),…,𝛬𝑛(𝑉), 𝛬1(𝑉′),…,𝛬𝑛(𝑉′), respectively.
The other property is that 𝜆𝑘(1) = 0 if 𝑘 > 1, which encodes the fact that𝛬𝑘(𝐿) = 0 for 𝑘 > 1
if 𝐿 is a 1-dimensional vector space. Others take our convention and call a 𝜆-ring with this
extra structure a special 𝜆-ring.

We have chosen this approach to simplify terminology, though we actually agree that a
𝜆-ring really should satisfy these additional properties. Moreover, all of the 𝜆-rings that we
need to consider do satisfy these properties.
*4.6. Remark. The 𝜆-operations in some sense are very unnatural as they are not ring ho-
momorphisms. Onemight ask where these operations come from— the answer is plethories
and the plethistic algebra of Borger and Wieland [4].
4.7.Example. ThesemiringsVBC(𝑋) andRep𝑘(𝐺) are both𝜆-semiringswith the𝜆-operations
given by taking exterior powers.
4.8. Example. The nonnegative integers N are a 𝜆-semiring with 𝜆-operations given by

𝜆𝑘(𝑛) = (𝑛
𝑘
) .

*4.9. Example. A Q-algebra 𝐴 is a 𝜆-ring with 𝜆-operations given by

𝜆𝑘(𝑎) = 1
𝑘!
𝑎(𝑎 − 1)⋯ (𝑎 − 𝑘 − 1) .

4.10. Notation. Given a commutative monoid𝑀, write𝑀gp for the group completion of
𝑀.
4.11.Lemma. If𝑅 is a𝜆-semiring.Then𝑅gp has a canonical𝜆-ring structurewith𝜆 operations
extending the 𝜆-operations on 𝑅.
Proof. Since the map 𝜆𝑡 ∶ 𝑅 𝑅⟦𝑡⟧× is a monoid map and 𝑅gp⟦𝑡⟧× is a group completion
for 𝑅⟦𝑡⟧×, by the universal property of the group completion, there exists a unique monoid
map 𝜆gp𝑡 making the square

𝑅 𝑅⟦𝑡⟧×

𝑅gp 𝑅gp⟦𝑡⟧×

𝜆𝑡

𝜆gp𝑡

commute.The coefficents of 𝜆gp𝑡 define a 𝜆-ring structure on 𝑅gp extending the 𝜆-ring struc-
ture on 𝑅. □
4.12. Example. Applying Lemma 4.11 to Example 4.8, we see that the integersZ are a 𝜆-ring
with 𝜆-operations given by

𝜆𝑘(𝑛) = (𝑛
𝑘
) 1
𝑘!
𝑛(𝑛 − 1)⋯ (𝑛 − 𝑘 − 1) .
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*4.13. Remark (Witt vectors). The abelian group 𝑅⟦𝑡⟧× = 1+ 𝑡𝑅⟦𝑡⟧ naturally has the struc-
ture of a commutative ring, which we will not describe here, and is often called the ring
of big Witt vectors, and denoted by W(𝑅). Moreover, W(𝑅) is naturally a 𝜆-ring, and the
condition that a 𝜆-ring 𝑅 be a special 𝜆 ring can be concisely phrased by requiring that the
group homomorphism 𝑅 W(𝑅) be a 𝜆-ring homomorphism.

4.14. Example. If 𝑋 is a finite CW-complex, then 𝐾0(𝑋) is a 𝜆-ring with the 𝜆-structure
given by taking exterior powers.

4.15. Example. Let 𝐺 be a finite group and 𝑘 a field. The representation ring of 𝐺 is the
group completion 𝑅𝑘(𝐺) ≔ Rep𝑘(𝐺)

gp. Hence 𝑅𝑘(𝐺) is a 𝜆-ring. An element of 𝑅𝑘(𝐺) is
called a virtual representation of 𝐺.

4.16. Remark. The category of 𝜆-rings has objects 𝜆-rings, and a morphism 𝜙∶ 𝑅 𝑅′ is
a ring homomorphism so that 𝜆𝑛𝑅′ ∘ 𝜙 = 𝜙 ∘ 𝜆𝑛𝑅 for all 𝑛 ≥ 0.

4.17. Definition. Let 𝑅 be a 𝜆-ring. An augmentation of 𝑅 is a 𝜆-subring 𝐴 ⊂ 𝑅 equipped
with a 𝜆-ring surjection 𝜀∶ 𝑅 𝐴 so that 𝜀|𝐴 = id𝐴.

4.18. Example. Both 𝐾0(𝑋) and 𝑅C(𝐺) have augmentations to Z given by taking (virtual)
dimension. Explicitly, the 𝜆-subrings of 𝐾0(𝑋) and 𝑅C(𝐺) isomorphic to Z providing the
augmentation are simply the subrings given by integer multiples of the identity in each case
(i.e., the trivial virtual bundles and trivial virtual representations, respectively).The fact that
these are actually 𝜆-semiring homomorphisms follows from the fact that

dim(𝛬𝑘(𝑉)) = (dim(𝑉)
𝑘
) .

4.19.Definition (Adams operations). Let (𝑅, 𝜀) be an augmented 𝜆-ring.There exist natural
set-maps 𝜓𝑘 ∶ 𝑅 𝑅 for all 𝑘 ≥ 0, called Adams operations, defined as follows. Let 𝜓𝑡
denote the formal power series defined by

𝜓𝑡(𝑟) ≔ 𝜀(𝑟) − 𝑡
𝑑
𝑑𝑡

log(𝜆−𝑡(𝑟)) .

Then 𝜓𝑘(𝑟) is the coefficent of 𝑡𝑘 in 𝜓𝑡(𝑟).

4.20.Theorem. For any finite CW-complex 𝑋 and any finite group 𝐺, the Adams operations
on 𝐾0(𝑋) and 𝑅C(𝐺) satisfy the following properties.
(4.20.a) For all 𝑘 ≥ 0, the set-map 𝜓𝑘 is a ring homomorphism.
(4.20.b) For all 𝑘, ℓ ≥ 0 we have 𝜓𝑘𝜓ℓ = 𝜓𝑘ℓ.
(4.20.c) If dim(𝐿) = 1, then 𝜓𝑘(𝐿) = 𝐿⊗𝑘.

Idea of the proof. In the𝐾-theory case, the idea is to use the splitting principle for𝐾-theory.
As it turns out, there is also a splitting principle for 𝑅C(𝐺) [2, Thm. 1.5(ii)] — the funda-
mental observation is to identify 𝑅C(𝐺)with the ring of complex virtual characters.There is
a notion of a splitting principle for 𝜆-rings, and if this is satisfied, then (4.20.a) and (4.20.b)
hold [12, Ch. 2 Prop. 4.4]The last condition is obviously somethingmore particular to these
settings where we have a notion of dimension. □

4.21. Remark. The Adams operations on 𝑅C(𝐺) induce operations on the characters given
by 𝜓𝑘(𝜒(𝑔)) = 𝜒(𝑔𝑘), where 𝜒 is a character and 𝑔 ∈ 𝐺.

4.22. Observation. By the naturality of the Adams operation, 𝜓𝑘 restricts to an operation
𝐾0 𝐾0 which we also denote by 𝜓𝑘
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4.23. Recollection. Let 𝑛 be a nonnegative integer. Then𝐾0(𝑆2𝑛) ≅ Z.

In our computation of the 𝐾-theory of finite fields we need the following fact about the
Adams operations.

4.24. Lemma. Let 𝑛 be a nonnegative integer.The Adams operation𝜓𝑘 ∶ 𝐾0(𝑆2𝑛) 𝐾0(𝑆2𝑛)
is given by multiplication by 𝑘𝑛.

Proof sketch. The proof is elementary — for 𝑛 = 1, it follows immediately by looking at
the canonical generator of 𝐾0(𝑆2), and the general case follows by induction using Bott
periodicity. A complete argument can be found in [7, Prop. 2.21]. □

5. The Brauer Lift

Now we explain and exploit an incredible relation between𝐾-theory and representation
theory of finite groups via the Adams operations. Throughout 𝐺 denotes a finite group, but
we are particularly interested in the case when 𝐺 = GL𝑛(F𝑞).

5.1. Definition. Let 𝐺 be a finite group. Define a ring homomorphism

𝜙𝐺 ∶ 𝑅C(𝐺) 𝐾0(𝐵𝐺)
first on RepC(𝐺) by sending an isomorphism class [𝑉] of representations to the class of the
balanced product 𝐸𝐺 ×𝐺 𝑉, and then extending to 𝑅C(𝐺) via the universal property of the
group completion.

5.2. Observation. Since the 𝜆-operations are defined on 𝑅C(𝐺) and 𝐾0(𝐵𝐺) via taking ex-
terior powers, it is not hard to believe that 𝜙𝐺 is a morphism of 𝜆-rings, and indeed this is
true. This morphism of 𝜆-rings respects the augmentations of 𝑅C(𝐺) and 𝐾0(𝐵𝐺) defined
in Example 4.18, so by the naturality of the Adams operations, for all 𝑞 ≥ 0, the square

𝑅C(𝐺) 𝐾0(𝐵𝐺)

𝑅C(𝐺) 𝐾0(𝐵𝐺)

𝜙𝐺

𝜓𝑞 𝜓𝑞

𝜙𝐺

commutes.
Composing with the homomorphism

𝐾0(𝐵𝐺) ≅ [𝐵𝐺,Z × 𝐵𝑈] [𝐵𝐺, 𝐵𝑈] ≅ 𝐾0(𝐵𝐺)
induced by the inclusion 𝐵𝑈 Z × 𝐵𝑈 as {0} × 𝐵𝑈, we get a homomorphism

𝑅C(𝐺) 𝐾0(𝐵𝐺) ,
again natural with respect to the Adams operations.

5.3. Convention. Fix, once and for all, an embedding 𝜌∶ F×𝑞 C×.

5.4. Remark. Everything from here on will depend on 𝜌. This dependence will not be prob-
lematic and is well understood through the lens of étale cohomology.

5.5.Notation. Let𝐺 be a finite group and𝑉 a finite-dimensional F𝑞-representation of𝐺. For
an element 𝑔 ∈ 𝐺, write 𝑆𝑉(𝑔) for the set of eigenvalues of 𝑔. Given an eigenvalue 𝜆 ∈ 𝑆𝑉(𝑔),
write 𝜇(𝜆) for the multiplicity of 𝜆.
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5.6. Definition. Let 𝐺 be a finite group and 𝜒1,…, 𝜒𝑛 its distinct irreducible complex char-
acters. A virtual character 𝜒∶ 𝐺 C is a class function so that 𝜙 = 𝑚1𝜒1 +⋯+𝑚𝑛𝜒𝑛 for
some𝑚1,…,𝑚𝑛 ∈ Z.

5.7. Definition. Let 𝐺 be a finite group and 𝑉 a finite-dimensional F𝑞-representation of 𝐺.
The Brauer character of 𝑉 is the function 𝜒𝑉 ∶ 𝐺 C defined by

𝜒𝑉(𝑔) ≔ ∑
𝜆∈𝑆𝑉(𝑔)
𝜇(𝜆)𝜌(𝜆) .

5.8.Theorem (Green). Let 𝐺 be a finite group and 𝑉 a finite-dimensional F𝑞-representation
of 𝐺. The Brauer character 𝜒𝑉 is the character of a unique virtual complex representation 𝑉br,
called the Brauer lifting of 𝑉.

5.9.Observation. TheBrauer character 𝜒𝑉 is clearly additive in𝑉, that is 𝜒𝑉⊕𝑊 = 𝜒𝑉 +𝜒𝑊,
hence the Brauer lifting is additive as well: (𝑉 ⊕ 𝑊)br = 𝑉br ⊕ 𝑊br. Thus the Brauer lifting
defines a homomorphism

(−)br ∶ 𝑅F𝑞(𝐺) 𝑅C(𝐺) .

5.10.Observation. Extension of scalars defines a homomorphism

− ⊗F𝑞 F𝑞 ∶ 𝑅F𝑞(𝐺) 𝑅F𝑞(𝐺) .

For 𝑉 ∈ 𝑅F𝑞(𝐺), write

𝑉 ≔ 𝑉 ⊗F𝑞 F𝑞 .

Since 𝑉 is a representation over F𝑞, the eigenvalues of 𝑔 acting on 𝑉 are stable under the
Frobenius automorphism 𝑥 𝑥𝑞. Then since 𝜓𝑞 acts on characters by 𝜓𝑞𝜒(𝑔) = 𝜒(𝑔𝑞),
the Adams operation on 𝑅C(𝐺) fixes the Brauer lift of 𝑉, hence we get a homomorphism

(−)br ∘ (− ⊗F𝑞 F𝑞)∶ 𝑅F𝑞(𝐺) 𝑅C(𝐺)
𝜓𝑞 ,

called the Brauer lift. Composing this with the homomorphism from Observation 5.2 and
taking fixed points, we have produced a map

𝛽𝐺 ∶ 𝑅F𝑞(𝐺) 𝐾
0(𝐵𝐺)𝜓𝑞 ≅ [𝐵𝐺, 𝐵𝑈]𝜓𝑞 .

6. The space 𝐹𝜓𝑞 and computing the 𝐾-theory of finite fields
6.1. Convention. From now on, let 𝑞 be a fixed nonnegative integer. (We really only care
about the case that 𝑞 is a prime power.)

We have the Adams operations 𝜓𝑞 ∶ 𝐾0 𝐾0 on complex 𝐾-theory. Since 𝐾 is rep-
resented by 𝐵𝑈, we would like these to be represented by endomorphisms of 𝐵𝑈 by just
applying the Yoneda lemma, but there is a slight problem. The space 𝐵𝑈 is not a finite CW-
complex, and𝐾-theory is only defined for finite CW-complexes. However, by analyzing an
explicit cell structure on 𝐵𝑈 and using theMilnor exact sequence, it is possible to show that
𝑛-ary operations on𝐾 are representable by maps 𝐵𝑈𝑛 𝐵𝑈.

6.2.Notation. We abusively write 𝜓𝑞 ∶ 𝐵𝑈 𝐵𝑈 for a map representing the Adams oper-
ation 𝜓𝑞 on 𝐾0.
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6.3. Definition. The space 𝐹𝜓𝑞 is the pullback

𝐹𝜓𝑞 Map(𝐼, 𝐵𝑈)

𝐵𝑈 𝐵𝑈 × 𝐵𝑈 .

ℎ

𝜙
⌟

(ev0,ev1)

(id𝐵𝑈,𝜎𝑞)

Hence a point the space 𝐹𝜓𝑞 can be viewed as a pair (𝑥, 𝛾), where 𝑥 ∈ 𝐵𝑈 and 𝛾 is a path
from 𝑥 to 𝜓𝑞(𝑥). In this sense 𝐹𝜓𝑞 is a homotopy-theoretic version of the space of fixed
points of 𝜓𝑞.

6.4. Recollection. Recall that a simple space is a space with abelian fundamental group and
the action of the fundamental group on the higher homotopy groups is trivial.

6.5. Theorem (Dror [5]). If 𝑋 and 𝑌 are simple spaces and 𝑓∶ 𝑋 𝑌 induces an isomor-
phism on integral homology, then 𝑓 is a weak homotopy equivalence.

6.6. Goal. The goal is to construct a map

𝜃∶ 𝐵GL(F𝑞) 𝐹𝜓𝑞

that induces an isomorphism on integral homology.The universal property of the plus con-
struction will then give a map 𝜃+ ∶ 𝐵GL(F𝑞)+ 𝐹𝜓𝑞, which is again an isomorphism on
integral homology. After showing that 𝐵GL(F𝑞)+ and 𝐹𝜓𝑞 are simply, a simple application
of Theorem 6.5 and Whitehead’s theorem shows that 𝜃+ is a homotopy equivalence.

6.7. Lemma. We have that 𝐹𝜓𝑞 ≃ hofib(1 − 𝜓𝑞).

6.8.Lemma. The space𝐹𝜓𝑞 is simple andwe have𝜋2𝑛(𝐹𝜓𝑞) = 0 and𝜋2𝑛−1(𝐹𝜓𝑞) = Z/(𝑞𝑛−1).

Proof sketch. By Lemma 6.7, we have a long exact sequence in homotopy

⋯ 𝜋𝑚(𝐵𝑈) 𝜋𝑚(𝐵𝑈) 𝜋𝑚−1(𝐹𝜓𝑞) 𝜋𝑚−1(𝐵𝑈) ⋯ .
(1−𝜓𝑞)⋆ 𝜕

By Bott periodicity, 𝜋2𝑛−1(𝐵𝑈) = 0 and 𝜋2𝑛(𝐵𝑈) = 𝐾0(𝑆2𝑛) ≅ Z. In the latter case, by
Lemma 4.24, the map 1−𝜓𝑞 is given by multiplication by 1−𝑞𝑛. This immediately gives the
computations of the homotopy groups of 𝐹𝜓𝑞.

The fact that 𝐹𝜓𝑞 is simple follows immediately from a general result about fibrations,
using the fact that 𝐵𝑈 is simply connected. □

6.9. Lemma. Suppose that𝑋 is a CW-complex so that [𝑋,𝑈] = 0. Then

𝜙⋆ ∶ [𝑋, 𝐹𝜓𝑞] [𝑋, 𝐵𝑈]𝜓
𝑞

is an isomorphism.

Proof sketch. This lemma follows almost immediately from the universal property of the
pullback 𝐹𝜓𝑞. □

6.10. Lemma. Suppose that 𝐺 is a finite group. Then [𝐵𝐺, 𝐵𝑈]𝜓𝑞 ≅ [𝐵𝐺, 𝐹𝜓𝑞].

Theproof of Lemma 6.10 follows almost immediately from the Atiyah–Segal completion
theorem [1, Thm. 2.1] and Lemma 6.9. However, given what we have covered, stating the
Atiyah–Segal completion theorem is a bit beyond the scope of the lecture, so we will just
take Lemma 6.10 for granted.
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6.11.Construction. We construct the map 𝜃 by constructing maps 𝜃𝑛 ∶ 𝐵GL𝑛(F𝑞) 𝐹𝜓𝑞,
then passing to the colimit. To construct the maps 𝜃𝑛, we use the Brauer lift with 𝐺 =
GL𝑛(F𝑞). By Lemma 6.10, the Brauer lift gives a map

𝛽GL𝑛(F𝑞) ∶ 𝑅F𝑞(GL𝑛(F𝑞)) [𝐵GL𝑛(F𝑞), 𝐵𝑈]
𝜓𝑞 ≅ [𝐵GL𝑛(F𝑞), 𝐹𝜓𝑞] .

Let 𝜃𝑛 ∶ 𝐵GL𝑛(F𝑞) 𝐹𝜓𝑞 be a map representing the homotopy class given by the im-
age of the standard representation of GL𝑛(F𝑞) on F𝑞. These maps 𝜃𝑛 are compatible the
with formation of the colimit colim𝑛 𝐵GL𝑛(F𝑞), hence determine a homotopy class of maps
𝜃∶ 𝐵GL(F𝑞) 𝐹𝜓𝑞. Moreover, since [𝐵GL(F𝑞), 𝐵𝑈] ≅ lim𝑛[𝐵GL𝑛(F𝑞), 𝐵𝑈], this class is
unique.

The bulk of Quillen’s paper [11, §§2–6, §8, §9, §11] is dedicated to computing the homol-
ogy and cohomology of 𝐵GL(F𝑞) and 𝐹𝜓𝑞 with various coefficients to show that the map 𝜃
is an integral homology equivalence.

References
1. Michael F. Atiyah andGraeme B. Segal, Equivariant𝐾-theory and completion, Journal of Differential Geometry

3 (1969), no. 1–2, 1–18.
2. Michael F. Atiyah and David O. Tall, Group representations, 𝜆-rings and the 𝐽-homomorphism, Topology 8

(1969), 253–297.
3. Michael Barratt and Stewart Priddy, On the homology of fon-connected monoids and their associated groups,

Commentarii Mathematici Helvetici 47 (1972), 1–14.
4. James Borger and Ben Wieland, Plethystic algebra, Advances in Mathematics 194 (2005), no. 2, 246–283.
5. Emmanuel Farjoun Dror, A generalization of the Whitehead theorem. 249 (1971), 12–22.
6. Allen Hatcher, Algebraic topology, Cambridge University Press, 2001.
7. , Vector bundles and K-theory, May 2009. Preprint. Retrieved from the website of the author.
8. Masato Kurihara, Some remarks on conjectures about cyclotomic fields𝐾-groups of Z, CompositioMathematica

81 (1992), no. 2, 223–236.
9. Jean-Louis Loday,𝐾-théorie algébrique et représentations de groupes, Annales scientifiques de l’É.N.S. 9 (1976),

no. 3, 309–377.
10. Daniel G. Quillen,Cohomology of groups, Proceedings international congress of mathematics, 1970, pp. 47–51.
11. ,On the cohomology and𝐾-theory of the general linear groups over a finite field, Annals of Mathematics

96 (1972), no. 3, 552–586.
12. Charles A. Weibel, The 𝐾-book: an introduction to algebraic 𝐾-theory, Graduate Studies in Mathematics,

vol. 145, American Mathematical Society, 2013.


	1. Algebraic  K -theory via perfect groups and the Plus Construction
	2. A Whirlwind Tour of  K -theory
	3. The  K -theory of finite fields
	4. The Adams Operations via -rings
	5. The Brauer Lift
	6. The space  and computing the  K -theory of finite fields
	References

