ON THE K-THEORY OF FINITE FIELDS

PETER J. HAINE

ABSTRACT. In this talk we introduce higher algebraic K-groups via Quillen’s plus construc-
tion. We then give a brief tour of algebraic K-theory and its relation to stable homotopy the-
ory and number theory — in particular noting that a K-theory computation of the integers
is equivalent to the Kummer-Vandiver conjecture. We next state Quillen’s computations
of the K-theory of F, and ?q. The remainder of the talk focuses on how Quillen is able to
execute these K-theory computations by using the Adams operations to relate K-theory to
modular representation theory. We finish by discussing the Brauer lift to — the main tool
that makes Quillen’s computation go — and how Quillen uses the Brauer lift to show that
BGL(F q)+ is homotopy equivalent to a space Fy/4, defined via the Adams operations, whose
homotopy groups are easily computable using Bott periodicity.
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1. ALGEBRAIC K-THEORY VIA PERFECT GROUPS AND THE PLUS CONSTRUCTION

In this section we define higher algebraic K-theory via Quillen’s plus construction. To
motivate this, we recall how the group K; was first defined via elementary matrices.

1.1. Convention. For us R always denotes a commutative (unital) ring.

1.2. Recollection. Letn bea positive integer, and consider the group GL, (R) of nxn matrices.
Givenl <i,j<nandr € R, let; ; by the nx n matrix whose only nonzero entry is 1 in the
(i, j) position, and let g; ;(r) := id,, +r; ;. The matrices ¢; ;(r) are called elementary matrices.
Let E, (R) denote the subgroup of GL,(R) generated by the elementary matrices.

The infinite general linear group is the colimit

GL(R) = colim ( GL;(R) —> GL,(R) —> GL,(R) —> - ).
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Similarly, define
E(R) := colim ( E;(R) «—> E,(R) —> E,(R) «—> -+ ).
1.3. Remark. If Risa field, then E,(R) = SL, (R).

1.4. Preliminary Definition. Let R be a commutative ring. The first algebraic K-group of R
is the quotient

Ky(R) = GL(R)/E(R) .

As algebraic topologists, we prefer definitions to have a homotopy-theoretic flavor. In
particular, we might try to define K;(R) in terms of homotopy groups. We already know
that 77, (BGL(R)) = GL(R). Moreover, BGL(R) has an explicit CW-structure. One idea to
produce K; homotopy-theoretically is to add cells to BGL(R) to create a space whose funda-
mental group is K, (R) — is is precisely what the plus construction will do for us. Before we
do this, let us take a closer look at E(R) to see exactly what sort of group-theoretic properties
E(R) has.

1.5. Notation. Let G be a group. Write [G, G] for the commutator subgroup of G and write
G, = G/[G, G] for the abelianization of G.

1.6. Example. For n > 3, the subgroup E,(R) is a normal subgroup of GL, (R) with the
property that [E, (R), E,(R)] = E,(R). Moreover, [E(R), E(R)] = E(R).

1.7. Definition. A group G is perfect if G, = 0.
1.8. Example. The alternating group A5 < X is the smallest nontrivial perfect group.
1.9. Example. The infinite symmetric group is the colimit
So=colim( X «—> %, «—> %, «—> .- ).
The infinite alternating group is the colimit
Ay =colim( A} —> A, —> A, —> - ).
The index of A, in X is 2, and A is a perfect normal subgroup of X .
Acyclic spaces generate a class of examples of perfect groups.
1.10. Definition. A space X is acyclic if H,(X;Z) = 0.
1.11. Lemma. Let X be an acyclic space. Then X is connected and m,(X) is perfect.

Proof. Since X is acyclic, Hy(X) = Z, hence X is connected. Similarly, since X is acyclic
H,(X) = 0, but the Hurewicz homomorphism exhibits H, (X) as an abelianization of ; (X),
hence 7,(X),, = 0. (]

1.12. Definition. Let X and Y be pointed connected CW-complexes. A pointed map
f: X—Y
is acyclic if hofib( f) is acyclic.

*1.13. Lemma. Let X andY be connected CW-complexes. A map f: X — Y is acyclic if and
only if for every local coefficient system L: I1,(Y) —> Ab, the map f induces an isomorphism

fit H.(G LI (f)) = H,(Y;L).
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Proof Sketch. The proof is not very hard — the main tool of is the Serre spectral sequence,
and the comparison theorem for cellular maps of fibrations. A proof can be found in [12}, Ch.
4 Lem. 1.6]. O

1.14. Definition. Let X be a pointed connected CW-complex and P < 71,(X) a perfect
normal subgroup. An acyclic map 1: X — X% is called a plus construction for X (relative
to P) if P is the kernel of 1, : 71,(X) — 7, (X™).

1.15. Theorem (Quillen). Let X be a pointed CW-complex and P < 71,(X) a perfect normal
subgroup. Then there exists a plus construction 1: X — X~ for X relative to P. Moreover, the
plus construction enjoys the following universal property: for every map f: X — Y so that
fo(P) =0, thereisamap f*: X* — Y, unique up to pointed homotopy, so that the triangle

X ! X+

Y

commutes up to pointed homotopy.

Idea of the construction of X*. The idea of the construction of X™* is to attach 2-cells to X
to kill P from 71, (X), then attach 3-cells to make sure that we retain the correct homology.
Proofs can be found in [, Prop. 4.40; g, Thé. 1.1.1]. From this explicit construction, it is
possible to use obstruction theory to show that X* has the desired universal property, which
in turn characterizes X* uniquely up to homotopy equivalence. O

The plus construction is functorial in the following sense.

1.15.1. Corollary. Let CWY T denote the category with objects pairs (X, P), where X is a
pointed connected CW-complex and P < 1,(X) is a perfect normal subgroup, and a morphism

f: (X)P)H (XI)P’)
isamap f: X — X' so that f,(P) C P'. The plus construction defines a functor
(-)": CWE — hCW, .

1.16. Notation. For a commutative ring R, let BGL(R)* denote the plus construction of
BGL(R) with respect to the perfect normal subgroup E(R) < GL(R) = m,(BGL(R)).

1.17. Definition. Let R be a commutative ring and 7 a positive integer. The n™® algebraic
K-group of R is the homotopy group

K,(R) = 7,(BGL(R)") .
1.18. Example. By the definition of the plus construction, for any ring R we have
K, (R) = GLR)/E(R),
so this definition agrees with the preliminary definition of K.

1.19. Warning. Notice that we have expressly avoided mentioning anything about K,! That
is because K, needs to be defined differently — Jesse will give a more careful analysis of K,
K, and K, in his talk on 3 October.



4 PETER J. HAINE

2. A WHIRLWIND TOUR OF K-THEORY

In this section we give one manifestation of the connections between algebraic K-theory
and stable homotopy theory, via the Barratt-Priddy-Quillen theorem, as well as indicate
how difficult K-theory computations are by stating the the Kummer-Vandiver conjecture
from number theory is equivalent to a K-theory computation of the integers.

2.1. Theorem (Barratt-Priddy-Quillen [B]]). Let BZS denote the plus construction of BX,
with respect to A,. There is an equivalence
B}, = Q®°3®8? = colim,, 2"5"S° = colim, Q"S".

In particular, BX?, = 7.

*2.2. Philosophical Remark. Now, X, is not the infinite general linear group of any ring,
but if there were a field F; with one element, heuristically GL,,(F,) should be X,, so GL(F,)
should be =,. Then under this heuristic, K,,(F;) = n5. This is only philosophy, but later
we will see that this can be made precise with the algebraic K-theory of various types of
categories. In this setting K, (Fin,) = 5.

2.3. Observation (Relating algebraic K-theory to stable homotopy theory). For each posi-
tive integer n, there is an inclusion 2, < GL,,(Z) given by the permutation representation,
hence this induces an inclusion 2, — GL(Z). The elementary integer matrices generate
SL,(Z), and the matrix of an even permutation is 1, so we have compatible inclusions

A, —— SL(Z)

[ |

5 —— GL(Z),

so by the functoriality of the plus construction we get an induced map BX?, — BGL(Z)*.
Taking homotopy groups and using the Barratt-Priddy-Quillen theorem gives a map

S —K,(Z).

2.4. Observation. Since Z is the initial ring, every ring receives a unique map ¢5: Z— R.
Since taking the general linear group is a functor and the image of an elementary matrix
is an elementary matrix, by the universal property of the plus construction, ¢ induces
map BGL(Z)" — BGL(R)*, and applying homotopy groups yields a map K,,(Z) — K,,(R).
Hence by Dbservation 2.3, stable homotopy maps to the K-theory of every ring.

*2.5. Proposition (Kurihara [§]). We have that K,,(Z) = 0 for all positive integers n if and
only if the Kummer-Vandiver conjecture holds.

*2.6. Conjecture (Kummer-Vandiver). For all primes p, the prime p does not divide the class
number of the maximal real subfield of the p™ cyclotomic field Q).

*2.7. Remark. The K-theory of Z is hair-raisingly difficult to compute — a summary of
many of the known computations can be found in [2, Ch. 6 $10].

3. THE K-THEORY OF FINITE FIELDS

Our goal is to understand the main ideas of the proof of the following amazing compu-
tation of Quillen.

3.1. Theorem (Quillen). Let g be a power of a prime p.
(B.g.a) Foralln > 1 we have K2n(Fq) =0and K2n_1(Fq) =Z/(q" - 1).
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(B-4b) If:: Fy——Egmis a field extension, then 1, : K, (F)) — K, (Fgn) is injective.
(B3.c) Let Frf: F;, = F, denote the absolute Frobenius automorphism. Then for alln > 1,
the induced homomorphism

Frl: Ky, (F)) — Ky, ()
is given by multiplication by p”.

*3.1.1. Corollary (Quillen). Let p be a prime.

(B:a1.a) Foralln > 1 we have K,,( P) = 0and

Kyt (Fp) = P Qu/Z, .
etp
prime
(B-11.b) The automorphism ofKZn,l(Fp) induced by the Frobenius automorphism is given
by multiplication by p".
(B.11.0) IfF, l_3p is a subfield, then the canonical map
= \Gal(F,/F)
K*(Fq)HK*( p) pia
is an isomorphism.

4. THE ADAMS OPERATIONS VIA A-RINGS

In this section we recall the properties of the Adams operations on K-theory in the setting
of A-rings as the representation ring of a finite group also has the structure of a A-ring, and
in both cases Adams operations can be constructed using only the A-ring structure, as well
as an additional augmentation given by the dimension.

We motivate A-rings by considering the extra structure on VB (X) given by taking exte-
rior powers.

4.1. Observation (Extra structure on VB¢ (X)). Notice that if E and E’ are complex vector
bundles over a finite CW-complex X, we can perform the following constructions, which
give extra structure to VB¢ (X).

(F1a) A°E) =X xC.

(F1b) AY(E) = E. ' _

(B1.c) A(E®E') = EBHF” A(E) @ AV(E").

However, notice that these exterior power operations are not semiring homomorphisms.

4.2. Observation. Let G be a finite group and k a field. Notice that the set Rep, (G) of iso-
morphism classes of finite-dimensional k-representations of G has the structure of a com-
mutative semiring, with the additive structure given by direct sum and the multiplicative

structure given by tensor product — this structure is analogus to the extra structure on
VBc(X).

4.3. Definition. A A-structure on a commutative semiring R is a collection of set-maps
{A": R— R}, called A-operations so that

(5-3-2) A°is the constant map at 1.
(g3b) A! =idg.
(B-3.c) The map A,: R —> R[¢]* given by A,(r) = 250 A" (1) is a monoid map.

We call a semiring equipped with a A-structure a A-semiring.
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4.4. Remark. Condition (§-3f) is equivalent to saying that for all , 7' € R we have
Nr+r')y=Y MM,
i+j=n
which is an abstraction of (fg.1.4).

*4.5. Remark (on terminology). The terminology in the literature on A-rings is quite incon-
sistent. Some call what we have called a A-ring a pre-A-ring, and insist that A-rings satisfy
three additional properties. Two of these properties encode the expressions of exterior pow-
ers A"(A"(V)) and A"(V ® V') of vector spaces V and V' as integral polynomials in the
exterior powers A'(V), ..., A™(V) and A (V), ..., A"(V), AL (V"), ..., A"(V'"), respectively.
The other property is that A1) = 0ifk > 1, which encodes the fact that A(L) = 0 fork > 1
if L is a 1-dimensional vector space. Others take our convention and call a A-ring with this
extra structure a special A-ring.

We have chosen this approach to simplify terminology, though we actually agree that a
A-ring really should satisfy these additional properties. Moreover, all of the A-rings that we
need to consider do satisfy these properties.

*4.6. Remark. The A-operations in some sense are very unnatural as they are not ring ho-
momorphisms. One might ask where these operations come from — the answer is plethories
and the plethistic algebra of Borger and Wieland [{4].

4.7. Example. The semirings VB (X) and Rep, (G) are both A-semirings with the A-operations
given by taking exterior powers.

4.8. Example. The nonnegative integers N are a A-semiring with A-operations given by

Ae(n) = (n> .
(m={,
*4.9. Example. A Q-algebra A is a A-ring with A-operations given by
1
M(a) = Ge@-1-@—k-1).
4.10. Notation. Given a commutative monoid M, write M8 for the group completion of

M.

4.11.Lemma. IfRisa A-semiring. Then R has a canonical A-ring structure with A operations
extending the A-operations on R.

Proof. Since the map A,: R— R[[t]* is a monoid map and R [t]* is a group completion
for R[[t]*, by the universal property of the group completion, there exists a unique monoid
map A§¥ making the square

A
R ——— R[t]*

|

REP ... > REP¢]*

8p
Ae

commute. The coefficents of A define a A-ring structure on R& extending the A-ring struc-
ture on R. |

4.12. Example. ApplyingCemma 4.11 to Example 4.8, we see that the integers Z are a A-ring
with A-operations given by

Moty = (

n

k)%n(n—l)---(n—k—l).
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*4.13. Remark (Witt vectors). The abelian group R[[¢]* = 1+ tR[¢] naturally has the struc-
ture of a commutative ring, which we will not describe here, and is often called the ring
of big Witt vectors, and denoted by W(R). Moreover, W(R) is naturally a A-ring, and the
condition that a A-ring R be a special A ring can be concisely phrased by requiring that the
group homomorphism R — W(R) be a A-ring homomorphism.

4.14. Example. If X is a finite CW-complex, then K%X) is a A-ring with the A-structure
given by taking exterior powers.

4.15. Example. Let G be a finite group and k a field. The representation ring of G is the
group completion Ry (G) = Repk(G)gP . Hence Ry (G) is a A-ring. An element of Ry (G) is
called a virtual representation of G.

4.16. Remark. The category of A-rings has objects A-rings, and a morphism ¢p: R— R’ is
a ring homomorphism so that A% o ¢ = ¢ o A} foralln > 0.

4.17. Definition. Let R be a A-ring. An augmentation of R is a A-subring A C R equipped
with a A-ring surjection e: R — A so that ¢, = id.

4.18. Example. Both K°(X) and Rc(G) have augmentations to Z given by taking (virtual)
dimension. Explicitly, the A-subrings of K°(X) and R:(G) isomorphic to Z providing the
augmentation are simply the subrings given by integer multiples of the identity in each case
(i.e., the trivial virtual bundles and trivial virtual representations, respectively). The fact that
these are actually A-semiring homomorphisms follows from the fact that

dim(V) >
p .

4.19. Definition (Adams operations). Let (R, €) be an augmented A-ring. There exist natural
set-maps y*: R — R for all k > 0, called Adams operations, defined as follows. Let v,
denote the formal power series defined by

dim(A¥(V)) = (

d
Y, (r) =e(r) - ta log(A_,(7)) .
Then y*(r) is the coefficent of t* in v, (r).

4.20. Theorem. For any finite CW-complex X and any finite group G, the Adams operations
on K°(X) and R¢(G) satisfy the following properties.

(f-29.a) For all k > 0, the set-map y* is a ring homomorphism.

(g2d.b) For all k, € > 0 we have y*y* = y**.

(F2d.c) Ifdim(L) = 1, then y*(L) = L2~

Idea of the proof. In the K-theory case, the idea is to use the splitting principle for K-theory.
As it turns out, there is also a splitting principle for Rc(G) [2, Thm. 1.5(ii)] — the funda-
mental observation is to identify R-(G) with the ring of complex virtual characters. There is
anotion of a splitting principle for A-rings, and if this is satisfied, then (.2d.H) and (4-29.H)
hold [[t2}, Ch. 2 Prop. 4.4] The last condition is obviously something more particular to these
settings where we have a notion of dimension. O

4.21. Remark. The Adams operations on R(G) induce operations on the characters given
by ¥*(x(g)) = x(g*), where y is a character and g € G.

4.22. Observation. By the naturality of the Adams operation, ¥ restricts to an operation
K® — K° which we also denote by y*
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4.23. Recollection. Let 1 be a nonnegative integer. Then K°(S*") = Z.

In our computation of the K-theory of finite fields we need the following fact about the
Adams operations.

4.24. Lemma. Let n be a nonnegative integer. The Adams operation y* : K°(§*") — K°(5*")
is given by multiplication by k".

Proof sketch. The proof is elementary — for n = 1, it follows immediately by looking at
the canonical generator of K°(S?), and the general case follows by induction using Bott
periodicity. A complete argument can be found in [[7, Prop. 2.21]. O

5. THE BRAUER LIFT

Now we explain and exploit an incredible relation between K-theory and representation
theory of finite groups via the Adams operations. Throughout G denotes a finite group, but
we are particularly interested in the case when G = GL,,(F).

5.1. Definition. Let G be a finite group. Define a ring homomorphism
¢c: Re(G) — K°(BG)

first on Rep(G) by sending an isomorphism class [V] of representations to the class of the
balanced product EG X V, and then extending to Rc(G) via the universal property of the
group completion.

5.2. Observation. Since the A-operations are defined on R(G) and K°(BG) via taking ex-
terior powers, it is not hard to believe that ¢ is a morphism of A-rings, and indeed this is
true. This morphism of A-rings respects the augmentations of Rc(G) and K°(BG) defined

in [Example 4.18§, so by the naturality of the Adams operations, for all g > 0, the square

Re(G) 2 K°(BG)

|

Re(G) —— K*(BG)

commutes.
Composing with the homomorphism
K°(BG) = [BG, Z x BU] — [BG, BU] = K°(BG)
induced by the inclusion BU <« Z x BU as {0} x BU, we get a homomorphism
Re(G) — K°(BG) ,

again natural with respect to the Adams operations.
5.3. Convention. Fix, once and for all, an embedding p: ?; — C*.

5.4. Remark. Everything from here on will depend on p. This dependence will not be prob-
lematic and is well understood through the lens of étale cohomology.

5.5. Notation. Let G be a finite group and V a finite-dimensional Fq—representation of G. For
an element g € G, write S, (g) for the set of eigenvalues of g. Given an eigenvalue A € Sy,(g),
write (1) for the multiplicity of A.
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5.6. Definition. Let G be a finite group and x, ..., ¥, its distinct irreducible complex char-
acters. A virtual character y: G — Cis a class function so that ¢ = m, x; + --- + m,x,, for
some my, ...,m, € Z.

5.7. Definition. Let G be a finite group and V' a finite-dimensional F,
The Brauer character of V is the function yy, : G — C defined by

xw(@= Y wudpQ).

AeSy(g9)

-representation of G.

5.8. Theorem (Green). Let G be a finite group and V a finite-dimensional ﬁq-representation
of G. The Brauer character y, is the character of a unique virtual complex representation V",
called the Brauer lifting of V.

5.9. Observation. The Brauer character yy, is clearly additive in V, that is yyew = Xv + Xw>
hence the Brauer lifting is additive as well: (V & W)P" = v @ WP Thus the Brauer lifting
defines a homomorphism

(4)"": R (G)— Re(G).
5.10. Observation. Extension of scalars defines a homomorphism
- ®Fq Fq . RFq (G) —_— Rﬁq (G) .

For V € Ry (G), write
q

Since V' is a representation over F, the eigenvalues of g acting on V are stable under the
Frobenius automorphism x — x9. Then since ¥ acts on characters by yiy(g) = x(g7),
the Adams operation on Rc(G) fixes the Brauer lift of V, hence we get a homomorphism

()" (- @ Ep): Ry (G) — Rc(G)',

called the Brauer lift. Composing this with the homomorphism from and
taking fixed points, we have produced a map

Po: Re (G)— R°(BG)Y' = [BG, BUY" .

6. THE SPACE Fl//q AND COMPUTING THE K-THEORY OF FINITE FIELDS

6.1. Convention. From now on, let g be a fixed nonnegative integer. (We really only care
about the case that g is a prime power.)

We have the Adams operations y4: K° — K° on complex K-theory. Since K is rep-
resented by BU, we would like these to be represented by endomorphisms of BU by just
applying the Yoneda lemma, but there is a slight problem. The space BU is not a finite CW-
complex, and K-theory is only defined for finite CW-complexes. However, by analyzing an
explicit cell structure on BU and using the Milnor exact sequence, it is possible to show that
n-ary operations on K are representable by maps BU” — BU.

6.2. Notation. We abusively write y1: BU — BU for a map representing the Adams oper-
ation ¥4 on K°.
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6.3. Definition. The space Fy is the pullback

Fy4 —" > Map(1, BU)

d
qﬁl l(evo,evl)

BU — BU X BU.
(1dBU,0q)

Hence a point the space Fy? can be viewed as a pair (x,y), where x € BU and y is a path
from x to ywi(x). In this sense Fy? is a homotopy-theoretic version of the space of fixed
points of y1.

6.4. Recollection. Recall that a simple space is a space with abelian fundamental group and
the action of the fundamental group on the higher homotopy groups is trivial.

6.5. Theorem (Dror [g]). If X and Y are simple spaces and f: X — Y induces an isomor-
phism on integral homology, then f is a weak homotopy equivalence.

6.6. Goal. The goal is to construct a map

6: BGL(F,) — Fy1
that induces an isomorphism on integral homology. The universal property of the plus con-
struction will then give a map 6" : BGL(F,)" — Fy/, which is again an isomorphism on

integral homology. After showing that BGL(F,)* and Fy are simply, a simple application
of and Whitehead’s theorem shows that 0* is a homotopy equivalence.

6.7. Lemma. We have that Fy? = hofib(1 — y1).
6.8. Lemma. The space Fy/1 is simple and we have m,, (Fy1) = 0 and mr,,,_(Fy1) = Z/(q"-1).

Proof sketch. By Lemma 6.7, we have a long exact sequence in homotopy
(1-yD” ) 4
- —— m,,(BU) — n,(BU) — n,,_,(Fy9) —— n,,_(BU) —— -+ .

By Bott periodicity, 7,,_;(BU) = 0 and m,,(BU) = K°($*") = Z. In the latter case, by
[Cemma 4.24, the map 1 -y is given by multiplication by 1 —g". This immediately gives the
computations of the homotopy groups of Fy1.

The fact that Fy is simple follows immediately from a general result about fibrations,
using the fact that BU is simply connected. O

6.9. Lemma. Suppose that X is a CW-complex so that [X,U] = 0. Then
¢.: [X, Fy?] — [X, BU]Y"
is an isomorphism.

Proof sketch. This lemma follows almost immediately from the universal property of the
pullback Fy/A. O

6.10. Lemma. Suppose that G is a finite group. Then [BG, BU]Y" = [BG, Fy/1].

The proof of follows almost immediately from the Atiyah-Segal completion
theorem [[I, Thm. 2.1] and Lemma 6.9. However, given what we have covered, stating the
Atiyah-Segal completion theorem is a bit beyond the scope of the lecture, so we will just

take for granted.
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6.11. Construction. We construct the map 6 by constructing maps 6,,: BGL,,(F,) — Fy/4,
then passing to the colimit. To construct the maps 6,,, we use the Brauer lift with G =

GL,(F,). By Lemma 6.1d, the Brauer lift gives a map
Bk, Re, (GL,(Fy) — [BGL,(F,), BU]Y" = [BGL,(F,), Fy] .

Let 6,: BGL,(F,) — Fy1 be a map representing the homotopy class given by the im-
age of the standard representation of GL,(F;) on F,. These maps 6, are compatible the
with formation of the colimit colim,, BGL,,(F,), hence determine a homotopy class of maps
0: BGL(Fq) —> Fy/1. Moreover, since [BGL(Fq), BU] = lim,, [BGLn(Fq),BU], this class is
unique.

The bulk of Quillen’s paper [L1, §52-6, §8, §9, §11] is dedicated to computing the homol-
ogy and cohomology of BGL(F,) and Fy with various coefficients to show that the map 0
is an integral homology equivalence.
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