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Abstract

Pyknotic objects are (hyper)sheaves on the site of compacta. These provide a
convenient way to do algebra and homotopy theory with additional topological in-
formation present. This appears, for example, when trying to contemplate the de-
rived category of a local field. In this article, we present the basic theory of pyknotic
objects, with a view to describing a simple set of everyday examples.
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0 Introduction
0.1 The proétale topology and pyknotic objects
Let 𝐸 be a local field, and let 𝑋 be a connected, topologically noetherian, coherent
scheme. Bhargav Bhatt andPeter Scholze [3, Lemma7.4.7] construct a topological group
𝜋 proét1 (𝑋) that classifies local systems of 𝐸-vector spaces in the sense that there is a mon-
odromy equivalence of categories between the continuous 𝐸-linear representations and
𝐸-linear local systems.The group 𝜋 proét1 (𝑋) isn’t profinite or even a proöbject in discrete
groups in general: Deligne’s example of a curve of genus ≥ 1 with two points identified
has local systems that are not classified by any such group.

In forthcomingwork [2], wewill extend the Bhatt–Scholzemonodromy equivalence
to an exodromy equivalence between continuous 𝐸-representations of the Galois cate-
gory Gal(𝑋) and constructible sheaves of 𝐸-vector spaces. To speak of such continuous
representations, one needs to contemplate not only the category of finite dimensional
𝐸-vector spaces but also the natural topology thereupon.

To describe constructible sheaves of complexes of 𝐸-vector spaces, we need a new
idea in order to speak of an∞-category of perfect complexes of 𝐸-vector spaces in a
manner that retains the natural topological information coming from 𝐸.

In this paper, we describe a way to do this: a pyknotic1 object of an∞-category 𝐶 is a
(hyper)sheaf on the site of compact hausdorff spaces valued in 𝐶. We may thus speak of
pyknotic sets, pyknotic groups, pyknotic rings, pyknotic spaces, pyknotic∞-categories,
& c. Pyknotic structures function in much the same way as topological structures.

At the same time, pyknotic sets are the proétale sheaves of sets on a separably closed
field, and the proétale topos of any coherent scheme has the natural structure of a pyk-
notic category.There is a deep connection between the passage from objects to pyknotic
objects and the passage from the étale topology to the proétale topology.

Our local field𝐸 is naturally a pyknotic ring; pyknotic vector spaces over𝐸 comprise
a pyknotic category; complexes of pyknotic vector spaces over 𝐸 comprise a pyknotic
∞-category 𝑫(𝐸); and perfect complexes of pyknotic vector spaces over 𝐸 comprise a
pyknotic subcategory𝑫perf(𝐸). Our exodromy equivalence will then be a natural equiv-
alence

FunPyk(Gal(𝑋),𝑫perf(𝐸)) ≃ 𝑫constrproét (𝑋; 𝐸) .
Moreover, the proétale∞-topos𝑋proét itself is naturally a pyknotic category, and one

can identify it with the category of pyknotic functors from Gal(𝑋) to pyknotic spaces:

𝑋proét ≃ FunPyk(Gal(𝑋),Pyk(𝑺)) .
1Pykno comes from the Greek πυκνόςmeaning ‘dense’, ‘compact’, or ‘thick’.
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0.2 The aims of this paper
This paper is the first of a series. Our objective here is only to establish the very basic
formalism of pyknotic structures, in the interest of developing a few key examples.

0.2.1 Example. For any set, group, abelian group, ring, space, spectrum, category, &
c., 𝐴, there are both a discrete pyknotic object 𝐴disc and an indiscrete pyknotic object
𝐴indisc attached to 𝐴 (Construction 2.3.6). As with topological structures, these notions
are set up so that a map out of a discrete object is determined by a map at the level of
the underlying object, and a map into an indiscrete object is determined by a map at the
level of the underlying object.

0.2.2 Example. Starting with discrete objects, one can develop more interesting pyk-
notic structures by the formation of inverse limits. Thus profinite groups like Galois
groups and étale fundamental groups are naturally pyknotic, and profinite categories
like Gal(𝑋) above are naturally pyknotic (Example 4.3.13). These inverse limits are no
longer discrete.

0.2.3 Example. More generally still, compactly generated topological spaces embed
fully faithfully into pyknotic sets, in amanner that preserves limits (Example 2.1.6).Thus
locally compact abelian groups, normed rings, and complete locally convex topological
vector spaces are all naturally pyknotic objects. This includes the vast majority of topo-
logical objects that appear in number theory and functional analysis.

One key point, however, is that the relationship between compactly generated topo-
logical spaces and pyknotic sets is dual to the relationship between compactly gener-
ated topological spaces and general topological spaces: in topological spaces, compactly
generated topological spaces are stable under colimits but not limits; in pyknotic sets,
compactly generated topological spaces are stable under limits but not colimits.

Furthermore, since pyknotic sets form a 1-topos, it follows readily that products of
quotients are again quotients (Example 2.2.11). This is of course not true in the realm
of topological spaces, and this is one of the main reasons that topologising fundamental
groups is such a fraught endeavour.

0.2.4 Example. More exotically, the cokernel 𝒁/𝒁 in pyknotic groups is not indiscrete.
This is in contrast with the topological case.

Even more dramatically, if 𝐴 is a locally compact abelian group, the continuous ho-
momorphism 𝑖 ∶ 𝐴disc → 𝐴, when viewed as a pyknotic homomorphism, is a monomor-
phism with a nontrivial cokernel. The underlying abelian group of this cokernel, how-
ever, is trivial. This underscores one of the main peculiarities of the theory of pyknotic
structures, which is also one of its advantages: the forgetful functor is not faithful.

0.2.5 Example. Pyknotic spaces and spectra form well-behaved categories, and their
homotopy groups are naturally pyknotic. This makes it sensible to speak of topologies
on the homotopy groups of spaces and spectra. For example, the 𝐸-nilpotent comple-
tion of a spectrum is naturally a pyknotic spectrum (Example 3.1.16), and its homotopy
pyknotic groups are computed by the 𝐸-based Adams–Novikov spectral sequence.

0.2.6 Example. The category of pyknotic objects of a presentable category 𝐶 form a
natural example of a pyknotic category: the category of sections over any compactum
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𝐾 is itself the category of sheaves in 𝐶 on the site of compacta over 𝐾. Pyknotic cate-
gories provide a context in which one can do homotopy theory while keeping control
of ‘topological’ structures.

For example, for a local field 𝐸, one may speak of the pyknotic derived category
𝑫Pyk(𝐸), whose objects can be thought of as complexes of pyknotic vector spaces over
𝐸. This construction will be the focus of our attention in a sequel to this paper.

0.3 Pyknotic and condensed
As we were developing these ideas, we learned that Dustin Clausen and Peter Scholze
have independently been studying essentially the samenotion,which they call condensed
objects.2

There is, however, a difference between pyknotic objects and the condensed objects
of Clausen and Scholze: it is a matter of set theory. To explain this, select a strongly
inaccessible cardinal 𝛿 and the smallest strongly inaccessible cardinal 𝛿+ over 𝛿. A pyk-
notic set in the universe 𝑽𝛿+ is a sheaf on the site Comp𝛿 of 𝛿-small compacta, valued
in the category Set𝛿+ of 𝛿+-small sets. By contrast, a condensed set in the universe 𝑽𝛿
is a sheaf on Comp𝛿 valued in Set𝛿 that is in addition 𝜅-accessible for some regular car-
dinal 𝜅 < 𝛿. Thus condensed sets in 𝑽𝛿 embed fully faithfully into pyknotic sets in 𝑽𝛿+ ,
which in turn embed fully faithfully into condensed sets in 𝑽𝛿+ . (We shall discuss this
accessibility more precisely in §1.4.)

TheClausen–Scholze theory of condensed objects can thus be formalised completely
in zfc, whereas our theory of pyknotic objects requires at least one strongly inaccessible
cardinal.

As emphasised by Scholze, however, the distinction betweenpyknotic and condensed
does have some consequences beyondphilosophicalmatters. For example, the indiscrete
topological space {0, 1}, viewed as a sheaf on the site of compacta, is pyknotic but not
condensed (relative to any universe). By allowing the presence of such pathological ob-
jects into the category of pyknotic sets, we guarantee that it is a topos, which is not true
for the category of condensed sets.

It would be too glib to assert that the pyknotic approach values the niceness of the
category over the niceness of its objects, while the condensed approach does the op-
posite. However, it seems that the pyknotic objects that one will encounter in serious
applications will usually be condensed, and the majority of the good properties of the
category of condensed objects will usually be inherited from the category of pyknotic
objects.

0.4 Acknowledgements
There is certainly overlap in ourwork herewith that ofClausen and Scholze, even though
our aims are somewhat different. We emphasise that Clausen in particular had under-
stood the significance of condensed objects for many years before we even started to
contemplate them. We thank both Clausen and Scholze for the insights (and correc-
tions) they have generously shared with us via e-mail.

2In fact, as we were preparing this first manuscript, Scholze’s ongoing lecture notes [21] appeared and
Scholze gave a talk at MSRI on this material [19; 20].
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Evenoutside these private communications, our intellectual debt to them is, we hope,
obvious.

We are also grateful to Jacob Lurie, who explained to us many ideas related to ul-
tracategories, and in particular outlined for us the∞-ultracategory material that will
eventually be added to [Ker].

1 Conventions
1.1 Higher categories
1.1.1. Weuse the language and tools of higher category theory, particularly in themodel
of quasicategories, as defined by Michael Boardman and Rainer Vogt and developed by
André Joyal and Jacob Lurie. We will generally follow the terminological and notational
conventions of Lurie’s trilogy [HTT; HA; SAG], but we will simplify matters by system-
atically using words to mean their good homotopical counterparts.3

• The word category here will always mean∞-category or (∞, 1)-category or quasi-
category – i.e., a simplicial set satisfying the weak Kan condition.

• A subcategory 𝐶′ of a category 𝐶 is a simplicial subset that is stable under com-
position in the strong sense, so that if 𝜎∶ 𝛥𝑛 → 𝐶 is an 𝑛-simplex of 𝐶, then 𝜎
factors through 𝐶′ ⊆ 𝐶 if and only if each of the edges 𝜎(𝛥{𝑖,𝑖+1}) does so.

• We will use the terms groupoid or space interchangeably for what is often called
an∞-groupoid – i.e., a category in which every morphism is invertible.

• For a category 𝐶, we write Pro(𝐶) for the category of proöbjects in 𝐶.

1.2 Set theoretic conventions
1.2.1. Recall that if 𝛿 is a strongly inaccessible cardinal (which we always assume to be
uncountable), then the set 𝑽𝛿 of all sets of rank strictly less than 𝛿 is a Grothendieck
universe [SGA 4i, Exposé I, Appendix] of rank and cardinality 𝛿. Conversely, if 𝑽 is a
Grothendieck universe that contains an infinite cardinal, then 𝑽 = 𝑽𝛿 for some inacces-
sible cardinal 𝛿.

In order to deal precisely and simply with set-theoretic problems arising from some
of the ‘large’ operations, we append to zfc the Axiom of Universes (au). This asserts
that any cardinal is dominated by a strongly inaccessible cardinal.

We write 𝛿0 for the smallest strongly inaccessible cardinal. Now au implies the exis-
tence of a hierarchy of strongly inaccessible cardinals

𝛿0 < 𝛿1 < 𝛿2 < ⋯ ,

in which for each ordinal 𝛼, the cardinal 𝛿𝛼 is the smallest strongly inaccessible cardinal
𝛿𝛼 that dominates 𝛿𝛽 for any 𝛽 < 𝛼.4

3Wehave grownweary of the practise of prefixingwordswith sequences of unsearchable crackjaw symbols.
4Thus 𝑽𝛿𝛼 models zfc plus the axiom ‘the set of strongly inaccessible cardinals is order-isomorphic to 𝛼’.
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We certainly will not use the full strength of au. At the cost of some awkward cir-
cumlocutions, one could even get away with zfc alone.

1.2.2 Definition. Let 𝛿 be a strongly inaccessible cardinal. A set, group, simplicial set,
category, ring,& c., will be said to be 𝛿-small5 if it is equivalent (in whatever appropriate
sense) to one that lies in 𝑽𝛿. We write

tiny
small
} as shorthand for {

𝛿0-small
𝛿1-small.

A category 𝐶 is said to be locally 𝛿-small if and only if, for any objects 𝑥, 𝑦 ∈ 𝐶, the
mapping space Map𝐶(𝑥, 𝑦) is 𝛿-small. We write

locally tiny
locally small

} as shorthand for {
locally 𝛿0-small
locally 𝛿1-small.

1.2.3. For a strongly inaccessible cardinal 𝛿, we shall write 𝑺𝛿 for the category of 𝛿-small
spaces and Cat𝛿 for the category of 𝛿-small categories. The categories 𝑺𝛿𝛼 and Cat𝛿𝛼 for
the are 𝛿𝛼+1-small and locally 𝛿𝛼-small. We write

𝑺
Cat
} as shorthand for {

𝑺𝛿1
Cat𝛿1 .

1.2.4. In the same vein, if 𝛿 is a strongly inaccessible cardinal, 𝛿-accessibility of categories
and functors and 𝛿-presentability of categories will refer to accessibility and presentabil-
ity with respect to some 𝛿-small cardinal. Please observe that a 𝛿𝛼-accessible category is
always 𝛿𝛼+1-small and locally 𝛿𝛼-small. We shall write

Pr𝐿𝛿𝛼 ⊂ Cat𝛿𝛼+1 (respectively, Pr𝑅𝛿𝛼 ⊂ Cat𝛿𝛼+1 )

for the subcategory whose objects are presentable categories and whose functors are left
(resp., right) adjoints. We write

accessible
presentable

Pr𝐿

Pr𝑅

}}}}}
}}}}}
}

as shorthand for

{{{{{
{{{{{
{

𝛿1-accessible
𝛿1-presentable
Pr𝐿𝛿1
Pr𝑅𝛿1

Accordingly, a 𝛿-topos is a left exact accessible localisation of a functor category
Fun(𝐶, 𝑺𝛿) for some 𝛿-small category 𝐶. We write topos as a shorthand for 𝛿1-topos.

1.3 Sites and sheaves
1.3.1 Definition. A site (𝐶, 𝜏) consists of a category 𝐶 equipped with a Grothendieck
topology 𝜏.

5The adverb ‘essentially’ is often deployed in this situation.
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1.3.2 Notation. Let 𝛿 be a strongly inaccessible cardinal. We write

Sh𝜏(𝐶)𝛿 ⊆ Fun(𝐶op, 𝑺𝛿)

for the full subcategory spanned by the sheaves on 𝐶 with respect to the topology 𝜏.
We write Shhyp𝜏 (𝐶)𝛿 ⊂ Sh𝜏(𝐶)𝛿 for the full subcategory spanned by the hypercomplete
sheaves.6 In particular, we write Sh𝜏(𝐶) and Shhyp𝜏 (𝐶) as a shorthand for Sh𝜏(𝐶)𝛿1 and
Shhyp𝜏 (𝐶)𝛿1 , respectively.

1.3.3 Warning. Let (𝐶, 𝜏) be a site. Assume that for some object 𝑋 ∈ 𝐶, there does not
exist a tiny set of covering sieves of 𝑋 that is cofinal among all covering sieves.7 Then
the sheafification of a tiny presheaf on 𝐶 (i.e., a presheaf 𝐶op → 𝑺𝛿0) might no longer
be tiny. The point is that sheafification will involve a colimit over all covering sieves.
As a consequence, the category Sh𝜏(𝐶)𝛿0 of tiny sheaves on 𝐶 is not 𝛿0-topos. This is a
perennial bugbear, for example, with the fpqc topology on the category of affine schemes.
The sites (𝐶, 𝜏) with which we will be working suffer from this as well.

Some authors simply elect never to sheafify a presheaf with respect to such topolo-
gies. However, in this article, we will be unable to avoid sheafification, and we do not
wish to pass artificially to a subcategory of 𝐶, so we will permit ourselves the luxury of
‘universe hopping’: in our cases of interest, 𝐶will be small (but not tiny!), and so Sh𝜏(𝐶)
is a left exact localisation of Fun(𝐶op, 𝑺𝛿1) and thus a 𝛿1-topos.

In §1.4, we outline a proof that when the site is suitably accessible, then the sheafifi-
cation of the small sheaves that arise in practise are again small. This is an adaptation of
the strategy developed by Waterhouse [23]. This gives a slightly more conservative way
to deal with this issue.

1.3.4 Definition. A site (𝐶, 𝜏) is said to be finitary if and only if𝐶 admits all finite limits,
and, for every object 𝑋 ∈ 𝐶 and every covering sieve 𝑅 ⊆ 𝐶/𝑋, there is a finite subset
{𝑌𝑖}𝑖∈𝐼 ⊆ 𝑅 that generates a covering sieve.

1.3.5 Definition. A presite is a pair (𝐶, 𝐸) consisting of a category 𝐶 along with a sub-
category 𝐸 ⊆ 𝐶 satisfying the following conditions.

• The subcategory 𝐸 contains all equivalences of 𝐶.

• The category 𝐶 admits finite limits, and 𝐸 is stable under base change.

• The category 𝐶 admits finite coproducts, which are universal, and 𝐸 is closed un-
der finite coproducts.

1.3.6 Construction. If (𝐶, 𝐸) is a presite, then there exists a topology 𝜏𝐸 on 𝐶 in which
the 𝜏𝐸-covering sieves are generated by finite families {𝑉𝑖 → 𝑈}𝑖∈𝐼 such that∐𝑖∈𝐼 𝑉𝑖 → 𝑈
lies in𝐸 [SAG, Proposition A.3.2.1].The site (𝐶, 𝜏𝐸) is finitary.We simplify notation and
write Sh𝐸(𝐶) ⊆ Fun(𝐶op, 𝑺𝛿1) for the full subcategory spanned by the small 𝜏𝐸-sheaves.
Note that Sh𝐸(𝐶) is a topos if 𝐶 is small.

If in addition the coproducts in𝐶 are disjoint, then a sheaf for 𝜏𝐸 valued in a category
𝐷 with all limits is a functor 𝐹∶ 𝐶op → 𝐷 that carries finite coproducts in 𝐶 to finite

6For background on hypercompletness, see [HTT, §6.5].
7So, in particular, 𝐶 itself is not tiny.
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products in𝐷, and for any morphism𝑉 → 𝑈 of 𝐸, the Čech nerve 𝐶̌∗(𝑉/𝑈)∶ 𝜟
op
+ → 𝐶

induces an equivalence
𝑋(𝑈) ⥲ lim

𝑛∈𝜟
𝑋(𝐶̌𝑛(𝑉/𝑈))

[SAG, Proposition A.3.3.1]. In this case, the topology 𝜏𝐸 is subcanonical.

1.4 Accessible sheaves
Let (𝐶, 𝜏) be a site. Assume that for some object 𝑋 ∈ 𝐶, there does not exist a tiny set
of covering sieves of𝑋 that is cofinal among all covering sieves. Then the sheafification
of a tiny presheaf on 𝐶 (i.e., a presheaf 𝐶op → 𝑺𝛿0) might no longer be tiny. The point
is that sheafification will involve a colimit over all covering sieves. As a consequence,
the category Sh𝜏(𝐶)𝛿0 ⊂ Fun(𝐶

op, 𝑺𝛿0) of tiny sheaves on 𝐶 is not topos. This becomes a
concern, for example, for the fpqc site.Here, we explain howonemay identify conditions
on a site that will allow us to sheafify accessible presheaves without being forced to pass
to a larger universe.These conditions are satisfied by the fpqc site. For the fpqc topology
on discrete rings, this was observed by Waterhouse [23]; our formulation only needs a
small amount of extra care.

1.4.1Definition. Let𝛽be a tiny regular cardinal. Apresite (𝐶, 𝐸) is said to be𝛽-accessible
if and only if the following conditions hold.

• Coproducts in 𝐶 are disjoint.

• The opposite 𝐶op is 𝛽-accessible. We write 𝐶𝛽 ⊆ 𝐶 for the tiny category of 𝛽-
cocompact objects (i.e., objects that are 𝛽-compact as objects of 𝐶op).

• Every morphism 𝑋′ → 𝑋 of 𝐸 can be exhibited as a limit of a diagram 𝛬op →
Fun(𝛥1, 𝐸 ∩ 𝐶𝛽) in which 𝛬 is 𝛽-filtered.

We say that a small presite (𝐶, 𝐸) is accessible if and only if (𝐶, 𝐸) is 𝛽-accessible for
some tiny regular cardinal 𝛽.

1.4.2. Let 𝛽 be a tiny regular cardinal, and let (𝐶, 𝐸) be a 𝛽-accessible presite. Write
𝐸𝛽 ≔ 𝐸 ∩ 𝐶𝛽; then (𝐶𝛽, 𝐸𝛽) is a tiny presite (in which coproducts are still disjoint).
Consequently, Sh𝐸𝛽(𝐶𝛽)𝛿0 is a 𝛿0-topos.

1.4.3 Proposition. Let 𝛽 be a tiny regular uncountable cardinal, and let (𝐶, 𝐸) be a 𝛽-
accessible presite. Let 𝑓∶ 𝐶op𝛽 → 𝑺𝛿0 be a functor, and let 𝐹∶ 𝐶op → 𝑺𝛿0 be the left Kan
extension of 𝑓. Then 𝑓 is a 𝜏𝐸𝛽-sheaf if and only if 𝐹 is a 𝜏𝐸-sheaf.

Proof. Since every object of 𝐶op is a 𝛽-filtered colimit of objects of 𝐶op𝛽 , it follows that 𝑓
preserves finite products if and only if 𝐹 does.

If 𝐹 is a sheaf, then the description above ensures that 𝑓 is a sheaf as well.
Let 𝑒∶ 𝑉 → 𝑈 be a morphism of 𝐸, and let 𝐶̌∗(𝑒) ∶ 𝜟

op
+ → 𝐶 denote the Čech nerve

of 𝑒. Exhibit 𝑒 as a limit
lim
𝛼∈𝛬op
𝑉𝛼 → lim

𝛼∈𝛬op
𝑈𝛼 ,

8
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where𝛬 is 𝛼-filtered, and each 𝑒𝛼 ∶ 𝑉𝛼 → 𝑈𝛼 lies in𝐸𝛽; in particular each object 𝐶̌𝑛(𝑒𝛼) is
𝛽-cocompact.Then 𝐶̌𝑛(𝑒) ≃ lim𝛼∈𝛬op 𝐶̌𝑛(𝑒𝛼), and themap𝑋(𝑈) → lim𝑛∈𝜟𝑋(𝐶̌𝑛(𝑒)) can
be exhibited as the colimit

colim
𝛼∈𝛬
𝑋(𝑈𝛼) → lim

𝑛∈𝜟
colim
𝛼∈𝛬
𝑋(𝐶̌𝑛(𝑒𝛼)) .

Since 𝛬 is 𝛽-filtered and 𝛽 is uncountable, the colimit commutes with the limit, and so
the map𝑋(𝑈) → lim𝑛∈𝜟𝑋(𝑉𝑛) is the colimit of a diagram of equivalences

𝑋(𝑈𝛼) ⥲ lim
𝑛∈𝜟
𝑋(𝐶̌𝑛(𝑒𝛼)) ,

hence an equivalence.

1.4.4. Let (𝐶, 𝐸) be an 𝜔-accessible presite. If 𝑁 is a natural number, then a functor
𝑓∶ 𝐶op𝛽 → 𝜏≤𝑁𝑺𝛿0 is a 𝜏𝐸𝛽-sheaf if and only if its left Kan extension

𝐹∶ 𝐶op → 𝜏≤𝑁𝑺𝛿0
is a 𝜏𝐸-sheaf.The truncatedness assumption ensures that the limit over𝜟 can be replaced
with a limit over the full subcategory 𝜟≤𝑁+1 of totally ordered finite sets of cardinality
at most𝑁 + 2, which is finite. This permits us to commute the filtered colimit past the
totalisation.

1.4.5 Corollary. Let 𝛽 be a tiny, regular, uncountable cardinal, and let (𝐶, 𝐸) be a 𝛽-
accessible presite. The left Kan extension defines an equivalence of categories between the
topos Sh𝜏𝐸𝛽 (𝐶𝛽)𝛿0 and the full subcategory of Sh𝜏𝐸(𝐶)𝛿0 spanned by the𝛽-accessible sheaves.

1.4.6 Notation. If (𝐶, 𝐸) is an accessible presite, then we write

Shacc𝐸 (𝐶)𝛿0 ⊆ Fun(𝐶
op, 𝑺𝛿0)

for the full subcategory spanned by the accessible sheaves. More generally, if 𝐷 is any
𝛿0-presentable category, then Shacc𝐸 (𝐶;𝐷) ⊆ Fun(𝐶op, 𝐷) is the full subcategory spanned
by the accessible sheaves.

Now we may see that sheafification of accessible functors does not increase the size
of the universe.

1.4.7 Corollary. Let (𝐶, 𝐸) be an accessible presite, and let𝐷 be a 𝛿0-presentable category.
Then Shacc𝐸 (𝐶;𝐷) is a left exact localisation of the category Funacc(𝐶op, 𝐷) of accessible
functors 𝐶op → 𝐷.

1.4.8 Example. If 𝐶 is a tiny regular disjunctive category, then Pro𝛿0(𝐶) is an accessible
presite with its effective epimorphism topology.

1.4.9 Warning. If (𝐶, 𝐸) is an accessible presite that is not tiny, please observe that
Shacc𝐸 (𝐶)𝛿0 cannot be expected to be a 𝛿0-topos, or even 𝜅-accessible with respect to a
tiny cardinal 𝜅. It is however locally tiny, and it does have many of the good features
enjoyed by 𝛿0-topoi. For convenience, we formalise the situation.
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1.4.10 Definition. Let𝐷 be an accessible category, and let

𝐿∶ Funacc(𝐷, 𝑺𝛿0) → 𝑿 ⊆ Fun
acc(𝐷, 𝑺𝛿0)

be a localisation. For any small regular cardinal 𝛼, if 𝐷 is 𝛼-accessible, then let us write
𝑿𝛼 for the essential image of 𝐿 restricted to Fun(𝐷𝛼, 𝑺𝛿0) ≃ Fun𝛼-acc(𝐷, 𝑺𝛿0). Equiva-
lently,𝑿𝛼 is the intersection

𝑿𝛼 ≃ 𝑿 ∩ Fun(𝐷𝛼, 𝑺𝛿0) .

inside Funacc(𝐷, 𝑺𝛿0). We shall say that the localisation functor 𝐿 is macroaccessible if
for any small cardinal 𝛽, there exists a small regular cardinal 𝛼 > 𝛽 such that 𝐷 is 𝛼-
accessible, and 𝐿 restricts to an accessible functor

𝐿𝛼 ∶ Fun(𝐷𝛼, 𝑺𝛿0) → 𝑿𝛼 ⊆ Fun
acc(𝐷𝛼, 𝑺𝛿0) .

Amacropresentable category is a category 𝑿 such that there exists an accessible cat-
egory𝐷 and a macroaccessible localisation

𝐿∶ Funacc(𝐷, 𝑺𝛿0) → Funacc(𝐷, 𝑺𝛿0)

whose essential image is equivalent to𝑿.
A macrotopos is a category 𝑿 such that there exists an accessible category 𝐷 and a

left exact, macroaccessible localisation

𝐿∶ Funacc(𝐷, 𝑺𝛿0) → 𝑿 ⊆ Fun
acc(𝐷, 𝑺𝛿0) .

1.4.11. If 𝑿 is a macropresentable category, then 𝑿 is the macroaccessible localisation
of Funacc(𝐷, 𝑺𝛿0) for an accessible category𝐷; let us write

𝐿∶ Funacc(𝐷, 𝑺𝛿0) → 𝑿 ⊆ Fun
acc(𝐷, 𝑺𝛿0)

for the localisation functor. If 𝛼 < 𝛽 are regular cardinals with the properties that 𝐷 is
both 𝛼- and 𝛽-accessible and that 𝐿 restricts to accessible functors

𝐿𝛼 ∶ Fun(𝐷𝛼, 𝑺𝛿0) → Funacc(𝐷𝛼, 𝑺𝛿0) and 𝐿𝛽 ∶ Fun(𝐷𝛽, 𝑺𝛿0) → Fun(𝐷𝛽, 𝑺𝛿0) ,

then we have an inclusion 𝑿𝛼 ⊆ 𝑿𝛽. The macropresentable category 𝑿 is the 𝛿1-small
filtered colimit of the presentable categories 𝑿𝛼 under fully faithful left adjoints. Simi-
larly, if 𝑿 is a macrotopos, then the 𝑿𝛼 are topoi, and so 𝑿 is a 𝛿1-small filtered union
of topoi under fully faithful left exact left adjoints.

1.4.12 Example. If (𝐶, 𝐸) is an accessible presite, then Shacc𝐸 (𝐶)𝛿0 is a macrotopos.

2 Pyknotic objects
2.1 Pyknotic sets
2.1.1. Let TSpc denote the category of tiny topological spaces. Write

Comp ⊂ TSpc
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for the full subcategory spanned by the compacta – i.e., tiny compact hausdorff topolog-
ical spaces.

We write 𝛽∶ TSpc → Comp for the left adjoint to the inclusion, given by Stone–
Čech compactification.

The categoryComp can be identified with the category of 𝛽-algebras on Set𝛿0 , where
𝛽∶ Set𝛿0 → Set𝛿0 is the ultrafilter monad [9, Chapter III, §2.4].

2.1.2. Since the category Comp of compacta is a 1-pretopos, Comp comes equipped
with the effective epimorphism topology; a collection of morphisms {𝑈𝑖 → 𝑈}𝑖∈𝐼 is a
cover if and only if there exists a finite subset 𝐼0 ⊂ 𝐼 such that the map

∐
𝑖∈𝐼0
𝑈𝑖 ↠ 𝑈

is a surjection (=effective epimorphism in Comp).
Note that Construction 1.3.6 gives a complete characterisation of sheaves onComp;

see also [14, Proposition B.5.5].

2.1.3 Definition. The category of pyknotic sets is the category

Pyk(Set) ≔ Sheff(Comp; Set)

of small sheaves of sets on Comp with respect to the effective epimorphism topology.

2.1.4. The category Pyk(Set) is a coherent 1-topos. By the classification theorem for
coherent 1-topoi [14, Theorem C.6.5], the coherent objects of Pyk(Set) are exactly the
compacta, regarded as representables.

2.1.5Notation. The 1-categoryCG of compactly generated topological spaces is the small-
est full subcategory of the category TSpc𝛿1 of small topological spaces containingComp
and closed under small colimits. In particular, CG is a colocalisation of TSpc𝛿1 .

2.1.6 Example. Let𝑋 be a small topological space. Then the functor

MorTSpc𝛿1 (−,𝑋)∶ Compop → Set

is pyknotic set. We can endow the underlying set of 𝑋 with the induced topology with
respect to the class of continuous morphisms from compacta. This is as coarse as the
topology on 𝑋, and coincides with the topology on 𝑋 if and only if 𝑋 is compactly
generated.

In other words, the Yoneda embedding extends to a functor 𝑗∶ TSpc → Pyk(Set)
with a left adjoint defined by left Kan extension of the inclusion Comp ↪ TSpc along
Comp ↪ Pyk(Set). The counit of this adjunction is a homeomorphism on compactly
generated topological spaces, and so the Yoneda embedding defines a fully faithful func-
tor from compactly generated topological spaces into pyknotic sets; this expresses the
category CG as a localisation of Pyk(Set).

This is one important way in which topological spaces are different from pyknotic
sets: compactly generated topological spaces are not stable under colimits in Pyk(Set).

Notationally, we’ll often ignore the distinction between a compactly generated topo-
logical spaces and its corresponding pyknotic set.
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Even though compactly generated topological spaces aren’t closed under colimits in
Pyk(Set), they are closed under a certain class of colimits:

2.1.7 Lemma. Let 𝑋0 → 𝑋1 → ⋯ be a sequence of compactly generated topological
spaces. Assume that the colimit colim𝑛𝑋𝑛 in TSpc𝛿1 is a 𝑇1 topological space. Then the
natural morphism

colim𝑛≥0 𝑗(𝑋𝑛) → 𝑗(colim𝑛≥0𝑋𝑛)
is an equivalence in Pyk(Set).
Proof. For each compactum𝐾, the object 𝑗(𝐾) ∈ Pyk(Set) is compact [2, Lemma 5.8.2],
so we have isomorphisms

MapPyk(Set)(𝑗(𝐾), colim𝑛≥0 𝑗(𝑋𝑛)) ≅ colim𝑛≥0MapPyk(Set)(𝑗(𝐾), 𝑗(𝑋𝑛))
≅ colim𝑛≥0MapCG(𝐾,𝑋𝑛)
≅ MapCG(𝐾, colim𝑛≥0𝑋𝑛)
≅ MapPyk(Set)(𝑗(𝐾), 𝑗(colim𝑛≥0𝑋𝑛)) .

The second isomorphism is by the full faithfulness of 𝑗∶ CG ↪ Pyk(Set). The third
isomorphism is by [12, Appendix A, Lemma 9.4], which states that for any map from a
compactum 𝑓∶ 𝐾 → colim𝑛≥0𝑋𝑛, the image of 𝑓 factors through some𝑋𝑛.

2.1.8Warning. Note that [12,AppendixA, Lemma9.4] used in the proof of Lemma2.1.7
does not hold formore general filtered colimits: the unit interval is the filtered colimit of
all of its countable subspaces, but the identity map does not factor through a countable
subspace.

2.1.9 Example. The category Pyk(Set) is compactly generated and the Yoneda embed-
ding Comp ↪ Pyk(Set) carries compacta to compact objects of the category Pyk(Set)
[SAG, Corollary A.2.3.2].Thus the Yoneda embedding extends to a fully faithful embed-
ding

Ind(Comp) ↪ Pyk(Set)
[HTT, Proposition 5.3.5.11]. Regarding profinite sets as Stone topological spaces under
Stone duality, we thus obtain an embedding

Ind(Pro(Set fin)) ↪ Pyk(Set) .

Indprofinite sets and extensions to indpro⋯indprofinite sets have been exploited
by Kato in studying higher local fields [11], as well as Mazel-Gee–Peterson–Stapleton
in homotopy theory [17, §2]. In particular, local fields of dimension at most 1 may be
understood in terms of indprofinite sets.

2.1.10 Example. Since a compactum has a unique uniformity compactible with its
topology [4, Chapter II, §4, ¶1, Theorem 1], any uniform space 𝑈 defines a pyknotic
set by the assignment 𝐾 ↦ MorUnif (𝐾,𝑈). This restricts to a fully faithful embedding
from the full subcategory of compactly generated uniform spaces – those uniform spaces
𝑈 for which a set-map 𝑈 → 𝑈′ to another uniform space 𝑈′ is uniformly continuous
if and only if for every uniformly continuous map 𝐾 → 𝑈 from a compactum, the
composite𝐾 → 𝑈′ is continuous.
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2.2 Pyknotic spaces
2.2.1. Define two full subcategories

EStn ⊂ Stn ⊂ Comp

as follows:

• Stn is spanned by the Stone topological spaces – i.e., tiny compact hausdorff spaces
that are totally disconnected;

• EStn is spanned by the Stonean topological spaces – i.e., tiny compact hausdorff
spaces that are extremally disconnected.

All of these categories are small but not tiny.
Under Stone duality, the category Stn can be identified with the category Pro(Set fin)

of profinite sets. By Gleason’s theorem, the category EStn can be identified with the cat-
egory of projective objects of Comp [5; 9, Chapter III, §3.7]; equivalently, a topological
space is Stonean if and only if it can be exhibited as the retract of 𝛽(𝑆) for some (tiny)
set 𝑆.

Restriction of presheaves defines equivalences of 1-categories

Pyk(Set) ≔ Sheff(Comp; Set) ⥲ Sheff(Stn; Set) ⥲ Sheff(EStn; Set) .

These equivalences follow from the from the following three facts:

• If (𝐶, 𝜏) is a 1-site and 𝐶′ ⊂ 𝐶 is a basis for the topology 𝜏 [14, Definition B.6.1],
then 𝜏 restricts to a topology 𝜏′ on 𝐶′ and restriction defines an equivalence of
1-categories

Sh𝜏(𝐶; Set) ⥲ Sh𝜏(𝐶′; Set) ;
see [14, Propositions B.6.3 & B.6.4].

• A Stone space 𝑆 is extremally disconnected if and only if 𝑆 is a retract of the Stone–
Čech compactification of a discrete space.

• For every compactum𝑋, there is a natural surjection𝛽(𝑋𝛿) ↠ 𝑋 from the Stone–
Čech compactification of the discrete space𝑋𝛿 with underlying set𝑋 to𝑋 (cf. [18,
Remark 2.8]). Hence the subcategories Stn ⊂ Comp and EStn ⊂ Comp are bases
for the effective epimorphism topology on Comp.

2.2.2 Warning. Since the 1-sites Comp and Stn have finite limits and the inclusion
Stn ↪ Comp preserves finite limits, from (2.2.1) we deduce that restriction defines an
equivalence of 1-localic topoi

Sheff(Comp) ⥲ Sheff(Stn) .

However, as pointed out to us by Dustin Clausen and Peter Scholze, since the 1-site
EStn of Stonean spaces does not have finite limits, restriction only defines an equivalence

Shhypeff (Comp) ⥲ Shhypeff (EStn)
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on topoi of hypersheaves.
The topos Sheff(EStn) is in fact already hypercomplete (Corollary 2.4.4), whence we

obtain an equivalence
Shhypeff (Comp) ≃ Sheff(EStn)

but Sheff(Comp) is not hypercomplete, so it remains different.

2.2.3 Definition. A pseudopyknotic space is a sheaf on Comp for the effective epimor-
phism topology. We write

ΨPyk(𝑺) ≔ Sheff(Comp)
for the category of pseudopyknotic spaces. A pyknotic space is a hypersheaf on Comp.
We write

Pyk(𝑺) ≔ Shhypeff (Comp)
for the category of pyknotic spaces.

2.2.4. Equivalently, as explained above, pyknotic spaces are sheaves on the site of Stonean
topological spaces.

2.2.5 Construction. For any compactum 𝐾, there is a standard free resolution8 of 𝐾,
regarded as an algebra for the ultrafilter monad 𝛽, viz.,

𝐶𝛽∗ (𝐾) ≔ [ ⋯ 𝛽3(𝐾) 𝛽2(𝐾) 𝛽(𝐾) 𝐾 ] ,

so that𝛽𝑛+1(𝐾) is the Stone–Čech compactification of the discrete spacewith underlying
set 𝛽𝑛(𝐾). The standard free resolution is a hypercovering of 𝐾 in Comp by Stonean
topological spaces.

2.2.6 Proposition. The following are equivalent for a pseudopyknotic space𝑋.

• 𝑋 is pyknotic.

• 𝑋 is right Kan extended from the subcategory EStn ⊂ Comp.

• For any compactum 𝐾, the augmented cosimplicial space

𝑋(𝐾) 𝑋(𝛽(𝐾)) 𝑋(𝛽2(𝐾)) 𝑋(𝛽3(𝐾)) ⋯

exhibits𝑋(𝐾) as the limit lim𝜟𝑋(𝐶
𝛽
∗ (𝐾)).

2.2.7 Warning. Not every pseudopyknotic space is pyknotic.

2.2.8 Example. We have already seen that compactly generated topological spaces and
compactly generated uniform spaces embed fully faithfully into pyknotic sets; conse-
quently, they embed into pyknotic spaces as well.

Furthermore, since the inclusion of 0-truncated objects in a topos preserves filtered
colimits, Lemma 2.1.7 shows that the embedding CG↪ Pyk(𝑺) commutes with colim-
its of sequences whose colimit is a 𝑇1 topological space.

8Elsewhere called the bar construction.
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2.2.9. Since Stonean spaces are projective objects of Comp, the Čech nerve of any sur-
jection in EStn is a split simplicial object, so a functor 𝐹∶ EStnop → 𝑺 is a sheaf with
respect to the effective epimorphism topology if and only if𝐹 carries coproducts in EStn
to products in 𝑺. That is to say, the category Sheff(EStn) is the nonabelian derived cate-
gory9 𝑷𝛴(EStn) of the category EStn Stonean topological spaces.

From any Stone topological space one may extract the Boolean algebra of clopens;
Stone duality is the assertion that this defines an equivalence between Stn and the oppo-
site of the category Bool of Boolean algebras.This equivalence then restricts to an equiv-
alence between EStn and the opposite of the category Bool∧ of complete Boolean alge-
bras. Consequently, a pyknotic object of𝐷may be understood as a functor Bool∧ → 𝐷
that preserves finite products.

2.2.10. Since finite products commute with sifted colimits in 𝑺, we see that

Pyk(𝑺) ⊂ Fun(EStnop, 𝑺)

is closed under sifted colimits. In particular, geometric realisations of simplicial pyknotic
spaces are computed in Fun(EStnop, 𝑺).

2.2.11 Example. As a consequence, we find that it is relatively easy to form quotient
pyknotic structures. For example, if𝑋 is a pyknotic set and 𝑅 ⊂ 𝑋 ×𝑋 is an equivalence
relation thereupon, then the quotient𝑋/𝑅 can be computed objectwise on Stonean topo-
logical spaces:

(𝑋/𝑅)(𝐾) ≃ 𝑋(𝐾)/𝑅(𝐾) .
In a similar vein, if 𝑋∗ is a simplicial pyknotic space, then its realisation can be

computed objectwise on Stonean topological spaces:

|𝑋∗|(𝐾) ≃ |𝑋∗(𝐾)| .

2.2.12 Construction. The global sections functor 𝛤∗ ∶ Pyk(𝑺) → 𝑺 is given by eval-
uation at the one-point compactum ∗. For any pyknotic space 𝑋, we call 𝛤∗(𝑋) the
underlying space of 𝑋. When there’s no possibility of confusion, we simply write 𝑋 for
𝛤∗(𝑋).

Left adjont to this is the constant sheaf functor 𝛤∗ ∶ 𝑺 → Pyk(𝑺) that carries a space
𝑌 to what we will call the discrete pyknotic space

𝑌disc ≔ 𝛤∗(𝑌)

attached to 𝑌.
The underlying space functor 𝛤∗ also admits a right adjoint 𝛤! ∶ 𝑺 → Pyk(𝑺): for
𝑋 ∈ 𝑺 the sheaf 𝛤!(𝑋)∶ Compop → 𝑺 is given by the assignment

𝐾 ↦ ∏
𝑘∈|𝐾|
𝑋 ,

i.e., the product of copies of 𝑋 indexed by the underlying set of the compactum 𝐾. For
any space𝑋, we call

𝑋indisc ≔ 𝛤!(𝑋)
9See [HTT, §5.5.8] for more on nonabelian derived categories.
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the indiscrete pyknotic space attached to𝑋.
The composite 𝛤∗𝛤! ∶ 𝑺 → 𝑺 is equivalent to the identity, so the indiscrete functor
𝛤! is fully faithful, whence so is the discrete functor 𝛤∗ ∶ 𝑺 → Pyk(𝑺). In the language of
[2, Definition 7.2.2], the topos Pyk(𝑺) is local with centre 𝛤!. In particular, Pyk(𝑺) has
homotopy dimension 0 [2, Lemma 7.2.5].

Accordingly, a pyknotic space in the essential image of 𝛤∗ is said to be discrete, a
pyknotic space in the essential image of 𝛤! is said to be indiscrete.

2.2.13. In particular, note that if𝑋 is a presheaf Compop → 𝑺, then its hypersheafifica-
tion𝑋+ has the same underlying set.That is, 𝛤∗(𝑋) → 𝛤∗(𝑋′) is an equivalence: indeed,
for any space 𝑌, the map

Map(𝑋+, 𝛤!(𝑌)) ≃ Map(𝛤∗(𝑋+), 𝑌) → Map(𝛤∗(𝑋), 𝑌) ≃ Map(𝑋, 𝛤!(𝑌))

is an equivalence, since 𝛤!(𝑌) is a sheaf.

2.2.14 Example. For any finite set 𝐽, the discrete pyknotic set 𝐽disc is the sheaf 𝐾 ↦
Map(𝐽, 𝐾) represented by 𝐽. If {𝐽𝛼}𝛼∈𝛬 is an inverse system of finite sets, then the limit

lim
𝛼∈𝛬
𝐽disc𝛼

is the sheaf represented by the Stone topological space lim𝛼∈𝛬 𝐽𝛼; this is not discrete.
In particular, the discrete functor 𝛤∗ does not preserve limits, and so the topos

Pyk(𝑺) is – by design – not cohesive in the sense of Schreiber [22, Definition 3.4.1].

2.2.15. The point 𝛤! of the topos Pyk(𝑺) admits a description coming from logic: 𝛤! is
the point induced by the morphism of 1-pretopoi Comp → Set given by the forgetful
functor (see [SAG, Proposition A.6.4.4]).

2.2.16. The point 𝛤! of the topos Pyk(𝑺) also admits a geometric description. Let 𝑘 be
a separably closed field. Then the hypercompletion of the proétale topos Spec(𝑘)proét of
Spec(𝑘) is equivalent to Pyk(𝑺) (Examples 3.3.10 and 3.3.11). Every geometric point of
a scheme defines a point of its proétale topos [STK, Tag 0991], so the essentially unique
geometric point 𝑥 of Spec(𝑘) defines a point

𝑥∗ ∶ 𝑺 → Spec(𝑘)proét .

Under the identification Spec(𝑘)hypproét ≃ Pyk(𝑺), the point 𝛤! is equivalent to 𝑥∗.

2.2.17Warning. However, the centre 𝛤! ∶ 𝑺 ↪ Pyk(𝑺) is not the only point of the topos
Pyk(𝑺). For any topological space𝑋, we have a pyknotic set 𝑃𝑋 that carries𝐾 to the set
of continuous maps 𝐾 → 𝑋, where the locally constant maps have been identified to a
point:

𝑃𝑆(𝐾) ≔ Mapcts(𝐾,𝑋)/Maplc(𝐾,𝑋) .
If 𝑋 is nonempty, then the pyknotic set 𝑃𝑋 has underlying set ∗; thus if 𝑋 is neither
empty nor ∗, then 𝑃𝑋 is a nontrivial pyknotic structure on the point. See [STK, Tag
0991] and also Corollary 2.4.5.
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2.2.18. Let𝑋 be a space (respectively, a set). The category of pyknotic structures on𝑋 is
the fibre of the functor 𝛤∗ ∶ Pyk(𝑺) → 𝑺 (resp., 𝛤∗ ∶ Pyk(Set) → Set).

This category admits an initial object 𝑋disc and a terminal object 𝑋indisc. Further-
more, the category of pyknotic structures on𝑋 has all tiny limits and colimits.

However, unlike the category of topologies on a set, it is not a poset. For example,
any permutation of a nonempty set 𝑆 induces a automorphism of 𝑃𝑆.

2.2.19 Construction. Let 𝑋 be a space, and let 𝑌 be a pyknotic space. For any map
𝑓∶ 𝑋 → 𝛤∗(𝑌), there is a terminal object in the category of pyknotic structures on 𝑋
over 𝑌; explicitly, this is the pullback

𝑋𝑓 ≔ 𝛤!(𝑋) ×𝛤!𝛤∗(𝑌) 𝑌 .

We call this the pyknotic structure on𝑋 induced by 𝑓.
Dually, for anymap𝑔∶ 𝛤∗𝑌 → 𝑋, there is an initial object in the category of pyknotic

structures on𝑋 under 𝑌; explicitly, this is the pushout

𝑋𝑔 ≔ 𝛤∗(𝑋) ∪𝛤
∗𝛤∗(𝑌) 𝑌 .

We call this the pyknotic structure on𝑋 coinduced by 𝑔.

2.2.20 Example. Let 𝑌 be a topological space, and let 𝑋 → 𝑌 be a map of sets. View 𝑌
as a pyknotic set.Then the induced pyknotic structure on𝑋 coincides with the pyknotic
structure attached to the induced topology on𝑋.

2.3 Pyknotic objects
In the previous subsection, we reformulated the definition of a pyknotic space in terms
of finite-product-preserving presheaves on Stonean spaces.We can thus define pyknotic
objects in any category with finite products.

2.3.1 Definition. Let 𝐷 be a category with all finite products. A pyknotic object of 𝐷 is
a functor EStnop → 𝐷 that carries finite coproducts of Stonean topological spaces to
products in𝐷. We write

Pyk(𝐷) ⊆ Fun(EStnop, 𝐷)
for the full subcategory spanned by the pyknotic objects.

2.3.2 Warning. Since EStn is small but not tiny, Pyk(𝐷) is not generally locally tiny,
even if𝐷 is. However, if𝐷 is locally small, then Pyk(𝐷) is locally small.

To correct this issue without large cardinals, Clausen and Scholze opt for the follow-
ing.

2.3.3Definition (Clausen–Scholze). If𝐷 is a 𝛿0-accessible category, then a pyknotic ob-
ject of𝐷 is condensed (relative to the tiny universe) if and only if its right Kan extension
to Stn is a 𝛿0-accessible sheaf.

2.3.4 Warning. The indiscrete pyknotic set 𝑌indisc attached to a set 𝑌 is condensed if
and only if 𝑌 has cardinality ≤ 1.
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2.3.5. If 𝐷 is a category with all small limits, then Pyk(𝐷) can be identified with the
category of functors Pyk(𝑺)op → 𝐷 that carry small colimits of Pyk(𝑺) to limits in𝐷. In
particular, if𝐷 is a presentable category, thenPyk(𝐷) is the tensor product of presentable
categories Pyk(𝑺) ⊗ 𝐷. In particular, if𝑿 is a topos, then Pyk(𝑿) is a topos.

2.3.6 Construction. If𝐷 is a presentable category, then we may tensor the left adjoints
in Construction 2.2.12 with𝐷 to construct a chain of adjoints

Pyk(𝐷) 𝐷 .𝛤∗
𝛤!

𝛤∗

For any object𝑋 of𝐷, then when there’s no possibility of confusion, we write simply
𝑋 for 𝛤∗(𝑋). For any pyknotic object 𝑌 of𝐷, we write

𝑌disc ≔ 𝛤∗(𝑌)

for the discrete pyknotic object attached to 𝑌, and we write

𝑌indisc ≔ 𝛤!(𝑌)

for the indiscrete pyknotic object attached to 𝑌.

2.3.7 Example. If 𝐺 is a topological group, then we may regard 𝐺 as a pyknotic group
that carries a compactum 𝐾 to Mapcts(𝐾, 𝐺). This defines a functor from topological
groups to pyknotic groups, which preserves limits and is fully faithful on compactly
generated topological groups.

In particular, if {𝐺𝛼}𝛼∈𝛬op is an inverse system of groups, the inverse limit

lim
𝛼∈𝛬op
𝐺disc𝛼

will generally not be discrete. For instance, the discrete group attached to a finite group
𝐻 is cocompact, whence

HomPyk(Grp) ( lim𝛼∈𝛬op 𝐺
disc
𝑖 , 𝐻disc) ≃ colim𝛼∈𝛬 HomGrp(𝐺𝑖, 𝐻) .

2.3.8 Example. The category Pyk(Ab) is an abelian category, and the category of com-
pactly generated topological abelian groups embeds fully faithfully into Pyk(Ab), in a
manner that preserves tiny limits. Thus for any abelian group 𝐴, one obtains a discrete
pyknotic abelian group 𝐴disc, but for example an infinite product

∏
𝑎∈𝐼
𝐴disc𝑖

of finite abelian groups is not discrete. To see this explicitly, the discrete abelian group
attached to a finite abelian group 𝐵 is cocompact, whence

HomPyk(Ab)(∏
𝑖∈𝐼
𝐴disc𝑖 , 𝐵disc) ≃⨁

𝑖∈𝐼
HomAb(𝐴𝑖, 𝐵) .
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The limits

𝒁 ≔ lim
𝑚∈𝑵∗
(𝒁/𝑚𝒁)disc and 𝒁𝑝 ≔ lim

𝑛∈𝑵0
(𝒁/𝑝𝑛𝒁)disc

are similarly not discrete.

2.3.9 Example. Let𝐴 be a locally compact abelian group.Thenwe can define an abelian
variant of our pyknotic set 𝑃𝑋: for any Stonean space 𝐾, form the quotient group

𝑃𝐴(𝐾) ≔ Mapcts(𝐾, 𝐴)/Mapcts(𝐾, 𝐴disc) .

The underlying abelian group of 𝑃𝐴 is always trivial, but if 𝐴 is nontrivial, then 𝑃𝐴 is
as well. Thus 𝐴disc → 𝐴 is a monomorphism of pyknotic abelian groups, and 𝑃𝐴 is the
cokernel 𝐴/𝐴disc.

2.3.10 Example. Thanks to Lemma 2.1.7, it is not only limits that are preserved by the
embedding of compactly generated abelian groups into Pyk(Ab). For example, let𝐸 be a
local field.Then since 𝐸 is a locally compact topological space, 𝐸 is compactly generated.
The separable closure 𝐸 is a hausdorff topological space, and 𝐸 can be obtained as the
colimit of a tower

𝐸 𝐸1 𝐸2 ⋯ ,

where the 𝐸𝑛 ⊂ 𝐸𝑛+1 is a finite extension of local fields. It follows from Lemma 2.1.7 that
the image of the compactly generated abelian group 𝐸 in Pyk(Ab) coincides with the
the filtered colimit colim𝑛 𝐸𝑛 in Pyk(Ab).

2.3.11 Example. Consider the derived category𝑫−(Ab) of abelian groups, and form the
pyknotic derived category 𝑫−Pyk(Ab) ≔ Pyk(𝑫−(Ab)), which is a stable category. Here,
wemay compute Ext groups between pyknotic abelian groups, and we see that they may
have cohomological dimension 2. For example, let ℓ be a prime number, and let𝑀 be
the cokernel in Pyk(Ab) of the inclusion (𝒁/ℓ𝒁disc)⊕𝜔 ↪ (𝒁/ℓ𝒁disc)×𝜔. Since 𝒁/ℓ𝒁disc
is cocompact, and since Exts of discrete pyknotic abelian groups can be computed inAb,
we find that Ext2𝑫−Pyk(Ab)(𝑀,𝒁/ℓ𝒁

disc) does not vanish.

This example is the same as the one found at the very end of Hoffmann–Spitzweck
[7]; accordingly, Dustin Clausen and Peter Scholze have proved the following result.

2.3.12 Theorem (Clausen–Scholze [21, Corollary 4.9]). Regard the category LCA of lo-
cally compact abelian groups as a full subcategory of the degree 0 part of the Pyknotic
derived category𝑫−Pyk(Ab). Then the induced functor

𝑫𝑏(LCA) → ℎ𝑫−Pyk(Ab)

is fully faithful; here 𝑫𝑏(LCA) is the derived category of LCA in the sense of Hoffmann–
Spitzweck [7].
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2.4 Pyknotic objects of topoi
2.4.1 Notation. Let 𝐶 be a presentable category. For each integer 𝑛 ≥ −2, we write
𝐶≤𝑛 ⊂ 𝐶 for the full subcategory spanned by the 𝑛-truncated objects, and 𝜏≤𝑛 ∶ 𝐶 → 𝐶≤𝑛
for the 𝑛-truncation functor, left adjoint to the inclusion 𝐶≤𝑛 ↪ 𝐶.

2.4.2. Let𝑿 be a topos and 𝑛 ≥ −2 an integer.The 𝑛-truncation functor 𝜏≤𝑛 ∶ 𝑿 → 𝑿≤𝑛
preserves finite products [HTT, Lemma 6.5.1.2], so we have a natural identification

Pyk(𝑿)≤𝑛 = Pyk(𝑿≤𝑛) .

Under this identification, the 𝑛-truncation functor 𝜏≤𝑛 ∶ Pyk(𝑿) → Pyk(𝑿)≤𝑛 is identi-
fied with

Pyk(𝜏≤𝑛) ∶ Pyk(𝑿) → Pyk(𝑿≤𝑛) .

2.4.3 Lemma. Let𝑿 be a hypercomplete topos. Then the topos Pyk(𝑿) is hypercomplete.

Proof. We need to show that if 𝑓∶ 𝑈 → 𝑉 is a morphism in Pyk(𝑿) and for all 𝑛 ≥ −2
the morphism 𝜏≤𝑛(𝑓)∶ 𝜏≤𝑛(𝑈) → 𝜏≤𝑛(𝑉) is an equivalence, then 𝑓 is an equivalence.
In this case, by (2.4.2) for each complete Boolean algebra 𝐵 and integer 𝑛 ≥ −2, the
morphism

𝜏≤𝑛(𝑓(𝐵)) ∶ 𝜏≤𝑛(𝑈(𝐵)) → 𝜏≤𝑛(𝑉(𝐵))
is an equivalence. Since 𝑿 is hypercomplete, this shows that for all 𝐵 ∈ Bool∧, the mor-
phism𝑓(𝐵)∶ 𝑈(𝐵) → 𝑉(𝐵) is an equivalence. Since equivalences inPyk(𝑿) are checked
objectwise, this shows that 𝑓 is an equivalence.

2.4.4 Corollary. Restriction of presheaves Sheff(Comp) → Pyk(𝑺) induces an equivalence

Shhypeff (Comp) ⥲ Pyk(𝑺) .

2.4.5 Corollary. The topos Pyk(𝑺) has enough points.

Proof. Since Pyk(𝑺) is the hypercompletion of the 1-localic coherent topos Sheff(Comp)
this follows from the higher-categorical Deligne Completeness Theorem [SAG, Theo-
rem A.4.0.5] and [SAG, Proposition A.2.2.2].

2.4.6. Since the terminal object of Pyk(𝑺) is given by 𝛤∗(1𝑺) where 1𝑺 ∈ 𝑺 is the ter-
minal object, the datum of a point of a pyknotic space 𝑋 is the datum of a point of the
underlying space𝑋(∗) ∈ 𝑺. Hence the category Pyk(𝑺)∗ of pointed objects in Pyk(𝑺) is
canonically identified with the category Pyk(𝑺∗) of pyknotic pointed spaces.

2.4.7 Example. Composition with 𝜋𝑘 ∶ 𝑺∗ → 𝑃 defines a functor

𝜋𝑘 ∶ Pyk(𝑺)∗ → Pyk(𝑃) ,

where 𝑃 is the category
Set∗
Grp
Ab

}}
}}
}

when 𝑘
{{
{{
{

= 0
= 1
≥ 2 .
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These functors are collectively conservative, so that a morphism 𝑓∶ 𝑋 → 𝑌 of pyk-
notic spaces is an equivalence if and only if for every 𝑘 ≥ 0, the morphism 𝜋𝑘(𝑓) is an
isomorphism of pointed pyknotic sets, pyknotic groups, or pyknotic abelian groups, as
appropriate.

The upshot here is that pyknotic spaces have pyknotic homotopy groups.

2.4.8. If 𝑋 ∈ Pyk(𝑺) is a coherent object, then the pyknotic set 𝜋0(𝑋) = 𝜏≤0(𝑋) is a
coherent object of the coherent 1-topos Pyk(Set), hence representable by a compactum.
More generally, for every point 𝑥 ∈ 𝑋 and integer 𝑛 ≥ 1, the homotopy pyknotic group
𝜋𝑛(𝑋, 𝑥) is representable by a compact hausdorff group (abelian if 𝑛 ≥ 2).

Now we analyze the Postnikov completeness of Pyk(𝑿).

2.4.9 Notation. For categories𝑋 and 𝑌 with finite products, write

Fun×(𝑋, 𝑌) ⊂ Fun(𝑋, 𝑌)

for the full subcategory spanned by those functors𝑋 → 𝑌 that preserve finite products.
WriteCat fp𝛿2 ⊂ Cat𝛿2 for the subcategory with objects categories with finite products and
morphisms functors that preserve finite products.

Recall that the forgetful functor Cat fp𝛿2 → Cat𝛿2 preserves small limits. It follows
readily that the functor

Fun×(𝐵, −)∶ Cat fp𝛿2 → Cat fp𝛿2
preserves small limits as well.

2.4.10 Lemma. Let𝑿 be a Postnikov complete topos. Then the topos Pyk(𝑿) is Postnikov
complete.

Proof. Since𝑿 is Postnikov complete, the natural functor

𝑿 → lim𝑛𝑿≤𝑛

to the inverse limit in Cat along the 𝑛-truncation functors 𝜏≤𝑛 ∶ 𝑿≤𝑛+1 → 𝑿≤𝑛 is an
equivalence [SAG, Theorem A.7.2.4]. Since the 𝑛-truncation functors on a topos pre-
serve finite products [HTT, Lemma 6.5.1.2], we obtain an equivalence

(2.4.11) Pyk(𝑿) ⥲ lim𝑛 Pyk(𝑿≤𝑛) ,

where the latter inverse limit is computed in Cat𝛿2 along the functors

Pyk(𝜏≤𝑛) ∶ Pyk(𝑿≤𝑛+1) → Pyk(𝑿≤𝑛) .

In light (2.4.2), the equivalence (2.4.11) shows that Pyk(𝑿) is Postnikov complete.

2.4.12 Example. In particular, Pyk(𝑺) is Postnikov complete. Hence any pyknotic space
𝑋 can be exhibited as the limit of its Postnikov tower

𝑋 → ⋯→ 𝜏≤2𝑋 → 𝜏≤1𝑋 → 𝜏≤0𝑋 → 𝜏≤−1𝑋 → 𝜏≤−2𝑋 = ∗ ,
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and the fibre of 𝜏≤𝑘𝑋 → 𝜏≤𝑘−1𝑋 over a point is 𝑘-truncated and 𝑘-connected. Since
Pyk(𝑺) has homotopy dimension 0 (Construction 2.2.12), it follows that each of these
fibres is the classifying pyknotic space 𝐵𝑘𝜋𝑘(𝑋), where 𝜋𝑘(𝑋) is:

either empty or ∗
a pointed pyknotic set

a pyknotic group
a pyknotic abelian group

}}}}}
}}}}}
}

when 𝑘
{{{{{
{{{{{
{

= −1
= 0
= 1
≥ 2 .

2.5 Tensor products of pyknotic objects
Let𝐷⊗ be a presentably symmetric monoidal category – i.e., a presentable category with
a symmetric monoidal structure in which the tensor product functor 𝐷 × 𝐷 → 𝐷 pre-
serves colimits separately in each variable. Let 𝑋 and 𝑌 be two pyknotic objects of 𝐷;
we now set about showing that their tensor product𝑋⊗𝐷𝑌 admits a canonical pyknotic
structure.

2.5.1 Construction. Let𝐷⊗ be a presentably symmetric monoidal category.Thus𝐷⊗ is
a commutative algebra object in Pr𝐿.

Since Comp is a symmetric monoidal category under the product, the Day convolu-
tion symmetric monoidal structure on Fun(Compop, 𝐷) coincides with the objectwise
tensor product.The localisation functor Fun(Compop, 𝐷) → Pyk(𝐷) is compatible with
this symmetric monoidal structure, and so we obtain a symmetric monoidal structure
Pyk(𝐷)⊗ on Pyk(𝐷).

Equivalently, the product of pyknotic spaces preserves colimits separately in each
variable, so we obtain a presentably symmetric monoidal category Pyk(𝑺)×. Now we
can identify

Pyk(𝐷)⊗ ≃ Pyk(𝑺)× ⊗ 𝐷⊗ ,
the tensor product (=coproduct) of the commutative algebras in Pr𝐿.

To be explicit, if𝑋 and 𝑌 are pyknotic objects of𝐷, then their tensor product is the
pyknotic object𝑋 ⊗Pyk(𝐷) 𝑌 that is the hypersheafification of the assignment

𝐾 ↦ 𝑋(𝐾) ⊗𝐷 𝑌(𝐾) .

The unit is the discrete pyknotic object attached to the unit of𝐷.

2.5.2 Example. If the presentably symmetric monoidal category 𝐷⊗ is cartesian, then
so is the symmetric monoidal structure Pyk(𝐷)⊗.

2.5.3. Let 𝐷⊗ be presentably symmetric monoidal. Then by construction, the discrete
functor𝐷 → Pyk(𝐷) extends to a symmetric monoidal left adjoint𝐷⊗ → Pyk(𝐷)⊗, so
that for any objects 𝑈 and 𝑉 of𝐷, we have a natural equivalence

𝑈disc ⊗Pyk(𝐷) 𝑉disc ≃ (𝑈 ⊗𝐷 𝑉)disc .

Since𝛤∗ ∶ Pyk(𝑺) → 𝑺 preserves finite products, it is also naturally symmetricmonoidal,
whence the functor𝛤∗ ∶ Pyk(𝐷) → 𝐷 is symmetricmonoidal as well, so that for any two
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pyknotic objects𝑋 and 𝑌 of𝐷, we obtain an equivalence

𝑋 ⊗𝐷 𝑌 ≃ 𝑋 ⊗Pyk(𝐷) 𝑌 .

Also, if𝑋 is an object of𝐷 and if 𝑌 is a pyknotic object of𝐷, then there are equivalences
in𝐷

MorPyk(𝐷)(𝑋disc, 𝑌) ≃ Mor𝐷(𝑋, 𝑌) and MorPyk(𝐷)(𝑌,𝑋indisc) ≃ Mor𝐷(𝑌,𝑋) .

2.5.4 Example. Let𝐴 and 𝐵 be two pyknotic abelian groups.Then their tensor product
𝐴⊗𝐵 admits a canonical pyknotic structure. For example, one can form the adèles of𝑸
as a pyknotic abelian group in this manner:

𝑨𝑸 ≔ (𝒁 × 𝑹) ⊗Pyk(Ab) 𝑸disc .

2.6 Pyk-modules
A Pyk-module is a presentable category 𝐶 along with a functor

Comp × 𝐶 → 𝐶 , (𝐾,𝑋) ↦ 𝐾 ⊗ 𝑋

equippedwith equivalences∗⊗𝑋 ≃ 𝑋 and (𝐾×𝐿)⊗𝑋 ≃ 𝐾⊗(𝐿⊗𝑋), which plays the rôle
of a ‘continuous coproduct’ of 𝑋 with itself indexed over the points of 𝐾. Accordingly,
we will insist upon the following axioms.

• For any compactum𝐾 and any small diagram𝑋∶ 𝐼 → 𝐶, the natural map

colim𝑖∈𝐼(𝐾 ⊗ 𝑋𝑖) → 𝐾 ⊗ (colim𝑖∈𝐼𝑋𝑖)

is an equivalence.

• For any object𝑋 of 𝐶 and any two compacta 𝐾 and 𝐿, the natural map

(𝐾 ⊗ 𝑋) ⊔ (𝐿 ⊗ 𝑋) → (𝐾 ⊔ 𝐿) ⊗ 𝑋

is an equivalence.

• For any object 𝑋 ∈ 𝐶, any compactum 𝐾, and any hypercover 𝐿∗ ↠ 𝐾, the
natural map

colim𝜟op 𝐿∗ ⊗ 𝑋 → 𝐾 ⊗ 𝑋
is an equivalence.

This can all be expressed compactly (and with full homotopy coherence) in the follow-
ing.

2.6.1 Definition. A Pyk-module is a module over the commutative algebra Pyk(𝑺) in
Pr𝐿. A commutative Pyk-algebra is an object under Pyk(𝑺)× in CAlg(Pr𝐿,⊗).

2.6.2 Example. If𝐷 is a presentable category, then Pyk(𝐷) is a Pyk-module, and if𝐷⊗
is a presentably symmetric monoidal category, then Pyk(𝐷)⊗ is a Pyk-algebra.
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2.6.3. A Pyk-module structure on a presentable category𝐶 is thus a left adjoint functor
𝛼∗ ∶ Pyk(𝐶) → 𝐶 along with equivalences

𝛼∗𝛤∗ ≃ id𝐶 and 𝛼∗𝛥∗ ≃ 𝛼∗Pyk(𝛼∗)

(and their higher-order analogues), where 𝛥∗ ∶ Pyk(Pyk(𝐶)) → Pyk(𝐶) is the pullback
along the diagonal Comp→ Comp × Comp.

Thus a Pyk-module can also be specified by a presentable category 𝐶 along with a
functor

𝐶 × Compop → 𝐶 , (𝑋,𝐾) ↦ 𝑋𝐾 ,
along with equivalences 𝑋∗ ≃ 𝑋 and 𝑋(𝐾×𝐿) ≃ (𝑋𝐾)𝐿, which plays the rôle of a ‘con-
tinuous product’ of 𝑋 with itself indexed over the points of 𝐾 subject to the following
axioms.

• For any compactum𝐾 and any small diagram𝑋∶ 𝐼 → 𝐶, the natural map

(lim𝑖∈𝐼𝑋𝑖)𝐾 → lim𝑖∈𝐼(𝑋𝐾𝑖 )

is an equivalence.

• For any object𝑋 of 𝐶 and any two compacta 𝐾 and 𝐿, the natural map

𝑋(𝐾⊔𝐿) → 𝑋𝐾 × 𝑋𝐿

is an equivalence.

• For any object 𝑋 ∈ 𝐶, any compactum 𝐾, and any hypercover 𝐿∗ ↠ 𝐾, the
natural map

𝑋𝐾 → lim𝜟𝑋𝐿∗

is an equivalence.

2.6.4. Note that if 𝐶 is a Pyk-module, then for any object 𝑋 of 𝐶 and any compactum
𝐾, we obtain morphisms

∐
𝑘∈|𝐾|
𝑋 → 𝐾 ⊗ 𝑋 and 𝑋𝐾 → ∏

𝑘∈|𝐾|
𝑋 ≃ 𝑋indisc(𝐾) ,

natural in both𝑋 and𝐾. These morphisms are generally not equivalences. For example,
there exists a small regular cardinal 𝜅 such that 𝛼∗ ∶ Pyk(𝐶) → 𝐶 carries 𝜅-compact
objects to 𝜅-compact objects. Thus if 𝑋 is 𝜅-compact, so is 𝐾 ⊗ 𝑋, for any compactum
𝐾; this will generally not be true of the coproduct∐𝑘∈|𝐾|𝑋.

2.6.5. For any presentable category 𝐶, the category Pyk(𝐶) is the free Pyk-module gen-
erated by 𝐶.
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3 Pyknotic objects in algebra & homotopy theory
3.1 Pyknotic spectra & pyknotic homotopy groups
In this subsection we investigate the category Pyk(Sp) of pyknotic spectra. It is a formal
matter to see that this agrees with the stabilisation of the category of pyknotic spaces.

3.1.1 Notation. Let 𝐶 be a category with pushouts and a terminal object and let𝐷 be a
category with finite limits. We write

Exc∗(𝐶,𝐷) ⊂ Fun(𝐶,𝐷)

for the full subcategory spanned by the reduced excisive functors [HA,Definition 1.4.2.1].

3.1.2. Let 𝐵 be a category with finite products and𝐷 a category with finite limits. Then
Fun×(𝐵,𝐷) admits finite limits, which are computed pointwise.

We’ll record a few facts for future use. All are immediate from the definitions.

3.1.3 Lemma. Let𝐵,𝐶, and𝐷 be categories, and assume that𝐵 and𝐷 have finite products.
Then the natural equivalence of categories

Fun(𝐵, Fun(𝐶,𝐷)) ≃ Fun(𝐶, Fun(𝐵,𝐷))

restricts to an equivalence

(3.1.4) Fun×(𝐵, Fun(𝐶,𝐷)) ≃ Fun(𝐶, Fun×(𝐵,𝐷)) .

3.1.5 Example. Let 𝐶 and𝐷 be categories, and assume that𝐷 has finite products.Then
we have a natural equivalence of categories

Pyk(Fun(𝐶,𝐷)) ≃ Fun(𝐶,Pyk(𝐷)) .

3.1.6 Lemma. Let 𝐵, 𝐶, and 𝐷 be categories. Assume that 𝐵 has finite products, 𝐶 has
pushouts and a terminal object, and 𝐷 has finite limits. Then the natural equivalence of
categories (3.1.4) restricts to an equivalence

Fun×(𝐵,Exc∗(𝐶,𝐷)) ≃ Exc∗(𝐶, Fun×(𝐵,𝐷)) .

3.1.7 Example. Taking 𝐵 = Bool∧ and 𝐶 to be the category 𝑺 fin∗ of finite pointed spaces
in Lemma 3.1.6 we deduce that we have an equivalence

Pyk(Sp(𝐷)) ≃ Sp(Pyk(𝐷))

natural in categories𝐷 with finite limits (cf. [HA, Definition 1.4.2.8]).

3.1.8 Example. Lemma 2.4.10 shows that Pyk(Sp) is the stabilisation of a Postnikov
complete topos.
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3.1.9. If 𝐷 is a 1-category with finite products, then we have a nautral equivalence of
1-categories

Pyk(Ab(𝐷)) ≃ Ab(Pyk(𝐷))
between pyknotic objects in the category Ab(𝐷) of ableian group objects in 𝐷 and
abelian group objects in Pyk(𝐷).
3.1.10 Notation. For a topos𝑿, write PykSp(𝑿) ≔ Pyk(Sp(𝑿)). Write

PykSp≥0(𝑿) ⊂ Pyk
Sp(𝑿) and PykSp≤0(𝑿) ⊂ Pyk

Sp(𝑿)
for the full subcategories spanned by the connective and coconnective objects, respec-
tively.

3.1.11 Proposition. Let𝑿 be a topos. Then:

(3.1.11.1) The full subcategories (PykSp≥0(𝑿),Pyk
Sp
≤0(𝑿)) deterine an accessible 𝑡-structure

on PykSp(𝑿).

(3.1.11.2) The full subcategory PykSp≤0(𝑿) ⊂ Pyk
Sp(𝑿) is closed under filtered colimits.

(3.1.11.3) The 𝑡-structure on PykSp(𝑿) is right complete.

(3.1.11.4) The functor 𝜋0 ∶ PykSp(𝑿) → Pyk(𝑿)≤0 determines an equivalence of cate-
gories

PykSp(𝑿)♡ ⥲ Pyk(Ab(𝑿≤0)) .

(3.1.11.5) If, in addition,𝑿 is Postnikov complete, then the 𝑡-structure on PykSp(𝑿) is left
complete.

Proof. Items (3.1.11.1)–(3.1.11.4) follow from [DAGVII, Proposition 1.7] (see also [SAG,
Proposition C.5.2.8]). Lemma 2.4.10 and [DAGVII,Warning 1.8] imply (3.1.11.5).

3.1.12 Example. The 𝑡-structure on Pyk(Sp) is both left and right complete and the
heart Pyk(Sp)♡ is canonically equivalent to the category Pyk(Ab) of pyknotic abelian
groups. Consequently, the homotopy groups of a pyknotic spectrumare pyknotic abelian
groups.

Moreover, since stabilisation is functorial in categories with finite limits and left ex-
act functors, from Construction 2.2.12 we get a chain of adjoints

Pyk(Sp) Sp .𝛤∗
𝛤!

𝛤∗

From [DAG VII, Remark 1.9] we deduce that the functors 𝛤∗ ∶ Sp ↪ Pyk(Sp) and
𝛤∗ ∶ Pyk(Sp) → Sp are 𝑡-exact, and the functor 𝛤! ∶ Sp ↪ Pyk(Sp) is left 𝑡-exact. Also
note that the square of right adjoints

Pyk(Sp) Pyk(𝑺)

Sp 𝑺

𝛤∗

𝛺∞

𝛤∗

𝛺∞

commutes.
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3.1.13 Example. If𝐴 is a pyknotic abelian group, then we also write𝐴 for the pyknotic
spectrum obtained by composing 𝐴 with the Eilenberg–Mac Lane functor Ab→ Sp.

3.1.14. Stabilising the embedding of profinite spaces into pyknotic spaces (Example 3.3.10)
we obtain an embedding

Sp(Pro(𝑺𝜋)) ↪ Pyk(Sp) .

3.1.15. Let 𝐶 be a presentable category. By the universal property of the category of
proöbjects in 𝐶, the discrete functor 𝛤∗ ∶ 𝐶 → Pyk(𝐶) extneds to a functor Pro(𝐶) →
Pyk(𝐶), which admits a left adjoint 𝛤! ∶ Pyk(𝐶) → Pro(𝐶). The materialisation functor
mat ∶ Pro(𝐶) → 𝐶 [SAG, Example A.8.1.7] then factors as the composite

Pro(𝐶) Pyk(𝐶) 𝐶 .𝛤∗

3.1.16 Example. Let 𝐸 be an 𝐸1-ring spectrum. Write 𝐸⊗∗ for the Amitsur complex –
the augmented cosimiplicial spectrum

𝑆0 𝐸 𝐸⊗2 𝐸⊗3 ⋯ .

For a spectrum𝑋, the 𝐸-nilpotent completion𝑋∧𝐸 is the limit of the Tot-tower

𝑋∧𝐸 ≔ lim𝑛 Tot𝑛(𝑋 ⊗Sp 𝐸⊗∗)
≃ lim𝜟𝑋 ⊗Sp 𝐸⊗∗ .

See [8, §5; 13; 16, §2.1]. Regarding the Tot-tower as a prospectrum and applying the
functor Pro(Sp) → Pyk(Sp), we obtain the pyknotic 𝐸-nilpotent completion

𝑋∧,pyk𝐸 ≔ lim𝑛 Tot𝑛(𝑋 ⊗Sp 𝐸⊗∗)disc ,

which has underlying spectrum the usual 𝐸-nilpotent completion 𝑋∧𝐸 . Since 𝛤∗ does
not preserve limits in general, the pyknotic 𝐸-nilpotent completion 𝑋∧,pyk𝐸 is generally
not discrete. Rather, the pyknotic 𝐸-nilpotent completion is a pyknotic refinment of the
𝐸-nilpotent completion𝑋∧𝐸 .

Note also that since 𝛤∗ preserves finite limits and is symmetric monoidal (2.5.3), we
can describe𝑋∧,pyk𝐸 as the limit

𝑋∧,pyk𝐸 ≃ lim𝑛 Tot𝑛(𝑋disc ⊗Pyk(Sp) (𝐸disc)⊗∗) .

Thus the pyknotic 𝐸-nilpotent completion is the result of forming the 𝐸disc-nilpotent
completion of𝑋disc in pyknotic spectra

3.2 Pyknotic rings and pyknotic modules
3.2.1 Definition. A pyknotic ring is nothing more than a pyknotic object in the cate-
gory of rings (which we will usually assume are commutative). A pyknotic module over
a pyknotic ring 𝑅 is an 𝑅-module in Pyk(Ab).
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3.2.2 Example. Anynormed ring is compactly generated, and so they are pyknotic rings.
In particular, 𝒁, 𝑸, 𝑹, 𝑪, any local field 𝐸, any algebraic closure thereof, 𝑪𝑝, all Banach
rings,& c., are all pyknotic rings in a natural manner.

3.2.3 Example. For any global field 𝐾, the adèle group 𝑨𝐾 is a locally compact haus-
dorff ring, whence it is a compactly generated ring, whence it is a pyknotic ring. More
generally, if 𝑆 is a set, and {𝑖𝑠 ∶ 𝐵𝑠 → 𝐴𝑠}𝑠∈𝑆 is a family of pyknotic ring homomorphisms,
then the restricted product is the pyknotic ring

∐∏
𝑠∈𝑆
𝐴𝑠 ≔ colim

𝑊∈𝑃 fin(𝑆)
∏
𝑤∈𝑊
𝐴𝑤 × ∏

𝑤∈𝑆∖𝑊
𝐵𝑤 ,

where 𝑃 fin(𝑆) is the poset of finite subsets of 𝑆.

3.2.4 Example. Over any normed ring𝑅, any first countable (and thusmetrisable) topo-
logical 𝑅-module admits a natural pyknotic structure.

3.2.5 Construction. Let 𝐴 be an associative pyknotic ring. For example, 𝐴 may be a
topological ring with a compactly generated topology. Viewed as a pyknotic spectrum,
𝐴 has the natural structure of a pyknotic 𝐸1 ring – i.e., an 𝐸1 algebra in Pyk(Sp)⊗. If𝐴 is
commutative, then 𝐴 is 𝐸∞.

Wemay therefore define the pyknotic derived category𝑫Pyk(𝐴) as the category of left
𝐴-modules in Pyk(Sp).

3.3 The proétale topos as a Pyk-algebra
3.3.1 Notation. For a topos 𝑿, we write 𝑿coh<∞ ⊂ 𝑿 for the full subcategory spanned by
the truncated coherent objects – those objects that are both truncated in coherent. Recall
that if𝑿 is a coherent topos, then𝑿coh<∞ is a bounded pretopos [SAG, Example A.7.4.4].

3.3.2 Construction. Let𝑿 be a bounded coherent topos, and let

𝐶 ≔ 𝑿coh<∞ ⊂ 𝑿

be the bounded pretopos of truncated coherent objects of𝑿. Form the (small) category
Pro𝛿0(𝐶) of proöbjects relative to 𝛿0 of 𝐶. This is the universal category with all tiny
inverse limits generated by𝐶.The category Pro𝛿0(𝐶) is not a pretopos, but the collection
eff of effective epimorphisms endows it with the structure of a presite (Definition 1.3.5).
Consequently, we may form the hypercomplete, coherent, and locally coherent topos

𝑿† ≔ Shhypeff (Pro𝛿0(𝐶))

[SAG, Propositions A.2.2.2 & A.3.1.3]. We call𝑿† the solidification of the topos𝑿.

3.3.3. By [6,Corollary 2.8], if𝑓∗ ∶ 𝑿 → 𝒀 is a coherent geometricmorphismof bounded
coherent topoi, then the induced geometric morphism 𝑓†∗ ∶ 𝑿† → 𝒀† is coherent.

3.3.4 Example. FromConstruction 1.3.6 it follows that if𝑿 is a bounded coherent topos
then the effective epimorphism topology on Pro(𝑿coh<∞) is subcanonical. Moreover, since
the Yoneda embedding

Pro(𝑿coh<∞) ↪ Sheff(Pro(𝑿coh<∞))
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preserves tiny limits, truncated objects of a topos are hypercomplete, and hypercomplete
objects are closed under limits, the Yoneda embedding factors through𝑿†.

Our next goal is to show that if 𝑿 is an 𝑛-localic coherent topos, then 𝑿† can be
written as hypersheaves on Pro(𝑿coh≤𝑛−1) (Proposition 3.3.9). To see this, we first need to
show that every object of Pro(𝑿coh<∞) admits an effective epimorphism from an object of
Pro(𝑿coh≤𝑛−1). This requires a number of preliminaries.

3.3.5. Let 𝑛 ≥ 1 be an integer and let 𝑿 be a coherent 𝑛-localic topos. Then by the
classification theorem for bounded coherent topoi [SAG, Theorem A.7.5.3], since 𝑿 is
𝑛-localic we have 𝑿 ≃ Sheff(𝑿coh≤𝑛−1).10 Thus 𝑿coh≤𝑛−1 ⊂ 𝑿 generates 𝑿 under colimits. In
particular, for every quasicompact object 𝑈 ∈ 𝑿, there exists an effective epimorphism
∐𝑖∈𝐼𝑈𝑖 ↠ 𝑈 where 𝑈𝑖 ∈ 𝑿coh≤𝑛−1 for each 𝑖 ∈ 𝐼. Since 𝑈 is quasicompact, there exists a
finite subset 𝐼0 ⊂ 𝐼 such that∐𝑖∈𝐼0 𝑈𝑖 ↠ 𝑈 is an effective epimorphism. Since𝑈𝑖 ∈ 𝑿coh≤𝑛−1
for each 𝑖 ∈ 𝐼, we deduce that the finite coproduct∐𝑖∈𝐼0 𝑈𝑖 is (𝑛 − 1)-truncated [HTT,
Lemma 6.4.4.4] and coherent. Thus every quasicompact object of𝑿 admits an effective
epimorphism from a (𝑛 − 1)-truncated coherent object of𝑿.

Since we must contend with proöbjects, it isn’t immediate from (3.3.5) that every
object of Pro(𝑿coh<∞) admits an effective epimorphism from an object of Pro(𝑿coh≤𝑛−1). To
show this, we’ll use the fact that we can always arrange to index a proöbject by a partic-
ularly nice poset:

3.3.6 Lemma ([SAG, Lemma E.1.6.4]). Let 𝐴′ be a filtered poset. Then there exists a
cofinal map of posets 𝑓∶ 𝐴 → 𝐴′, where 𝐴 is a filtered poset with the following property:

(∗) For every element 𝛼 ∈ 𝐴, the set {𝛽 ∈ 𝐴 | 𝛽 ≤ 𝛼} is finite.

3.3.7 Construction. Let us call a poset 𝐴 satisfying (∗) residually finite. If 𝐴 is a resid-
ually finite poset, then there exists a map of posets rk ∶ 𝐴 → 𝑵 called the rank which
is determined by the following requirement: rk(𝛼) is the smallest natural number not
equal to rk(𝛽) for 𝛽 < 𝛼 (cf. [HA, Remark A.5.17]). In particular, rk(𝛼) = 0 if and only
if 𝛼 is a minimal element of 𝐴.

3.3.8 Proposition. Let 𝑛 ≥ 1 be an integer and let𝑿 be an 𝑛-localic coherent topos. Then
for every object 𝑋 ∈ Pro(𝑿coh<∞), there exists an effective epimorphism 𝑌 ↠ 𝑋 where
𝑌 ∈ Pro(𝑿coh≤𝑛−1).

Proof. Write 𝐶 ≔ 𝑿coh<∞ and𝐷 ≔ 𝑿coh≤𝑛−1. Let {𝑋𝛼}𝛼∈𝐴op be an object of Pro(𝐶), where we
without loss of generality assume that𝐴 is a residually finite filtered poset (Lemma 3.3.6).
We construct a morphism 𝑒∶ {𝑌𝛼}𝛼∈𝐴op → {𝑋𝛼}𝛼∈𝐴op in Pro(𝐶) where for each 𝛼 ∈ 𝐴,
each 𝑒𝛼 ∶ 𝑌𝛼 → 𝑋𝛼 is an effective epimorphism and 𝑌𝛼 ∈ 𝐷. We construct this induc-
tively on the rank of elements of 𝐴. For each 𝑛 ∈ 𝑵, write

𝐴≤𝑛 ≔ {𝛼 ∈ 𝐴 | rk(𝛼) ≤ 𝑛} .

First, for each element 𝛼 ∈ 𝐴 with rk(𝛼) = 0 (i.e., minimal element of 𝐴), appealing
to (3.3.5), choose an effective epimorphism 𝑒𝛼 ∶ 𝑌𝛼 ↠ 𝑋𝛼 where 𝑌𝛼 ∈ 𝐷.

10Here we’ll only actually use the case 𝑛 = 1, which is the content of [6, 2.13].
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For the induction step, suppose that we have defined a functor 𝑌∶ 𝐴op≤𝑛 → 𝐷 along
with a natural effective epimorphism 𝑒∶ 𝑌 ↠ 𝑋|𝐴≤𝑛 ; we now extend 𝑌 to 𝐴≤𝑛+1 as fol-
lows. For each 𝛼 ∈ 𝐴with rk(𝛼) = 𝑛+1, consider the pulled-back effective epimorphism

∐
𝛽<𝛼

rk(𝛽)=𝑛

𝑋𝛼 ×𝑋𝛽 𝑌𝛽 ↠ 𝑋𝛼 .

For each 𝛽 < 𝛼 with rk(𝛽) = 𝑛, appealing to (3.3.5) we choose an effective epimor-
phism 𝑒′𝛽 ∶ 𝑌′𝛽 ↠ 𝑋𝛼 ×𝑋𝛽 𝑌𝛽, and define the effective epimorphism 𝑒𝛼 ∶ 𝑌𝛼 ↠ 𝑋𝛼 as the
composite

𝑒𝛼 ∶ 𝑌𝛼 ≔ ∐
𝛽<𝛼

rk(𝛽)=𝑛

𝑌′𝛽 ∐
𝛽<𝛼

rk(𝛽)=𝑛

𝑋𝛼 ×𝑋𝛽 𝑌𝛽 𝑋𝛼 .
∐𝛽 𝑒′𝛽

Then by construction the functor 𝑌∶ 𝐴op≤𝑛 → 𝐷 extends to a functor 𝑌∶ 𝐴op≤𝑛+1 → 𝐷
equipped with a natural effective epimorphism 𝑒∶ 𝑌 ↠ 𝑋|𝐴≤𝑛+1 , as desired.

We now prove the desired result using a slight variant of [SAG, Proposition A.3.4.2].

3.3.9 Proposition. Let 𝑛 ≥ 1 be an integer and let𝑿 be an 𝑛-localic coherent topos. Then
restriction of presheaves defines an equivalence

𝑿† ⥲ Shhypeff (Pro(𝑿coh≤𝑛−1))

with inverse given by right Kan extension.

Proof. Let 𝑖∗ ∶ Pro(𝑿coh≤𝑛−1) ↪ Pro(𝑿coh<∞)denote the inclusion. Since Pro(𝑿coh≤𝑛−1) is closed
under finite coproducts and finite limits in Pro(𝑿coh<∞), the inclusion 𝑖∗ induces a geomet-
ric morphism

𝑖∗ ∶ 𝑿† → Shhypeff (Pro(𝑿coh≤𝑛−1)) ,
where the right adjoint 𝑖∗ is given by restriction of presheaves [SAG, PropositionA.3.3.1].
Combining Proposition 3.3.8 with [SAG, Proposition 20.4.5.1 & Remark 20.4.5.2] and
the hypercompleteness of 𝑿†, we deduce that 𝑖∗ is fully faithful. To complete the proof,
it suffices to show that 𝑖∗ is fully faithful. We do this by showing that 𝑖∗ admits a fully
faithful right adjoint 𝑖! given by right Kan extension.

For simplicity, we write 𝐶 ≔ Pro(𝑿coh<∞) and 𝐷 ≔ Pro(𝑿coh≤𝑛−1). Let 𝐹∶ 𝐷op → 𝑺 be
a sheaf for the effective epimorphism topology, and let 𝑖!(𝐹)∶ 𝐶op → 𝑺 denote the right
Kan extension of 𝐹 along the inclusion 𝐷op ⊂ 𝐶op. We claim that 𝑖!(𝐹) is a sheaf on 𝐶
for the effective epimorphism topology. To see this, fix a covering sieve 𝑆 ⊂ 𝐶/𝑋. Set
𝐷/𝑋 ≔ 𝐷 ×𝐶 𝐶/𝑋 and 𝑇 ≔ 𝐷 ×𝐶 𝑆. We wish to show that the upper horizontal map in
the square

𝑖!(𝐹)(𝑋) lim
𝑋′∈𝑆op
𝑖!(𝐹)(𝑋′)

lim
𝑌∈𝐷op/𝑋
𝑖!(𝐹)(𝑌) lim

𝑌∈𝑇op
𝑖!(𝐹)(𝑌)
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is an equivalence.The verticalmaps are equivalences because 𝑖!(𝐹) is the right Kan exten-
sion of𝐹.The lower horizontalmap is an equivalence because𝐹 is a sheaf on𝐷 and every
object of 𝐶 is covered by an object of𝐷 (Proposition 3.3.8).Thus right Kan extension of
presheaves restricts to a fully faithful functor

𝑖! ∶ Sheff(Pro(𝑿coh≤𝑛−1)) ↪ Sheff(Pro(𝑿coh<∞))

which is right adjoint to restriction of presheaves. Since the image of a hypercomplete
sheaf under the pushforward in a geometric morphism is hypercomplete, the restriction
of 𝑖! to hypercomplete sheaves defines a fully faithful right adjoint to 𝑖∗, as desired.

3.3.10 Example. Combining Warning 2.2.2 and Corollary 2.4.4 with Proposition 3.3.9
shows that Pyk(𝑺) ≃ 𝑺† and provides a fully faithful embedding

Pro(𝑺𝜋) ↪ Pyk(𝑺) .

In particular, the solidification𝑿† of a bounded topos is naturally a Pyk-algebra.

3.3.11 Example. Combining Proposition 3.3.9 with [14, Example 7.1.7] we see that that
solidification of the étale topos 𝑋ét of a coherent scheme 𝑋 is the hypercompletion of
the proétale topos𝑋proét of Bhatt and Scholze [3].

3.3.12 Warning. In general, the solidification 𝑿† of a bounded coherent topos 𝑿 does
not coincide with its pyknotification Pyk(𝑿).

4 Pyknotic categories
4.1 Pyknotic categories
4.1.1 Definition. A pyknotic category is a pyknotic object in Cat𝛿 for some inaccessible
cardinal 𝛿. A pyknotic functor is a morphism of Pyk(Cat𝛿).

Similarly, a pseudopyknotic category is a pseudopyknotic object in Cat𝛿 for some
inaccessible cardinal 𝛿. A pseudopyknotic functor is a morphism of ΨPyk(Cat𝛿).

4.1.2. The inclusion 𝑺𝛿 ↪ Cat𝛿 induces a fully faithful functor Pyk(𝑺𝛿) ↪ Pyk(Cat𝛿).
Write 𝐻∶ Cat𝛿 → 𝑺𝛿 for the left adjoint to the inclusion 𝑺𝛿 ↪ Cat𝛿, and 𝜄 ∶ Cat𝛿 →
𝑺𝛿 for its right adjoint. Then 𝐻(𝐶) is the classifying space obtained by inverting every
morphism in 𝐶, and 𝜄𝐶 ⊂ 𝐶 is the interor or maximal subgroupoid contained in 𝐶.
Since𝐻 and 𝜄 both preserve finite products, composition with𝐻 and 𝜄 define functors

𝐻, 𝜄 ∶ Pyk(Cat𝛿) → Pyk(𝑺𝛿)

which are left and right adjoint to the inclusion Pyk(𝑺𝛿) ↪ Pyk(Cat𝛿), respectively.
These are the formations of the classifying pyknotic space and the interior pyknotic space
of a pyknotic category.

4.1.3. The formation of the opposite (pseudo)pyknotic category to a (pseudo)pyknotic
category is performed objectwise.
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4.1.4 Construction. If 𝐶 is a Pyk-module, then 𝐶 acquires a natural pyknotic structure
in the following manner. Let us abuse notation slightly and write 𝐶 for the pyknotic
category EStnop → Pr𝐿 given by

𝐶(𝐾) ≔ 𝐶 ⊗Pyk(𝑺) Pyk(𝑺)/𝐾 .

The category underlying this pyknotic category 𝐶 is indeed our original 𝐶. Please ob-
serve also that if 𝐾 and 𝐿 are Stonean topological spaces, the natural morphism

𝐶(𝐾 ⊔ 𝐿) = 𝐶 ⊗Pyk(𝑺) Pyk(𝑺)/(𝐾⊔𝐿)
≃ 𝐶 ⊗Pyk(𝑺) (Pyk(𝑺)/𝐾 ⊕ Pyk(𝑺)/𝐿)
→ (𝐶 ⊗Pyk(𝑺) Pyk(𝑺)/𝐾) ⊕ (𝐶 ⊗Pyk(𝑺) Pyk(𝑺)/𝐿)
≃ 𝐶(𝐾) × 𝐶(𝐿)

is an equivalence, so 𝐶 is indeed a pyknotic category.
In particular, if 𝑓∗ ∶ 𝑿 → Pyk(𝑺) is a geometric morphism, then as a pyknotic cate-

gory,𝑿 carries a Stonean topological space 𝐾 to the fibre product of topoi

𝑿(𝐾) ≃ 𝑿 ×Pyk(𝑺) Pyk(𝑺)/𝐾 .

4.1.5 Construction. Let𝐶 be a pyknotic category. Composing𝐶with the twisted arrow
functor 𝑂∶ Cat𝛿 → Cat𝛿 provides a twisted arrow pyknotic category 𝑂(𝐶) with its ob-
jectwise left fibration𝑂(𝐶) → 𝐶op ×𝐶. Armed with this, we obtain a pyknotic mapping
space functor

Map𝐶 ∶ 𝐶op × 𝐶 → Pyk(𝑺)
such that for any Stonean topological space 𝐾 and any pair of objects𝑋 and 𝑌 in 𝐶(𝐾),
the sheafMap𝐶(𝑋, 𝑌)(𝐾) onEStn/𝐾 carries𝑓∶ 𝐿 → 𝐾 to the spaceMap𝐶(𝐿)(𝑓∗𝑋,𝑓∗𝑌).
4.1.6 Example. Let {𝐶𝛼}𝛼∈𝛬op be an inverse system of categories. The limit

𝐶 ≔ lim
𝛼∈𝛬op
𝐶disc𝛼

of pyknotic categories is generally not discrete. The interior pyknotic space of 𝐶 is the
limit of the discrete interiors (𝜄𝐶𝛼)disc, but the classifying pyknotic space 𝐻(𝐶) is not
prodiscrete.

4.1.7 Example. A stable pyknotic category is a pyknotic object in the category Catst𝛿 of
(𝛿-small) stable categories and exact functors.

Since mapping spaces in pyknotic categories have natural pyknotic structures (Con-
struction 4.1.5), it follows that the Ext groups in a stable pyknotic category admit the
structure of pyknotic abelian groups.That is, if𝐴 is a stable pyknotic category, then one
may define, for any 𝑛 ∈ 𝒁, the pyknotic abelian group

Ext𝑛𝐴(𝑋, 𝑌) ≔ 𝜋0Map𝐴(𝑋[−𝑛], 𝑌) .

The category Pyk(Sp) of pyknotic spectra is naturally a Pyk-algebra, and so for any
module 𝐴 in Pr𝐿 over Pyk(Sp), the associated pyknotic category is a stable pyknotic
category. In particular, for any pyknotic ring 𝑅, the pyknotic derived category 𝑫Pyk(𝑅)
has the natural structure of a stable pyknotic category.
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4.2 Pyknotic categories and complete Segal pyknotic spaces
4.2.1 Notation. Let𝐷 be a category with finite limits. Write

CS(𝐷) ⊂ Fun(𝜟op, 𝐷)

for the full subcategory spanned by the complete Segal objects, that is, those functors
𝐹∶ 𝜟op → 𝐷 satisfying the following conditions:

• For every𝑚 ∈ 𝜟, the natural morphism

𝐹𝑚 → 𝐹{0, 1} ×𝐹{1} 𝐹{1, 2} ×𝐹{2}⋯×𝐹{𝑚−1} 𝐹{𝑚 − 1,𝑚}

is an equivalence in𝐷.

• The natural morphism
𝐹0 → 𝐹3 ×𝐹{0,2}×𝐹{1,3} 𝐹0

is an equivalence in𝐷.

4.2.2. Joyal and Tierney [10] showed that the nerve construction defines an equivalence

𝑁∶ Cat⥲ CS(𝑺)

from the category of categories to the category of complete Segal spaces.

From Lemma 3.1.3 we immediately deduce:

4.2.3 Lemma. Let 𝐵 be a category with products and𝐷 a category with finite limits. Then
the natural equivalence of categories

Fun×(𝐵, Fun(𝜟op, 𝐷)) ≃ Fun(𝜟op, Fun×(𝐵,𝐷))

restricts to an equivalence

Fun×(𝐵,CS(𝐷)) ≃ CS(Fun×(𝐵,𝐷)) .

4.2.4 Example. Lemma 4.2.3 provides an equivalence

Pyk(Cat) ≃ CS(Pyk(𝑺)) .

4.2.5. Similarly, we have an equivalence

ΨPyk(Cat) ≃ CS(ΨPyk(𝑺))

betweenpseudopyknotic categories and complete Segal objects in pseudopyknotic spaces.
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4.3 Ultracategories as pseudopyknotic categories
In recent work [14], Lurie studied 1-categories equipped with an ultrastructure, which
we simply refer to as 1-ultracategories11. An ultracategory structure on a 1-category𝑀
consists of, for each set 𝑆 and ultrafilter 𝜇 ∈ 𝛽(𝑆), an ultraproduct functor

∫
𝑆
(−)𝑑𝜇∶ ∏

𝑠∈𝑆
𝑀→𝑀 ,

along with data relating these ultraproduct functors suggested by the integral notation,
all subject to a number of coherence axioms [14, Definition 1.3.1].The primary example
of a 1-ultracategory is the following:

4.3.1 Example ([14, Example 1.3.8]). Let𝑀 be a 1-category with products and filtered
colimits. Then𝑀 has an ultrastructure where for each set 𝑆 and ultrafilter 𝜇 ∈ 𝛽(𝑆), the
ultraproduct ∫𝑆(−)𝑑𝜇 is defined by the usual ultraproduct formula

(4.3.2) ∫
𝑆
𝑚𝑠𝑑𝜇 ≔ colim

𝑆0∈𝜇
∏
𝑠∈𝑆0
𝑚𝑠 ,

where the colimit is taken over the filtered diagram of all subsets 𝑆0 ⊂ 𝑆 in the ultrafilter
𝜇. This ultrastructure is called the categorical ultrastructure on𝑀.

More generally, if𝑀′ ⊂ 𝑀 is a full subcategory closed under ultraproducts in𝑀
(defined by equation (4.3.2)), then the categorical ultrastructure on𝑀 restructs to an
ultrastructure on𝑀′. In fact, every 1-ultracategory can be obtained in this way; see [14,
§8].

4.3.3 Recollection. Let 𝑿 be a 1-topos. The category of points of 𝑿 is the category
Pt(𝑿) ≔ Fun∗(𝑿, Set) of left exact left adjoints 𝑓∗ ∶ 𝑿 → Set and natural transfor-
mations between them. If 𝑿 is a coherent 1-topos, then restriction along the inclusion
𝑿coh ↪ 𝑿 of coherent objects defines a fully faithful functor

Pt(𝑿) ↪ Fun(𝑿coh, Set)

with essential image the pretopos morphisms, i.e., those functors 𝑿coh → Set that pre-
serve finite limits, finite coproducts, and effective epimorphisms.

4.3.4 Example. If 𝑿 is a coherent 1-topos, then by the Łoś ultraproduct theorem [14,
Theorem2.1.1] and the equivalence between coherent 1-topoi and 1-pretopoi [14, Propo-
sition C.6.4], the cateory of points Pt(𝑿) is closed under ultraproducts in Fun(𝑿coh, Set),
hence admits an ultrastructure.

If 𝑀 and 𝑁 are 1-ultracategories, a left ultrastrucature on a functor 𝐹∶ 𝑀 → 𝑁
consists of comparison natural transformation of ultraproducts

(4.3.5) 𝐹 (∫𝑆(−)𝑑𝜇) → ∫𝑆 𝐹(−)𝑑𝜇
11Here we still follow our categorical conventions and use the term ‘1-ultracategory’ to refer to what Lurie

calls an ‘ultracategory’ in [14], and use the term ‘ultracategory’ for the higher-categorical notion.
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for each set 𝑆 and ultrafilter 𝜇 ∈ 𝑆, subject to a number of coherences [14, Definition
1.4.1]. A left ultrafunctor is an ultrafunctor if all of the comparison morphisms (4.3.5)
are equivalences. Then 1-ultracategories and left ultrafunctors between them assemble
into a 2-category Ult𝐿1 . The 2-category Ult𝐿1 embeds into pseudopyknotic 1-categories
in the following manner. First, writingUSet ⊂ Ult𝐿1 for the full subcategory spanned by
those 1-ultracategories whose underlying 1-category is discrete, there is an equivalence
of 1-categories

USet⥲ Comp

[14, Theorem 3.1.5]. Moreover, in [14, §4] Lurie proves that for any 1-ultracategory𝑀,
the functor

FunLUlt(−,𝑀)∶ Compop ≃ USetop → Cat1
given by sending a compactum 𝐾 to the 1-category FunLUlt(𝐾,𝑀) of left ultrafunctors
𝐾 → 𝑀 defines a stack of 1-categories on Comp with respect to the effective epimor-
phism topology. Moreover, the construction

Ult𝐿1 → ΨPyk(Cat1) , 𝑀↦ FunLUlt(−,𝑀)

defines a fully faithful embedding.12
Themain motivation of the study of 1-ultracategories is the following result, which

implies both theDeligne CompletenessTheorem andMakkai’s Strong Conecptual Com-
pleteness Theorem [15]:

4.3.6Theorem ([14,Theorem 2.2.2]). Let𝑿 be a coherent 1-topos.Then there is a natural
equivalence of categories

FunLUlt(Pt(𝑿), Set) ⥲ 𝑿 ,
where Set is given the categorical ultrastructure and Pt(𝑿) is given the ultrastructure of
Example 4.3.4.

The ‘explicit’ definition of an 1-ultracategory as a 1-category with ultraproduct func-
tors subject to a collection of coherences isn’t well-suited to generalise to the higher-
categorical setting. As such, we provide a different description of ultracategories follow-
ing [14, §8]; this material will appear in [Ker], so we do not provide proofs here.

4.3.7 Definition. Let 𝐸 be a category with finite products. An object 𝑋 ∈ 𝐸 with finite
products is coconnected if Map𝐸(−,𝑋)∶ 𝐸op → 𝑺 carries finite products in 𝐸 to finite
coproducts in 𝑺.

4.3.8 Definition ([14, Definition 8.2.2]). An ultracategory envelope is a category 𝐸 sat-
isfying the following conditions:

(4.3.8.1) The category 𝐸 admits products.

(4.3.8.2) Every object𝑋 ∈ 𝐸 can be written as a product∏𝑠∈𝑆𝑋𝑠, where each factor𝑋𝑠
is a coconnected object of 𝐸.

12Ultracategories and left ultrafunctors really form a (2, 2)-category, and ultracategories and left ultrafunc-
tors embed fully faithfully into the (2, 2)-category of 1-categories, functors, and natural transformations.
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(4.3.8.3) The full subcategory 𝐸cc ⊂ 𝐸 spanned by the coconnected objects has ultra-
products in 𝐸. That is, for every collection {𝑋𝑠}𝑠∈𝑆 of coconnected objects of 𝐸
and every ultrafilter 𝜇 on 𝑆, the filtered colimit

colim
𝑆0∈𝜇
∏
𝑠∈𝑆0
𝑚𝑠 ,

exists and is a coconnected object of 𝐸.

4.3.9 Definition. Let𝑀 be a category. An ultracategory structure on𝑀 consists of an
ultracategory envelope Env(𝑀) along with an equivalence of categories𝑀⥲ Env(𝑀)cc.

4.3.10. Lurie shows [14,Theorem 8.2.5] that the theory of 1-ultracategories in the sense
of Definition 4.3.9 coincides with the ‘explicit’ theory of ultracategories (in the sense of
[14, Definition 1.3.1]).

4.3.11 Example ([14, Example 8.4.3]). Let𝑿 be a bounded coherent topos.Then again,
restriction along the inclusion𝑿coh<∞ ↪ 𝑿 defines an embedding

Pt(𝑿) ↪ Fun(𝑿coh<∞, 𝑺)

[SAG, Proposition A.6.4.4]. Write Env(Pt(𝑿)) ⊂ Fun(𝑿coh<∞, 𝑺) for the smallest full sub-
category containing Pt(𝑿) and closed under small products. Then Env(Pt(𝑿)) is an ul-
tracategory envelope and the inclusion Pt(𝑿) ⊂ Env(Pt(𝑿)) provides an ultrastructure
on Pt(𝑿).

More natural from the ultracategory envelope perspective are right ultrafunctors –
morphisms of the ultracategory envelopes that preserve products and coconnected ob-
jects [14, §8.2]. In terms of the explicit definition of 1-ultracategories, right ultrafunc-
tors are just like left ultrafunctors, but the ultraproduct comparisons (4.3.5) go in the
opposite direction [14, Definition 8.1.1]. From the ultracategory envelope perspective,
defining left ultrafunctors is more involved, but the upshot is that there’s still a fully
faithful embedding into pseudopyknotic categories:

4.3.12Theorem. There is a fully faithful embedding

Ult𝐿 ↪ ΨPyk(Cat)

from a category of ultracategories and left ultrafunctors between them to pseudopyknotic
categories.

4.3.13 Example. The assignment 𝑿 ↦ Pt(𝑿) defines a fully faithful functor from
bounded coherent topoi and arbitrary geometric morphisms to ultracategories and left
ultrafunctors – coherent geometric morphisms are identified ultrafunctors (cf. [14, Ex-
ample 2.2.8]).

Consider the category Str♮𝜋 of 𝜋-finite stratified spaces13. This is the full subcategory
Str♮𝜋 ⊂ Catwith objects those categories𝛱with the property that every endomorphism
in𝛱 is an equivalence,𝛱 has only finitely many objects up to equivalence, and all of the

13Here we work with the natural stratification by the underlying poset.
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mapping spaces in𝛱 are 𝜋-finite spaces. In [2] showed that the extension to proöbjects
of the functor given by𝛱 ↦ Fun(𝛱, 𝑺) defines a fully faithful embedding

Pro(Str♮𝜋) ↪ Topbc∞

of profinite stratified spaces into bounded coherent topoi and coherent geometric mor-
phisms. We identified the essential image as the category Topspec∞ of spectral topoi – this
is our higher-categorical Hoschster Duality Theorem [2, Theorem 10.3.1].

This embedding has a left adjoint 𝛱∧(∞,1) ∶ Topbc∞ → Pro(Str♮𝜋) given by the profi-
nite stratified shape. For a spectral topos 𝑿, the profinite statified shape 𝛱∧(∞,1)(𝑿) has
the property that the materialisation mat𝛱∧(∞,1)(𝑿) is equivalent to the category Pt(𝑿)
of points of 𝑿. It is thus possible to recast the profinite stratified shape and exodromy
equivalence of [2, Theorem 11.1.7] in terms of ultracategories (or pseudopyknotic cate-
gories). In particular, for a coherent scheme 𝑋, our profinite Galois category Gal(𝑋)[1;
2, §13] is naturally a pyknotic category.The benefit of the perspective taken in [2] is that
the theory of profinite stratified spaces is appreciably more simple than that of pyknotic
categories.
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