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Abstract

Pyknotic objects are (hyper)sheaves on the site of compacta. These provide a
convenient way to do algebra and homotopy theory with additional topological in-
formation present. This appears, for example, when trying to contemplate the de-
rived category of a local field. In this article, we present the basic theory of pyknotic
objects, with a view to describing a simple set of everyday examples.
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o Introduction

0.1 The proétale topology and pyknotic objects

Let E be a local field, and let X be a connected, topologically noetherian, coherent
scheme. Bhargav Bhatt and Peter Scholze [3, Lemma 7.4.7] construct a topological group
nl "¢ (X) that classifies local systems of E-vector spaces in the sense that there is a mon-
odromy equivalence of categories between the continuous E-linear representations and
E-linear local systems. The group 7z} "% (X) isnit profinite or even a prodbject in discrete
groups in general: Deligne’s example of a curve of genus > 1 with two points identified
has local systems that are not classified by any such group.

In forthcoming work [2], we will extend the Bhatt-Scholze monodromy equivalence
to an exodromy equivalence between continuous E-representations of the Galois cate-
gory Gal(X) and constructible sheaves of E-vector spaces. To speak of such continuous
representations, one needs to contemplate not only the category of finite dimensional
E-vector spaces but also the natural topology thereupon.

To describe constructible sheaves of complexes of E-vector spaces, we need a new
idea in order to speak of an co-category of perfect complexes of E-vector spaces in a
manner that retains the natural topological information coming from E.

In this paper, we describe a way to do this: a pyknotic' object of an co-category C is a
(hyper)sheaf on the site of compact hausdorff spaces valued in C. We may thus speak of
pyknotic sets, pyknotic groups, pyknotic rings, pyknotic spaces, pyknotic co-categories,
& c. Pyknotic structures function in much the same way as topological structures.

At the same time, pyknotic sets are the proétale sheaves of sets on a separably closed
field, and the proétale topos of any coherent scheme has the natural structure of a pyk-
notic category. There is a deep connection between the passage from objects to pyknotic
objects and the passage from the étale topology to the proétale topology.

Our local field E is naturally a pyknotic ring; pyknotic vector spaces over E comprise
a pyknotic category; complexes of pyknotic vector spaces over E comprise a pyknotic
oo-category D(E); and perfect complexes of pyknotic vector spaces over E comprise a
pyknotic subcategory DP*”/(E). Our exodromy equivalence will then be a natural equiv-
alence

Fun®™(Gal(X), D**/(E)) =~ D" (X E) .

proét

Moreover, the proétale co-topos X, itself is naturally a pyknotic category, and one
can identify it with the category of pyknotic functors from Gal(X) to pyknotic spaces:

X, 0s = Fun®*(Gal(X), Pyk(S)) .

proét —

! Pykno comes from the Greek mvxvé¢ meaning ‘dense; ‘compact; or ‘thick.



0.2 The aims of this paper

This paper is the first of a series. Our objective here is only to establish the very basic
formalism of pyknotic structures, in the interest of developing a few key examples.

o0.2.1 Example. For any set, group, abelian group, ring, space, spectrum, category, &
c., A, there are both a discrete pyknotic object A% and an indiscrete pyknotic object
Adisc attached to A (Construction 2.3.6). As with topological structures, these notions
are set up so that a map out of a discrete object is determined by a map at the level of
the underlying object, and a map into an indiscrete object is determined by a map at the
level of the underlying object.

o.2.2 Example. Starting with discrete objects, one can develop more interesting pyk-
notic structures by the formation of inverse limits. Thus profinite groups like Galois
groups and étale fundamental groups are naturally pyknotic, and profinite categories
like Gal(X) above are naturally pyknotic (Example 4.3.13). These inverse limits are no
longer discrete.

0.2.3 Example. More generally still, compactly generated topological spaces embed
fully faithfully into pyknotic sets, in a manner that preserves limits (Example 2.1.6). Thus
locally compact abelian groups, normed rings, and complete locally convex topological
vector spaces are all naturally pyknotic objects. This includes the vast majority of topo-
logical objects that appear in number theory and functional analysis.

One key point, however, is that the relationship between compactly generated topo-
logical spaces and pyknotic sets is dual to the relationship between compactly gener-
ated topological spaces and general topological spaces: in topological spaces, compactly
generated topological spaces are stable under colimits but not limits; in pyknotic sets,
compactly generated topological spaces are stable under limits but not colimits.

Furthermore, since pyknotic sets form a 1-topos, it follows readily that products of
quotients are again quotients (Example 2.2.11). This is of course not true in the realm
of topological spaces, and this is one of the main reasons that topologising fundamental
groups is such a fraught endeavour.

0.2.4 Example. More exotically, the cokernel Z/Z in pyknotic groups is not indiscrete.
This is in contrast with the topological case.

Even more dramatically, if A is a locally compact abelian group, the continuous ho-
momorphismi: A% — A, when viewed as a pyknotic homomorphism, is a monomor-
phism with a nontrivial cokernel. The underlying abelian group of this cokernel, how-
ever, is trivial. This underscores one of the main peculiarities of the theory of pyknotic
structures, which is also one of its advantages: the forgetful functor is not faithful.

0.2.5 Example. Pyknotic spaces and spectra form well-behaved categories, and their
homotopy groups are naturally pyknotic. This makes it sensible to speak of topologies
on the homotopy groups of spaces and spectra. For example, the E-nilpotent comple-
tion of a spectrum is naturally a pyknotic spectrum (Example 3.1.16), and its homotopy
pyknotic groups are computed by the E-based Adams-Novikov spectral sequence.

0.2.6 Example. The category of pyknotic objects of a presentable category C form a
natural example of a pyknotic category: the category of sections over any compactum



K is itself the category of sheaves in C on the site of compacta over K. Pyknotic cate-
gories provide a context in which one can do homotopy theory while keeping control
of ‘topological’ structures.

For example, for a local field E, one may speak of the pyknotic derived category
Dpyy (E), whose objects can be thought of as complexes of pyknotic vector spaces over
E. This construction will be the focus of our attention in a sequel to this paper.

0.3 Pyknotic and condensed

As we were developing these ideas, we learned that Dustin Clausen and Peter Scholze
have independently been studying essentially the same notion, which they call condensed
objects.

There is, however, a difference between pyknotic objects and the condensed objects
of Clausen and Scholze: it is a matter of set theory. To explain this, select a strongly
inaccessible cardinal § and the smallest strongly inaccessible cardinal 8" over 8. A pyk-
notic set in the universe V- is a sheaf on the site Comp, of §-small compacta, valued
in the category Sets+ of §*-small sets. By contrast, a condensed set in the universe V;
is a sheaf on Compj valued in Set; that is in addition x-accessible for some regular car-
dinal ¥ < &. Thus condensed sets in V5 embed fully faithfully into pyknotic sets in Vg,
which in turn embed fully faithfully into condensed sets in Vg.. (We shall discuss this
accessibility more precisely in §1.4.)

The Clausen-Scholze theory of condensed objects can thus be formalised completely
in zFc, whereas our theory of pyknotic objects requires at least one strongly inaccessible
cardinal.

As emphasised by Scholze, however, the distinction between pyknotic and condensed
does have some consequences beyond philosophical matters. For example, the indiscrete
topological space {0, 1}, viewed as a sheaf on the site of compacta, is pyknotic but not
condensed (relative to any universe). By allowing the presence of such pathological ob-
jects into the category of pyknotic sets, we guarantee that it is a topos, which is not true
for the category of condensed sets.

It would be too glib to assert that the pyknotic approach values the niceness of the
category over the niceness of its objects, while the condensed approach does the op-
posite. However, it seems that the pyknotic objects that one will encounter in serious
applications will usually be condensed, and the majority of the good properties of the
category of condensed objects will usually be inherited from the category of pyknotic
objects.

0.4 Acknowledgements

There is certainly overlap in our work here with that of Clausen and Scholze, even though
our aims are somewhat different. We emphasise that Clausen in particular had under-
stood the significance of condensed objects for many years before we even started to
contemplate them. We thank both Clausen and Scholze for the insights (and correc-
tions) they have generously shared with us via e-mail.

*In fact, as we were preparing this first manuscript, Scholze’s ongoing lecture notes [21] appeared and
Scholze gave a talk at MSRI on this material [19; 20].



Even outside these private communications, our intellectual debt to them is, we hope,
obvious.

We are also grateful to Jacob Lurie, who explained to us many ideas related to ul-
tracategories, and in particular outlined for us the co-ultracategory material that will
eventually be added to [Ker].

1 Conventions

1.1 Higher categories

1.1.1. We use the language and tools of higher category theory, particularly in the model
of quasicategories, as defined by Michael Boardman and Rainer Vogt and developed by
André Joyal and Jacob Lurie. We will generally follow the terminological and notational
conventions of Lurie’s trilogy [HTT; HA; SAG], but we will simplify matters by system-
atically using words to mean their good homotopical counterparts.>

» The word category here will always mean co-category or (0o, 1)-category or quasi-
category — i.e., a simplicial set satisfying the weak Kan condition.

> A subcategory C' of a category C is a simplicial subset that is stable under com-
position in the strong sense, so thatif o: A" — C is an n-‘slimplex of C, then o
factors through C' < C if and only if each of the edges o(A%*1}) does so.

> We will use the terms groupoid or space interchangeably for what is often called
an 0o-groupoid - i.e., a category in which every morphism is invertible.

» For a category C, we write Pro(C) for the category of prodbjects in C.

1.2 Set theoretic conventions

1.2.1. Recall that if § is a strongly inaccessible cardinal (which we always assume to be
uncountable), then the set Vy of all sets of rank strictly less than & is a Grothendieck
universe [SGA 4,, Exposé I, Appendix] of rank and cardinality 8. Conversely, if V is a
Grothendieck universe that contains an infinite cardinal, then V' = Vj for some inacces-
sible cardinal &.

In order to deal precisely and simply with set-theoretic problems arising from some
of the ‘large’ operations, we append to zrc the Axiom of Universes (au). This asserts
that any cardinal is dominated by a strongly inaccessible cardinal.

We write §,, for the smallest strongly inaccessible cardinal. Now au implies the exis-
tence of a hierarchy of strongly inaccessible cardinals

0p <0, <6, <,

in which for each ordinal «, the cardinal §,, is the smallest strongly inaccessible cardinal
9, that dominates J4 for any f8 < a.*

3We have grown weary of the practise of prefixing words with sequences of unsearchable crackjaw symbols.
#Thus V5 models zrc plus the axiom ‘the set of strongly inaccessible cardinals is order-isomorphic to &’



We certainly will not use the full strength of Au. At the cost of some awkward cir-
cumlocutions, one could even get away with zrc alone.

1.2.2 Definition. Let § be a strongly inaccessible cardinal. A set, group, simplicial set,
category, ring, & c., will be said to be §-small® if it is equivalent (in whatever appropriate
sense) to one that lies in V3. We write

tin

1y 8,-small
as shorthand for

small 8,-small.

A category C is said to be locally §-small if and only if, for any objects x, y € C, the
mapping space Map(x, y) is §-small. We write

locally tiny locally 8,-small

} as shorthand for {

locally small locally 8,-small.

1.2.3. For astrongly inaccessible cardinal §, we shall write S5 for the category of §-small
spaces and Cat; for the category of 6-small categories. The categories S5 and Cat;_for
the are §,,-small and locally §,,-small. We write

S 851
as shorthand for
Cat ats .

1.2.4. Inthe same vein, if § is a strongly inaccessible cardinal, §-accessibility of categories
and functors and §-presentability of categories will refer to accessibility and presentabil-
ity with respect to some §-small cardinal. Please observe that a §,-accessible category is
always 8, ;-small and locally §,,-small. We shall write

Prga C Caty (respectively, Prga c Cats )

for the subcategory whose objects are presentable categories and whose functors are left
(resp., right) adjoints. We write

accessible &, -accessible
presentable 0, -presentable
. asshorthand for I
Pr P r51
PrR Prg1

Accordingly, a 8-topos is a left exact accessible localisation of a functor category
Fun(C, S;) for some §-small category C. We write topos as a shorthand for &, -topos.

1.3 Sites and sheaves

1.3.1 Definition. A site (C, ) consists of a category C equipped with a Grothendieck
topology 7.

>The adverb ‘essentially’ is often deployed in this situation.



1.3.2 Notation. Let § be a strongly inaccessible cardinal. We write
ShT(C)é c Fun(COP,SL;)

for the full subcategory spanned by the sheaves on C with respect to the topology 7.
We write Sh””?(C), ¢ Sh,(C); for the full subcategory spanned by the hypercomplete
sheaves.® In particular, we write Sh,(C) and Sh?y P(C) as a shorthand for ShT(C)(;1 and
Sh/? (C)s,» respectively.

1.3.3 Warning. Let (C, 1) be a site. Assume that for some object X € C, there does not
exist a tiny set of covering sieves of X that is cofinal among all covering sieves.” Then
the sheafification of a tiny presheaf on C (i.e., a presheaf C* — S ) might no longer
be tiny. The point is that sheafification will involve a colimit over all covering sieves.
As a consequence, the category Sh.(C)s, of tiny sheaves on C is not §,-topos. This is a
perennial bugbear, for example, with the fpqc topology on the category of affine schemes.
The sites (C, 7) with which we will be working suffer from this as well.

Some authors simply elect never to sheafify a presheaf with respect to such topolo-
gies. However, in this article, we will be unable to avoid sheafification, and we do not
wish to pass artificially to a subcategory of C, so we will permit ourselves the luxury of
‘universe hopping’: in our cases of interest, C will be small (but not tiny!), and so Sh,(C)
is a left exact localisation of Fun(C%, Ss,) and thus a &, -topos.

In §1.4, we outline a proof that when the site is suitably accessible, then the sheafifi-
cation of the small sheaves that arise in practise are again small. This is an adaptation of
the strategy developed by Waterhouse [23]. This gives a slightly more conservative way
to deal with this issue.

1.3.4 Definition. A site (C, 7) is said to be finitary if and only if C admits all finite limits,
and, for every object X € C and every covering sieve R € C/x, there is a finite subset
{Y;};c; € R that generates a covering sieve.

1.3.5 Definition. A presite is a pair (C, E) consisting of a category C along with a sub-
category E < C satisfying the following conditions.

» The subcategory E contains all equivalences of C.
» The category C admits finite limits, and E is stable under base change.

> The category C admits finite coproducts, which are universal, and E is closed un-
der finite coproducts.

1.3.6 Construction. If (C, E) is a presite, then there exists a topology 75 on C in which
the 7;-covering sieves are generated by finite families {V; — U}, suchthat[[,, V; = U
lies in E [SAG, Proposition A.3.2.1]. The site (C, 73) is finitary. We simplify notation and
write Shg(C) € Fun(C?, S; ) for the full subcategory spanned by the small 75-sheaves.
Note that Sh;(C) is a topos if C is small.

If in addition the coproducts in C are disjoint, then a sheaf for 7 valued in a category

D with all limits is a functor F: C® — D that carries finite coproducts in C to finite

SFor background on hypercompletness, see [HTT, §6.5].
7So, in particular, C itself is not tiny.


http://www.math.harvard.edu/~lurie/papers/SAG-rootfile.pdf#theorem.A.3.2.1
http://www.math.harvard.edu/~lurie/papers/HTT.pdf#section.6.5

products in D, and for any morphism V — U of E, the Cech nerve C, (V/U): A? — C
induces an equivalence 5
XU) > lirrAl X(C,(V/U))
ne

[SAG, Proposition A.3.3.1]. In this case, the topology 75 is subcanonical.

1.4 Accessible sheaves

Let (C, ) be a site. Assume that for some object X € C, there does not exist a tiny set
of covering sieves of X that is cofinal among all covering sieves. Then the sheafification
of a tiny presheaf on C (i.e., a presheaf C”? — S5 ) might no longer be tiny. The point
is that sheafification will involve a colimit over all covering sieves. As a consequence,
the category Sh.(C);, ¢ Fun(C”, S5 ) of tiny sheaves on C is not topos. This becomes a
concern, for example, for the fpqc site. Here, we explain how one may identify conditions
on a site that will allow us to sheafify accessible presheaves without being forced to pass
to a larger universe. These conditions are satisfied by the fpqc site. For the fpqc topology
on discrete rings, this was observed by Waterhouse [23]; our formulation only needs a
small amount of extra care.

1.4.1 Definition. Let 8bea tiny regular cardinal. A presite (C, E) is said to be 3-accessible
if and only if the following conditions hold.

» Coproducts in C are disjoint.

» The opposite C” is B-accessible. We write Cz € C for the tiny category of 3-
cocompact objects (i.e., objects that are 3-compact as objects of C?).

» Every morphism X' — X of E can be exhibited as a limit of a diagram A? —
Fun(AL, EN Cﬁ) in which A is B-filtered.

We say that a small presite (C, E) is accessible if and only if (C, E) is -accessible for
some tiny regular cardinal 8.

1.4.2. Let 8 be a tiny regular cardinal, and let (C, E) be a -accessible presite. Write
Eg == E N Cg; then (Cg, Eg) is a tiny presite (in which coproducts are still disjoint).
Consequently, ShEﬁ (Cp)s, is a 8y-topos.

1.4.3 Proposition. Let 8 be a tiny regular uncountable cardinal, and let (C, E) be a f3-
accessible presite. Let f: C¥ — Ss, be a functor, and let F: C* — S be the left Kan
extension of f. Then f isa TR, -sheaf if and only if F is a tg-sheaf.

Proof. Since every object of C is a S-filtered colimit of objects of Cgp , it follows that f
preserves finite products if and only if F does.
If F is a sheaf, then the description above ensures that f is a sheaf as well.
Lete: V — U be a morphism of E, and let C,(e): AT — C denote the Cech nerve
of e. Exhibit e as a limit
lim V, — lim U,,
ae AP aeNP


http://www.math.harvard.edu/~lurie/papers/SAG-rootfile.pdf#theorem.A.3.3.1

where A is a-filtered, and eache,, : V, — U, lies in Eg; in particular each object C,(e,) is
B-cocompact. Then C,(e) = limy 4o C, (e,), and the map X(U) — lim, 4 X(C, (e)) can
be exhibited as the colimit

ng/{n XU, — }11&1 cgg}\n X(C,(ey)) -

Since A is B-filtered and S is uncountable, the colimit commutes with the limit, and so
the map X(U) — lim,, .4 X(V,,) is the colimit of a diagram of equivalences

X(Uy) = lim X(C,(e,))

hence an equivalence. O

1.4.4. Let (C,E) be an w-accessible presite. If N is a natural number, then a functor
f: CEP — TN S5, s a TEﬁ—sheaf if and only if its left Kan extension

F: CUP - TSN550

is a 7g-sheaf. The truncatedness assumption ensures that the limit over A can be replaced
with a limit over the full subcategory Ay of totally ordered finite sets of cardinality
at most N + 2, which is finite. This permits us to commute the filtered colimit past the
totalisation.

1.4.5 Corollary. Let 3 be a tiny, regular, uncountable cardinal, and let (C,E) be a f3-
accessible presite. The left Kan extension defines an equivalence of categories between the
topos ShTEﬁ (Cp)s, and the full subcategory of Sh, (C)s, spanned by the B-accessible sheaves.

1.4.6 Notation. If (C, E) is an accessible presite, then we write
Sh%cc(c)é‘o C Fun(C"P, 860)

for the full subcategory spanned by the accessible sheaves. More generally, if D is any
8,-presentable category, then Shi“(C; D) € Fun(C, D) is the full subcategory spanned
by the accessible sheaves.

Now we may see that sheafification of accessible functors does not increase the size
of the universe.

1.4.7 Corollary. Let (C, E) be an accessible presite, and let D be a &,-presentable category.
Then Sh“(C; D) is a left exact localisation of the category Fun®“(C?, D) of accessible
functors C? — D.

1.4.8 Example. If C is a tiny regular disjunctive category, then Pro® (C) is an accessible
presite with its effective epimorphism topology.

1.4.9 Warning. If (C,E) is an accessible presite that is not tiny, please observe that
Shi“(C)s, cannot be expected to be a &,-topos, or even k-accessible with respect to a
tiny cardinal «. It is however locally tiny, and it does have many of the good features
enjoyed by §,-topoi. For convenience, we formalise the situation.



1.4.10 Definition. Let D be an accessible category, and let
L: Fun®“(D, Ss,) = X ¢ Fun®“(D, Ss,)

be a localisation. For any small regular cardinal «, if D is a-accessible, then let us write
X, for the essential image of L restricted to Fun(D,,Ss)) = Fun®*“(D, S ). Equiva-
lently, X,, is the intersection

X, = X NFun(D,,S;s) -

inside Fun*“(D, 850)' We shall say that the localisation functor L is macroaccessible if
for any small cardinal 3, there exists a small regular cardinal & > f8 such that D is «-
accessible, and L restricts to an accessible functor

Ly: Fun(D,,S5) — X, € Fun®™(D,, S5,) -

A macropresentable category is a category X such that there exists an accessible cat-
egory D and a macroaccessible localisation

L: Fun*“(D, SBO) — Fun®“(D, Séo)

whose essential image is equivalent to X.
A macrotopos is a category X such that there exists an accessible category D and a
left exact, macroaccessible localisation

L: Fun®“(D, Ss,) = X ¢ Fun®“(D, Ss,) -

1.4.11. If X is a macropresentable category, then X is the macroaccessible localisation
of Fun®“(D, S, ) for an accessible category D; let us write

L: Fun*“(D, Ss,) = X ¢ Fun®“(D, Ss,)

for the localisation functor. If &« < 8 are regular cardinals with the properties that D is
both «- and -accessible and that L restricts to accessible functors

Ly: Fun(D,,Ss)) — Fun®“(D,, Ss,) and Lg: Fun(Dg,Ss,) — Fun(Dg, S5, ) »

then we have an inclusion X, € Xp. The macropresentable category X is the &, -small
filtered colimit of the presentable categories X,, under fully faithful left adjoints. Simi-
larly, if X is a macrotopos, then the X, are topoi, and so X is a §,-small filtered union
of topoi under fully faithful left exact left adjoints.

1.4.12 Example. If (C, E) is an accessible presite, then Sh;E’“(C)(;0 is a macrotopos.

2 Pyknotic objects

2.1 Pyknotic sets

2.1.1. Let TSpc denote the category of tiny topological spaces. Write

Comp ¢ TSpc

10



for the full subcategory spanned by the compacta - i.e., tiny compact hausdorff topolog-
ical spaces.

We write 3: TSpc — Comp for the left adjoint to the inclusion, given by Stone-
Cech compactification.

The category Comp can be identified with the category of 3-algebras on Set; , where
B: Sets — Sets is the ultrafilter monad [9, Chapter III, §2.4].

2.1.2. Since the category Comp of compacta is a 1-pretopos, Comp comes equipped
with the effective epimorphism topology; a collection of morphisms {U; — Ul is a
cover if and only if there exists a finite subset I, I such that the map

[[u-U

i€l

is a surjection (=effective epimorphism in Comp).
Note that Construction 1.3.6 gives a complete characterisation of sheaves on Comp;
see also [14, Proposition B.s5.5].

2.1.3 Definition. The category of pyknotic sets is the category
Pyk(Set) == Sh,;(Comp; Set)
of small sheaves of sets on Comp with respect to the effective epimorphism topology.

2.1.4. The category Pyk(Set) is a coherent 1-topos. By the classification theorem for
coherent 1-topoi [14, Theorem C.6.5], the coherent objects of Pyk(Set) are exactly the
compacta, regarded as representables.

2.1.5 Notation. The 1-category CG of compactly generated topological spaces is the small-
est full subcategory of the category TSpc; of small topological spaces containing Comp
and closed under small colimits. In particular, CG is a colocalisation of TSpc 5,

2.1.6 Example. Let X be a small topological space. Then the functor
Morygpe, (= X): Comp” — Set
1

is pyknotic set. We can endow the underlying set of X with the induced topology with
respect to the class of continuous morphisms from compacta. This is as coarse as the
topology on X, and coincides with the topology on X if and only if X is compactly
generated.

In other words, the Yoneda embedding extends to a functor j: TSpc — Pyk(Set)
with a left adjoint defined by left Kan extension of the inclusion Comp — TSpc along
Comp — Pyk(Set). The counit of this adjunction is a homeomorphism on compactly
generated topological spaces, and so the Yoneda embedding defines a fully faithful func-
tor from compactly generated topological spaces into pyknotic sets; this expresses the
category CG as a localisation of Pyk(Set).

This is one important way in which topological spaces are different from pyknotic
sets: compactly generated topological spaces are not stable under colimits in Pyk(Set).

Notationally, we'll often ignore the distinction between a compactly generated topo-
logical spaces and its corresponding pyknotic set.

11



Even though compactly generated topological spaces aren’t closed under colimits in
Pyk(Set), they are closed under a certain class of colimits:

2.1.7 Lemma. Let X, — X; — --- be a sequence of compactly generated topological
spaces. Assume that the colimit colim,, X,, in TSpcs is a T, topological space. Then the
natural morphism

colim, .o j(X,,) — j(colim, 4 X,,)

is an equivalence in Pyk(Set).

Proof. For each compactum K, the object j(K) € Pyk(Set) is compact [2, Lemma 5.8.2],
so we have isomorphisms

Mappyk(set)( J(K), colim, o j(X,,)) = colim, 5 Mappyk(set)( JK), j(X,))

n

COlingO MapCG (Ka Xn)
Map (K, colim,., X,,)
= Mappyk(Set)(j(K); j(COhngO Xn)) .

n

The second isomorphism is by the full faithfulness of j: CG < Pyk(Set). The third
isomorphism is by [12, Appendix A, Lemma 9.4], which states that for any map from a
compactum f: K — colim,., X,,, the image of f factors through some X,,. O

2.1.8 Warning. Note that [12, Appendix A, Lemma 9.4] used in the proof of Lemma 2.1.7
does not hold for more general filtered colimits: the unit interval is the filtered colimit of
all of its countable subspaces, but the identity map does not factor through a countable
subspace.

2.1.9 Example. The category Pyk(Set) is compactly generated and the Yoneda embed-
ding Comp — Pyk(Set) carries compacta to compact objects of the category Pyk(Set)
[SAG, Corollary A.2.3.2]. Thus the Yoneda embedding extends to a fully faithful embed-
ding

Ind(Comp) — Pyk(Set)
[HTT, Proposition 5.3.5.11]. Regarding profinite sets as Stone topological spaces under
Stone duality, we thus obtain an embedding

Ind(Pro(Set/")) — Pyk(Set) .

Indprofinite sets and extensions to indpro---indprofinite sets have been exploited
by Kato in studying higher local fields [11], as well as Mazel-Gee-Peterson-Stapleton
in homotopy theory [17, §2]. In particular, local fields of dimension at most 1 may be
understood in terms of indprofinite sets.

2.1.10 Example. Since a compactum has a unique uniformity compactible with its
topology [4, Chapter II, §4, 41, Theorem 1], any uniform space U defines a pyknotic
set by the assignment K +— Mory,;(K, U). This restricts to a fully faithful embedding
from the full subcategory of compactly generated uniform spaces — those uniform spaces
U for which a set-map U — U’ to another uniform space U’ is uniformly continuous
if and only if for every uniformly continuous map K — U from a compactum, the
composite K — U’ is continuous.
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2.2 Pyknotic spaces

2.2.1. Define two full subcategories
EStn ¢ Stn ¢ Comp

as follows:

> Stnis spanned by the Stone topological spaces - i.e., tiny compact hausdorff spaces
that are totally disconnected;

» EStn is spanned by the Stonean topological spaces - i.e., tiny compact hausdorft
spaces that are extremally disconnected.

All of these categories are small but not tiny.

Under Stone duality, the category Stn can be identified with the category Pro(Set™)
of profinite sets. By Gleason’s theorem, the category EStn can be identified with the cat-
egory of projective objects of Comp [5; 9, Chapter III, §3.7]; equivalently, a topological
space is Stonean if and only if it can be exhibited as the retract of S(S) for some (tiny)
set S.

Restriction of presheaves defines equivalences of 1-categories

Pyk(Set) = Sheﬂ(Comp; Set) = Sheﬁ:(Stn; Set) = Sheﬁ(EStn; Set) .
These equivalences follow from the from the following three facts:

» If (C, ) is a 1-site and C' ¢ C is a basis for the topology 7 [14, Definition B.6.1],
then 7 restricts to a topology 7’ on C’ and restriction defines an equivalence of
1-categories

Sh,(C; Set) = ShT(C'; Set) ;

see [14, Propositions B.6.3 & B.6.4].

» A Stone space S is extremally disconnected if and only if S is a retract of the Stone—
Cech compactification of a discrete space.

» For every compactum X, there is a natural surjection $(X°) —» X from the Stone-
Cech compactification of the discrete space X° with underlying set X to X (cf. [18,
Remark 2.8]). Hence the subcategories Stn ¢ Comp and EStn ¢ Comp are bases
for the effective epimorphism topology on Comp.

2.2.2 Warning. Since the 1-sites Comp and Stn have finite limits and the inclusion
Stn — Comp preserves finite limits, from (2.2.1) we deduce that restriction defines an
equivalence of 1-localic topoi

Sh,(Comp) = Sh,4(Stn) .

However, as pointed out to us by Dustin Clausen and Peter Scholze, since the 1-site
EStn of Stonean spaces does not have finite limits, restriction only defines an equivalence

Shy (Comp) = Sh}}¥ (EStn)

13



on topoi of hypersheaves.
The topos Sh,(EStn) is in fact already hypercomplete (Corollary 2.4.4), whence we
obtain an equivalence

Shy (Comp) = Sh,4(EStn)
but Sh,;(Comp) is not hypercomplete, so it remains different.

2.2.3 Definition. A pseudopyknotic space is a sheaf on Comp for the effective epimor-
phism topology. We write
YPyk(S) = Sheﬁ(Comp)

for the category of pseudopyknotic spaces. A pyknotic space is a hypersheaf on Comp.
We write
Pyk(S) = Sh))(Comp)

for the category of pyknotic spaces.

2.2.4. Equivalently, as explained above, pyknotic spaces are sheaves on the site of Stonean
topological spaces.

2.2.5 Construction. For any compactum K, there is a standard free resolution® of K,
regarded as an algebra for the ultrafilter monad S, viz.,

cBy=| - g B (K) g BK) = BK) — K |,

so that B! (K) is the Stone-Cech compactification of the discrete space with underlying
set 3"(K). The standard free resolution is a hypercovering of K in Comp by Stonean
topological spaces.

2.2.6 Proposition. The following are equivalent for a pseudopyknotic space X.
» X is pyknotic.
> X is right Kan extended from the subcategory EStn ¢ Comp.
» For any compactum K, the augmented cosimplicial space

X(K) — X(B(K) = X(B(K) S XBK) S -

h—
exhibits X(K) as the limit lim 4 X(CE(K)).
2.2.7 Warning. Not every pseudopyknotic space is pyknotic.

2.2.8 Example. We have already seen that compactly generated topological spaces and
compactly generated uniform spaces embed fully faithfully into pyknotic sets; conse-
quently, they embed into pyknotic spaces as well.

Furthermore, since the inclusion of 0-truncated objects in a topos preserves filtered
colimits, Lemma 2.1.7 shows that the embedding CG — Pyk(S) commutes with colim-
its of sequences whose colimit is a T topological space.

8Elsewhere called the bar construction.
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2.2.9. Since Stonean spaces are projective objects of Comp, the Cech nerve of any sur-
jection in EStn is a split simplicial object, so a functor F: EStn”” — S is a sheaf with
respect to the effective epimorphism topology if and only if F carries coproducts in EStn
to products in S. That is to say, the category Sh,(EStn) is the nonabelian derived cate-
gory® Ps(EStn) of the category EStn Stonean topological spaces.

From any Stone topological space one may extract the Boolean algebra of clopens;
Stone duality is the assertion that this defines an equivalence between Stn and the oppo-
site of the category Bool of Boolean algebras. This equivalence then restricts to an equiv-
alence between EStn and the opposite of the category Bool” of complete Boolean alge-
bras. Consequently, a pyknotic object of D may be understood as a functor Bool" — D
that preserves finite products.

2.2.10. Since finite products commute with sifted colimits in S, we see that
Pyk(S) ¢ Fun(EStn”, S)

is closed under sifted colimits. In particular, geometric realisations of simplicial pyknotic
spaces are computed in Fun(EStn?, S).

2.2.11 Example. As a consequence, we find that it is relatively easy to form quotient
pyknotic structures. For example, if X is a pyknotic set and R ¢ X x X is an equivalence
relation thereupon, then the quotient X /R can be computed objectwise on Stonean topo-
logical spaces:

(X/R)(K) = X(K)/R(K) .

In a similar vein, if X, is a simplicial pyknotic space, then its realisation can be
computed objectwise on Stonean topological spaces:

X, I(K) = X, (K)I .

2.2.12 Construction. The global sections functor I', : Pyk(S) — S is given by eval-
uation at the one-point compactum =. For any pyknotic space X, we call I',(X) the
underlying space of X. When there’s no possibility of confusion, we simply write X for
Ir,(X).

Left adjont to this is the constant sheaf functor I'* : § — Pyk(S) that carries a space
Y to what we will call the discrete pyknotic space

Ydisc — F*(Y)

attached to Y.
The underlying space functor I', also admits a right adjoint I': § — Pyk(S): for
X € Sthe sheaf I'(X): Comp” — § is given by the assignment

K — ]_[ X,
kelK|

i.e., the product of copies of X indexed by the underlying set of the compactum K. For
any space X, we call o
delsc — F‘(X)

9See [HTT, §5.5.8] for more on nonabelian derived categories.

15


http://www.math.harvard.edu/~lurie/papers/HTT.pdf#section.5.5.8

the indiscrete pyknotic space attached to X.

The composite I, "' : § — § is equivalent to the identity, so the indiscrete functor
I is fully faithful, whence so is the discrete functor I'* : § — Pyk(S). In the language of
[2, Definition 7.2.2], the topos Pyk(S) is local with centre I"'. In particular, Pyk(S) has
homotopy dimension 0 [2, Lemma 7.2.5].

Accordingly, a pyknotic space in the essential image of I'* is said to be discrete, a
pyknotic space in the essential image of I is said to be indiscrete.

2.2.13. In particular, note that if X is a presheaf Comp” — §, then its hypersheafifica-
tion X* has the same underlying set. That is, I, (X) — I',(X') is an equivalence: indeed,
for any space Y, the map

Map(X*, T'(Y)) = Map(I,(X*),Y) — Map(T’,(X),Y) = Map(X, I"(Y))
is an equivalence, since I''(Y) is a sheaf.

2.2.14 Example. For any finite set J, the discrete pyknotic set J%* is the sheaf K
Map(J, K) represented by J. If {J,},c 4 is an inverse system of finite sets, then the limit

lim ]disc
acA <

is the sheaf represented by the Stone topological space lim, 4 J,; this is not discrete.
In particular, the discrete functor I'* does not preserve limits, and so the topos
Pyk(S) is - by design — not cohesive in the sense of Schreiber [22, Definition 3.4.1].

2.2.15. The point I'"" of the topos Pyk(S) admits a description coming from logic: I'* is
the point induced by the morphism of 1-pretopoi Comp — Set given by the forgetful
functor (see [SAG, Proposition A.6.4.4]).

2.2.16. The point I" of the topos Pyk(S) also admits a geometric description. Let k be
a separably closed field. Then the hypercompletion of the proétale topos Spec(k) o Of
Spec(k) is equivalent to Pyk(S) (Examples 3.3.10 and 3.3.11). Every geometric point of
a scheme defines a point of its proétale topos [STK, Tag 0991], so the essentially unique
geometric point x of Spec(k) defines a point

x, 0 8 = Spec(k)progt -

Under the identification Spec(k)zfgét = Pyk(S), the point I"' is equivalent to x,.
2.2.17 Warning. However, the centre I'': § < Pyk(S) is not the only point of the topos
Pyk(S). For any topological space X, we have a pyknotic set Py that carries K to the set
of continuous maps K — X, where the locally constant maps have been identified to a
point:

Ps(K) = Map®®(K, X)/ Map“(K, X) .

If X is nonempty, then the pyknotic set Px has underlying set =; thus if X is neither
empty nor *, then Py is a nontrivial pyknotic structure on the point. See [STK, Tag
0991] and also Corollary 2.4.5.
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2.2.18. Let X be a space (respectively, a set). The category of pyknotic structures on X is
the fibre of the functor I', : Pyk(S) — S (resp., I', : Pyk(Set) — Set).
This category admits an initial object X?*° and a terminal object X", Further-
more, the category of pyknotic structures on X has all tiny limits and colimits.
However, unlike the category of topologies on a set, it is not a poset. For example,
any permutation of a nonempty set S induces a automorphism of P.

2.2.19 Construction. Let X be a space, and let Y be a pyknotic space. For any map
f: X — I,(Y), there is a terminal object in the category of pyknotic structures on X
over Y; explicitly, this is the pullback

Xf = F'(X) XF!F*(Y) Y .

We call this the pyknotic structure on X induced by f.
Dually, foranymap g: I,Y — X, thereis an initial object in the category of pyknotic
structures on X under Y; explicitly, this is the pushout

X, =I*(X)u" =My,
We call this the pyknotic structure on X coinduced by g.

2.2.20 Example. LetY be a topological space, and let X — Y be a map of sets. View Y
as a pyknotic set. Then the induced pyknotic structure on X coincides with the pyknotic
structure attached to the induced topology on X.

2.3 Pyknotic objects

In the previous subsection, we reformulated the definition of a pyknotic space in terms
of finite-product-preserving presheaves on Stonean spaces. We can thus define pyknotic
objects in any category with finite products.

2.3.1 Definition. Let D be a category with all finite products. A pyknotic object of D is
a functor EStn” — D that carries finite coproducts of Stonean topological spaces to
products in D. We write

Pyk(D) ¢ Fun(EStn?, D)

for the full subcategory spanned by the pyknotic objects.

2.3.2 Warning. Since EStn is small but not tiny, Pyk(D) is not generally locally tiny,
even if D is. However, if D is locally small, then Pyk(D) is locally small.

To correct this issue without large cardinals, Clausen and Scholze opt for the follow-
ing.

2.3.3 Definition (Clausen-Scholze). If D is a §,-accessible category, then a pyknotic ob-
ject of D is condensed (relative to the tiny universe) if and only if its right Kan extension
to Stn is a §,-accessible sheaf.

2.3.4 Warning. The indiscrete pyknotic set Y attached to a set Y is condensed if
and only if Y has cardinality < 1.
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2.3.5. If D is a category with all small limits, then Pyk(D) can be identified with the
category of functors Pyk(S)” — D that carry small colimits of Pyk(S) to limits in D. In
particular, if D is a presentable category, then Pyk(D) is the tensor product of presentable
categories Pyk(S) ® D. In particular, if X is a topos, then Pyk(X) is a topos.

2.3.6 Construction. If D is a presentable category, then we may tensor the left adjoints
in Construction 2.2.12 with D to construct a chain of adjoints

«—TI*

Pyk(D)

_—
r,—— D.
F!_a

For any object X of D, then when there’s no possibility of confusion, we write simply
X for I', (X). For any pyknotic object Y of D, we write

Ydisc — F*(Y)

for the discrete pyknotic object attached to Y, and we write
Yindisc — F‘(Y)

for the indiscrete pyknotic object attached to Y.

2.3.7 Example. If G is a topological group, then we may regard G as a pyknotic group
that carries a compactum K to Map™(K, G). This defines a functor from topological
groups to pyknotic groups, which preserves limits and is fully faithful on compactly
generated topological groups.
In particular, if {G,},c 1 is an inverse system of groups, the inverse limit
: disc
alg‘rgp Ca

will generally not be discrete. For instance, the discrete group attached to a finite group
H is cocompact, whence

 ~disc ppdisc ) o s
Homypyy(Grp) (Jé%p Gdise H ISc) = ng{n Homg,,(G;, H) .

2.3.8 Example. The category Pyk(Ab) is an abelian category, and the category of com-
pactly generated topological abelian groups embeds fully faithfully into Pyk(Ab), in a
manner that preserves tiny limits. Thus for any abelian group A, one obtains a discrete
pyknotic abelian group A%, but for example an infinite product

H Atiiisc

a€l

of finite abelian groups is not discrete. To see this explicitly, the discrete abelian group
attached to a finite abelian group B is cocompact, whence

Hompyk(Ab) (H A?isc, Bdisc> = @ HomAb (Ai’ B) .

i€l i€l
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The limits

7.1 disc 71 n rp\disc
Z = n}g}lvl*(Z/mZ) and Z, = Jélg{lo(l/p Z)

are similarly not discrete.

2.3.9 Example. Let A be alocally compact abelian group. Then we can define an abelian
variant of our pyknotic set Py: for any Stonean space K, form the quotient group

P,(K) = Map“™(K, A)/ Map®(K, A%) .

The underlying abelian group of P, is always trivial, but if A is nontrivial, then P, is
as well. Thus Ad’“ — A is a monomorphism of pyknotic abelian groups, and P, is the
cokernel A/A%s.

2.3.10 Example. Thanks to Lemma 2.1.7, it is not only limits that are preserved by the
embedding of compactly generated abelian groups into Pyk(Ab). For example, let E be a
local field. Then since E is a locally compact topological space, E is compactly generated.
The separable closure E is a hausdorff topological space, and E can be obtained as the
colimit of a tower

E < E < E, < -,

where the E,, C E,,, is a finite extension of local fields. It follows from Lemma 2.1.7 that
the image of the compactly generated abelian group E in Pyk(Ab) coincides with the
the filtered colimit colim,, E,, in Pyk(ADb).

2.3.11 Example. Consider the derived category D™ (Ab) of abelian groups, and form the
pyknotic derived category Dypy, (Ab) := Pyk(D™(Ab)), which is a stable category. Here,
we may compute Ext groups between pyknotic abelian groups, and we see that they may
have cohomological dimension 2. For example, let £ be a prime number, and let M be
the cokernel in Pyk(Ab) of the inclusion (Z 029580 s (Z[0Z¥5€) Since Z/€Z4¢
is cocompact, and since Exts of discrete pyknotic abelian groups can be computed in Ab,
we find that EthD;yk(Ab)(M, 7225} does not vanish.

This example is the same as the one found at the very end of Hoffmann-Spitzweck
[7]; accordingly, Dustin Clausen and Peter Scholze have proved the following result.

2.3.12 Theorem (Clausen-Scholze [21, Corollary 4.9]). Regard the category LCA of lo-
cally compact abelian groups as a full subcategory of the degree 0 part of the Pyknotic
derived category Dy (Ab). Then the induced functor

D(LCA) — hDpy,(Ab)

is fully faithful; here DP(LCA) is the derived category of LCA in the sense of Hoffmann-
Spitzweck [7].
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2.4 Pyknotic objects of topoi

2.4.1 Notation. Let C be a presentable category. For each integer n > -2, we write
C_,, c Cfor the full subcategory spanned by the #n-truncated objects,and 7,,: C — C_,
for the n-truncation functor, lett adjoint to the inclusion C_,, — C.

2.4.2. Let X be a topos and n > -2 an integer. The n-truncation functor r.,: X — X,
preserves finite products [HTT, Lemma 6.5.1.2], so we have a natural identification

Pyk(X), = Pyk(X_,) .

Under this identification, the n-truncation functor 7, : Pyk(X) — Pyk(X)_, is identi-
fied with
Pyk(r.,): Pyk(X) — Pyk(X_,) .

2.4.3 Lemma. Let X be a hypercomplete topos. Then the topos Pyk(X) is hypercomplete.

Proof. We need to show thatif f: U — V is a morphism in Pyk(X) and for alln > -2
the morphism 7_,(f): 7.,(U) — 71,(V) is an equivalence, then f is an equivalence.
In this case, by (2.4.2) for each complete Boolean algebra B and integer n > -2, the
morphism
T<,(f(B)): 7, (U(B)) — 7,(V(B))

is an equivalence. Since X is hypercomplete, this shows that for all B € Bool”, the mor-
phism f(B): U(B) — V(B) isan equivalence. Since equivalences in Pyk(X) are checked
objectwise, this shows that f is an equivalence. O

2.4.4 Corollary. Restriction of presheaves Sh,{Comp) — Pyk(S) induces an equivalence

Sh‘fgp (Comp) = Pyk(S) .
2.4.5 Corollary. The topos Pyk(S) has enough points.

Proof. Since Pyk(S) is the hypercompletion of the 1-localic coherent topos Sh,(Comp)
this follows from the higher-categorical Deligne Completeness Theorem [SAG, Theo-
rem A.4.0.5] and [SAG, Proposition A.2.2.2]. ]

2.4.6. Since the terminal object of Pyk(S) is given by I'* (1) where 15 € § is the ter-
minal object, the datum of a point of a pyknotic space X is the datum of a point of the
underlying space X(*) € S. Hence the category Pyk(S), of pointed objects in Pyk(S) is
canonically identified with the category Pyk(S, ) of pyknotic pointed spaces.

2.4.7 Example. Composition with 7. : S, — P defines a functor
. Pyk(S), — Pyk(P),

where P is the category

Set, =0
Grp when k {1 =1
Ab >2.
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These functors are collectively conservative, so that a morphism f: X — Y of pyk-
notic spaces is an equivalence if and only if for every k > 0, the morphism m;(f) is an
isomorphism of pointed pyknotic sets, pyknotic groups, or pyknotic abelian groups, as
appropriate.

The upshot here is that pyknotic spaces have pyknotic homotopy groups.

2.4.8. If X e Pyk(S) is a coherent object, then the pyknotic set 1y(X) = 7(X) is a
coherent object of the coherent 1-topos Pyk(Set), hence representable by a compactum.
More generally, for every point x € X and integer n > 1, the homotopy pyknotic group
m,(X, x) is representable by a compact hausdorft group (abelian if n > 2).

Now we analyze the Postnikov completeness of Pyk(X).

2.4.9 Notation. For categories X and Y with finite products, write
Fun*(X,Y) ¢ Fun(X,Y)

for the full subcategory spanned by those functors X — Y that preserve finite products.
Write Catf%7 ¢ Cats, for the subcategory with objects categories with finite products and
morphisms functors that preserve finite products.

Recall that the forgetful functor Catg — Cats, preserves small limits. It follows
readily that the functor

x . Cat? p
Fun™(B,-): Cat,s2 — Cat52
preserves small limits as well.

2.4.10 Lemma. Let X be a Postnikov complete topos. Then the topos Pyk(X) is Postnikov
complete.

Proof. Since X is Postnikov complete, the natural functor
X —lim, X_,

to the inverse limit in Cat along the n-truncation functors 7,: X_,,; — X, is an
equivalence [SAG, Theorem A.7.2.4]. Since the n-truncation functors on a topos pre-
serve finite products [HTT, Lemma 6.5.1.2], we obtain an equivalence

(2.4.11) Pyk(X) = lim, Pyk(X_,),
where the latter inverse limit is computed in Cats, along the functors
Pyk(r.,): Pyk(X.,.;) — Pyk(X_,).
In light (2.4.2), the equivalence (2.4.11) shows that Pyk(X) is Postnikov complete. [J

2.4.12 Example. In particular, Pyk(S) is Postnikov complete. Hence any pyknotic space
X can be exhibited as the limit of its Postnikov tower

X—> 27X 51X > 170X 51 X > 1 ,X =%,

21


http://www.math.harvard.edu/~lurie/papers/SAG-rootfile.pdf#theorem.A.7.2.4
http://www.math.harvard.edu/~lurie/papers/HTT.pdf#theorem.6.5.1.2

and the fibre of 7, X — 7, X over a point is k-truncated and k-connected. Since
Pyk(S) has homotopy dimension 0 (Construction 2.2.12), it follows that each of these
fibres is the classifying pyknotic space B¥7, (X), where 7 (X) is:

either empty or * =-1
a pointed pyknotic set =0
] when k
a pyknotic group =1
a pyknotic abelian group 22

2.5 Tensor products of pyknotic objects

Let D® be a presentably symmetric monoidal category - i.e., a presentable category with
a symmetric monoidal structure in which the tensor product functor D x D — D pre-
serves colimits separately in each variable. Let X and Y be two pyknotic objects of D;
we now set about showing that their tensor product X ®, Y admits a canonical pyknotic
structure.

2.5.1 Construction. Let D® be a presentably symmetric monoidal category. Thus D® is
a commutative algebra object in Pr’.

Since Comp is a symmetric monoidal category under the product, the Day convolu-
tion symmetric monoidal structure on Fun(Comp®, D) coincides with the objectwise
tensor product. The localisation functor Fun(Comp”, D) — Pyk(D) is compatible with
this symmetric monoidal structure, and so we obtain a symmetric monoidal structure
Pyk(D)® on Pyk(D).

Equivalently, the product of pyknotic spaces preserves colimits separately in each
variable, so we obtain a presentably symmetric monoidal category Pyk(S)*. Now we
can identify

Pyk(D)® = Pyk(S)* ® D®,

the tensor product (=coproduct) of the commutative algebras in Pr’.
To be explicit, if X and Y are pyknotic objects of D, then their tensor product is the
pyknotic object X ®pyp) Y that is the hypersheafification of the assignment

K- X(K)®p Y(K).
The unit is the discrete pyknotic object attached to the unit of D.

2.5.2 Example. If the presentably symmetric monoidal category D® is cartesian, then
so is the symmetric monoidal structure Pyk(D)®.

2.5.3. Let D® be presentably symmetric monoidal. Then by construction, the discrete
functor D — Pyk(D) extends to a symmetric monoidal left adjoint D® — Pyk(D)?, so
that for any objects U and V' of D, we have a natural equivalence

Udisc ®Pyk(D) Vdisc ~ (U ®p V)disc )

Since I, : Pyk(S) — S preserves finite products, it is also naturally symmetric monoidal,
whence the functor I', : Pyk(D) — D is symmetric monoidal as well, so that for any two
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pyknotic objects X and Y of D, we obtain an equivalence
X®D Y= X®Pyk(D) Y.

Also, if X is an object of D and if Y is a pyknotic object of D, then there are equivalences
in D

MOprk(D)(XdiSC,Y):MORD(X,Y) and MORPyk(D)(Y,Xi”diSC):MORD(Y,X).

2.5.4 Example. Let A and B be two pyknotic abelian groups. Then their tensor product
A ® B admits a canonical pyknotic structure. For example, one can form the adéles of Q
as a pyknotic abelian group in this manner:

AQ = (ZX R) ®Pyk(Ab) Qdisc .

2.6 Pyk-modules
A Pyk-module is a presentable category C along with a functor
CompxC—-C, (K, X)»KeX

equipped with equivalences *®X = X and (KxL)®X = K®(L®X), which plays the role
of a ‘continuous coproduct’ of X with itself indexed over the points of K. Accordingly,
we will insist upon the following axioms.

» For any compactum K and any small diagram X : I — C, the natural map
colim;;(K ® X;) = K ® (colim;; X;)
is an equivalence.

» For any object X of C and any two compacta K and L, the natural map
(KeX)u(LeX) > (KuL)®X
is an equivalence.

» For any object X € C, any compactum K, and any hypercover L, — K, the
natural map
colimyp L, ® X > K® X

is an equivalence.

This can all be expressed compactly (and with full homotopy coherence) in the follow-
ing.

2.6.1 Definition. A Pyk-module is a module over the commutative algebra Pyk(S) in
Prf. A commutative Pyk-algebra is an object under Pyk(S)* in CAlg(Pr®).

2.6.2 Example. If D is a presentable category, then Pyk(D) is a Pyk-module, and if D®
is a presentably symmetric monoidal category, then Pyk(D)® is a Pyk-algebra.
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2.6.3. A Pyk-module structure on a presentable category C is thus a left adjoint functor
a” : Pyk(C) — C along with equivalences

@I =ide  and  a*A’ = aPyk(a’)

(and their higher-order analogues), where A* : Pyk(Pyk(C)) — Pyk(C) is the pullback
along the diagonal Comp — Comp x Comp.

Thus a Pyk-module can also be specified by a presentable category C along with a
functor
CxComp”? - C, (X,K)w XK,

along with equivalences X* = X and XD =~ (X¥)L which plays the role of a ‘con-
tinuous product’ of X with itself indexed over the points of K subject to the following
axioms.

» For any compactum K and any small diagram X : I — C, the natural map
is an equivalence.

» For any object X of C and any two compacta K and L, the natural map
XKD, xKx xt

is an equivalence.

» For any object X € C, any compactum K, and any hypercover L, — K, the
natural map
XK — lim, x*-

is an equivalence.

2.6.4. Note that if C is a Pyk-module, then for any object X of C and any compactum
K, we obtain morphisms

]_[ X—>Ke®X and XKoo H X = X™mise(K |
kelK| ke|K|

natural in both X and K. These morphisms are generally not equivalences. For example,
there exists a small regular cardinal x such that «*: Pyk(C) — C carries x-compact
objects to x-compact objects. Thus if X is x-compact, so is K ® X, for any compactum
K; this will generally not be true of the coproduct [ [; x| X-

2.6.5. For any presentable category C, the category Pyk(C) is the free Pyk-module gen-
erated by C.
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3 Pyknotic objects in algebra & homotopy theory

3.1 Pyknotic spectra & pyknotic homotopy groups

In this subsection we investigate the category Pyk(Sp) of pyknotic spectra. It is a formal
matter to see that this agrees with the stabilisation of the category of pyknotic spaces.

3.1.1 Notation. Let C be a category with pushouts and a terminal object and let D be a
category with finite limits. We write

Exc, (C, D) ¢ Fun(C, D)
for the full subcategory spanned by the reduced excisive functors [HA, Definition 1.4.2.1].

3.1.2. Let Bbe a category with finite products and D a category with finite limits. Then
Fun™(B, D) admits finite limits, which are computed pointwise.

WEe'll record a few facts for future use. All are immediate from the definitions.

3.1.3 Lemma. Let B, C, and D be categories, and assume that B and D have finite products.
Then the natural equivalence of categories

Fun(B, Fun(C, D)) = Fun(C, Fun(B, D))
restricts to an equivalence
(3.1.4) Fun®(B, Fun(C, D)) = Fun(C, Fun*(B, D)) .

3.1.5 Example. Let C and D be categories, and assume that D has finite products. Then
we have a natural equivalence of categories

Pyk(Fun(C, D)) = Fun(C, Pyk(D)) .

3.1.6 Lemma. Let B, C, and D be categories. Assume that B has finite products, C has
pushouts and a terminal object, and D has finite limits. Then the natural equivalence of
categories (3.1.4) restricts to an equivalence

Fun*(B, Exc, (C, D)) = Exc, (C, Fun*(B, D)) .

3.1.7 Example. Taking B = Bool” and C to be the category L™ of finite pointed spaces
in Lemma 3.1.6 we deduce that we have an equivalence

Pyk(Sp(D)) = Sp(Pyk(D))
natural in categories D with finite limits (cf. [HA, Definition 1.4.2.8]).

3.1.8 Example. Lemma 2.4.10 shows that Pyk(Sp) is the stabilisation of a Postnikov
complete topos.
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3.1.9. If D is a 1-category with finite products, then we have a nautral equivalence of
1-categories
Pyk(Ab(D)) = Ab(Pyk(D))

between pyknotic objects in the category Ab(D) of ableian group objects in D and
abelian group objects in Pyk(D).
3.1.10 Notation. For a topos X, write PykSP(X) = Pyk(Sp(X)). Write
Pyk®(X) c Pyk®(X) and  Pyk¥®(X) c Pyk**(X)

for the full subcategories spanned by the connective and coconnective objects, respec-
tively.
3.1.11 Proposition. Let X be a topos. Then:
(3.1.11.1) The full subcategories (Pyki%(X), Pyki%(X)) deterine an accessible t-structure

on Pyk*?(X).
(3.1.11.2) The full subcategory Pyki%(X) ¢ Pyk*(X) is closed under filtered colimits.
(3.1.11.3) The t-structure on PykSP(X) is right complete.

(3.1.11.4) The functor my: PyksP(X) — Pyk(X)_, determines an equivalence of cate-
gories
Pyk?(X)® = Pyk(Ab(X_,)).

(3.1.11.5) If, in addition, X is Postnikov complete, then the t-structure on PyksP(X) is left
complete.

Proof. Ttems (3.1.11.1)—(3.1.11.4) follow from [DAG VTI, Proposition 1.7] (see also [SAG,
Proposition C.5.2.8]). Lemma 2.4.10 and [DAG VII, Warning 1.8] imply (3.1.11.5). O

3.1.12 Example. The t-structure on Pyk(Sp) is both left and right complete and the
heart Pyk(Sp)" is canonically equivalent to the category Pyk(Ab) of pyknotic abelian
groups. Consequently, the homotopy groups of a pyknotic spectrum are pyknotic abelian
groups.

Moreover, since stabilisation is functorial in categories with finite limits and left ex-
act functors, from Construction 2.2.12 we get a chain of adjoints

«—7T
Pyk(Sp)

r,—— Sp.
Iv!_v

From [DAG VII, Remark 1.9] we deduce that the functors I'*: Sp — Pyk(Sp) and
I, : Pyk(Sp) — Sp are t-exact, and the functor I'': Sp < Pyk(Sp) is left t-exact. Also
note that the square of right adjoints

Pyk(Sp) = Pyk(S)

e Ir

Sp—»S

commutes.
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3.1.13 Example. If A is a pyknotic abelian group, then we also write A for the pyknotic
spectrum obtained by composing A with the Eilenberg-Mac Lane functor Ab — Sp.

3.1.14. Stabilising the embedding of profinite spaces into pyknotic spaces (Example 3.3.10)
we obtain an embedding
Sp(Pro(S,)) = Pyk(Sp).

3.1.15. Let C be a presentable category. By the universal property of the category of
prodbjects in C, the discrete functor I'* : C — Pyk(C) extneds to a functor Pro(C) —
Pyk(C), which admits a left adjoint I} : Pyk(C) — Pro(C). The materialisation functor
mat: Pro(C) — C [SAG, Example A.8.1.7] then factors as the composite

Pro(C) —> Pyk(C) - C.

3.1.16 Example. Let E be an E;-ring spectrum. Write E** for the Amitsur complex -
the augmented cosimiplicial spectrum

—
S() E — E®2 «— E®3
— pr—

il

For a spectrum X, the E-nilpotent completion X} is the limit of the Tot-tower
X3 = lim,, Tot"(X ®g, E®")

See [8, §5; 13; 16, $2.1]. Regarding the Tot-tower as a prospectrum and applying the
functor Pro(Sp) — Pyk(Sp), we obtain the pyknotic E-nilpotent completion

XpP* = lim,, Tot"(X @, E®*)%

which has underlying spectrum the usual E-nilpotent completion X%. Since I'* does
not preserve limits in general, the pyknotic E-nilpotent completion X *is generally
not discrete. Rather, the pyknotic E-nilpotent completion is a pyknotic refinment of the
E-nilpotent completion X7.

Note also that since I'* preserves finite limits and is symmetric monoidal (2.5.3), we
can describe X5 ¥ as the limit

X]/E\J’)’k ~ limn Tot" (Xdisc ®Pyk(Sp) (Edi55)®*) )

Thus the pyknotic E-nilpotent completion is the result of forming the E“is¢_nilpotent
completion of X% in pyknotic spectra

3.2 Pyknotic rings and pyknotic modules

3.2.1 Definition. A pyknotic ring is nothing more than a pyknotic object in the cate-
gory of rings (which we will usually assume are commutative). A pyknotic module over
a pyknotic ring R is an R-module in Pyk(Ab).
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3.2.2 Example. Any normed ringis compactly generated, and so they are pyknotic rings.
In particular, Z, Q, R, C, any local field E, any algebraic closure thereof, C,, all Banach
rings, & c., are all pyknotic rings in a natural manner.

3.2.3 Example. For any global field K, the adele group A is a locally compact haus-
dorff ring, whence it is a compactly generated ring, whence it is a pyknotic ring. More
generally, if Sis a set, and {i;: B, — A} is a family of pyknotic ring homomorphisms,
then the restricted product is the pyknotic ring

L1 solim 1] Au> 11 B

s€S wew weSNW
where Pf"(S) is the poset of finite subsets of S.

3.2.4 Example. Over any normed ring R, any first countable (and thus metrisable) topo-
logical R-module admits a natural pyknotic structure.

3.2.5 Construction. Let A be an associative pyknotic ring. For example, A may be a
topological ring with a compactly generated topology. Viewed as a pyknotic spectrum,
A has the natural structure of a pyknotic E; ring - i.e., an E; algebra in Pyk(Sp)®. If A is
commutative, then A is E .

We may therefore define the pyknotic derived category Dypy (A) as the category of left
A-modules in Pyk(Sp).

3.3 The proétale topos as a Pyk-algebra

3.3.1 Notation. For a topos X, we write X" ¢ X for the full subcategory spanned by
the truncated coherent objects — those objects that are both truncated in coherent. Recall
that if X is a coherent topos, then X% is a bounded pretopos [SAG, Example A.7.4.4].

3.3.2 Construction. Let X be a bounded coherent topos, and let
h
C=X0cX

be the bounded pretopos of truncated coherent objects of X. Form the (small) category
Pro® (C) of prodbjects relative to 8, of C. This is the universal category with all tiny
inverse limits generated by C. The category Pro® (C) is not a pretopos, but the collection
eff of effective epimorphisms endows it with the structure of a presite (Definition 1.3.5).
Consequently, we may form the hypercomplete, coherent, and locally coherent topos

X" = sh (Pro®(C))

, Propositions A.2.2.2 .3.1.3[. We ca the solidification of the topos X.
[SAG, Propositi A & A 1. Wi 11 X7 the solidi j f the topos X

3.3.3. By[6, Corollary 2.8],if f, : X — Y isacoherent geometric morphism of bounded
coherent topoi, then the induced geometric morphism f;: X" — YT is coherent.

3.3.4 Example. From Construction 1.3.6 it follows that if X is a bounded coherent topos
then the effective epimorphism topology on Pro(X<%" ) is subcanonical. Moreover, since
the Yoneda embedding

Pro(X%%) < Shyg(Pro(X<%,))
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preserves tiny limits, truncated objects of a topos are hypercomplete, and hypercomplete
objects are closed under limits, the Yoneda embedding factors through X.

Our next goal is to show that if X is an n-localic coherent topos, then X' can be
written as hypersheaves on Pro(X;"nh,l) (Proposition 3.3.9). To see this, we first need to
show that every object of Pro(X%" ) admits an effective epimorphism from an object of
Pro(X%" ). This requires a number of preliminaries.

3.3.5. Let n > 1 be an integer and let X be a coherent n-localic topos. Then by the
classification theorem for bounded coherent topoi [SAG, Theorem A.7.5.3], since X is
n-localic we have X = Sheﬁ(X;ilh_l).“’ Thus X% | ¢ X generates X under colimits. In
particular, for every quasicompact object U € X, there exists an effective epimorphism
[L;c;U; > U where U; € X', for each i € I. Since U is quasicompact, there exists a
finite subset I, ¢ Isuchthat][, 1, Ui > Ulsan effective epimorphism. Since U; € X% |
for each i € I, we deduce that the finite coproduct | [, I, U, is (n — 1)-truncated [HTT,
Lemma 6.4.4.4] and coherent. Thus every quasicompact object of X admits an effective
epimorphism from a (n — 1)-truncated coherent object of X.

Since we must contend with prodbjects, it isn’t immediate from (3.3.5) that every
object of Pro(X%" ) admits an effective epimorphism from an object of Pro(X<" ). To
show this, we'll use the fact that we can always arrange to index a pro6bject by a partic-
ularly nice poset:

3.3.6 Lemma ([SAG, Lemma E.1.6.4]). Let A’ be a filtered poset. Then there exists a
cofinal map of posets f: A — A, where A is a filtered poset with the following property:

() For every element o € A, the set {5 € A| S < a} is finite.

3.3.7 Construction. Let us call a poset A satisfying () residually finite. If A is a resid-
ually finite poset, then there exists a map of posets rk: A — N called the rank which
is determined by the following requirement: rk(«) is the smallest natural number not
equal to rk(p) for 8 < « (cf. [HA, Remark A.5.17]). In particular, rk(«) = 0 if and only
if o is a minimal element of A.

3.3.8 Proposition. Letn > 1 be an integer and let X be an n-localic coherent topos. Then
for every object X € Pro(X), there exists an effective epimorphism Y —» X where

Y € Pro(X% ).

Proof. Write C :== X! and D :== X% |. Let {X_} . a» be an object of Pro(C), where we
without loss of generality assume that A is a residually finite filtered poset (Lemma 3.3.6).
We construct a morphism e: {Y },cq0 — {X }qeaw in Pro(C) where for each o € A,
eache,: Y, — X, is an effective epimorphism and Y, € D. We construct this induc-
tively on the rank of elements of A. For each n € N, write

A_, ={ac Al rk(a) < n}.

First, for each element o € A with rk(«) = 0 (i.e., minimal element of A), appealing
to (3.3.5), choose an effective epimorphisme, : Y, - X, where Y, € D.

*°Here we'll only actually use the case n = 1, which is the content of [6, 2.13].
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For the induction step, suppose that we have defined a functor Y : A%, — D along
with a natural effective epimorphism e: Y — X|,_; we now extend Y to A_,,, as fol-
lows. For each a € A with rk(a) = n+1, consider the pulled-back effective epimorphism

11 X Xx, Yg = Xo
<a
rk(B)=n

For each 8 < « with rk(f) = n, appealing to (3.3.5) we choose an effective epimor-
phismeg: Yg - X, X x, Yo and define the effective epimorphisme, : Y, - X, as the
composite

= |1 Yﬁ [ X xx, Y — X4
B<a B<a
rk(B)=n rk(B)=n

Then by construction the functor Y: A%, — D extends to a functor Y: A% ., — D
equipped with a natural effective epimorphisme: Y - X|,__,as desired. 0

We now prove the desired result using a slight variant of [SAG, Proposition A.3.4.2].

3.3.9 Proposition. Letn > 1 be an integer and let X be an n-localic coherent topos. Then
restriction of presheaves defines an equivalence

X' = ShF (Pro(XZ) )
with inverse given by right Kan extension.

Proof. Leti*: Pro(X%”nh_l) - Pro(Xi‘Zg) denote the inclusion. Since Pro(Xi"nh 1) isclosed
under finite coproducts and finite limits in Pro(X¢ coh "), theinclusion i* induces a geomet-
ric morphism

i X' — Sh P(Pro(X<" 1)),

where the right adjoint i, is given by restriction of presheaves [SAG, Proposition A.3.3.1].
Combining Proposition 3.3.8 with [SAG, Proposition 20.4.5.1 & Remark 20.4.5.2] and
the hypercompleteness of X', we deduce that i, is fully faithful. To complete the proof,
it suffices to show that i* is fully faithful. We do this by showing that i, admits a fully
faithful right adjoint i' given by right Kan extension.

For simplicity, we write C = Pro(th Yand D = Pro(Xiilh_l). Let F: D’ — Sbe
a sheaf for the effective epimorphism topology, and let i'(F): C% — S denote the right
Kan extension of F along the inclusion D ¢ C?. We claim that i*(F) is a sheaf on C
for the effective epimorphism topology. To see this, fix a covering sieve S ¢ C,x. Set
Djx = D xc C/x and T := D X S. We wish to show that the upper horizontal map in
the square

HE)X) — lim #(F)(X")

| |

Jim {(F)Y) —— lim i'(F)(Y)

1X
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is an equivalence. The vertical maps are equivalences because i'(F) is the right Kan exten-
sion of F. The lower horizontal map is an equivalence because F is a sheaf on D and every
object of C is covered by an object of D (Proposition 3.3.8). Thus right Kan extension of
presheaves restricts to a fully faithful functor

i*: Shyg(Pro(X) ) < Shyy(Pro(X<h))

which is right adjoint to restriction of presheaves. Since the image of a hypercomplete
sheaf under the pushforward in a geometric morphism is hypercomplete, the restriction
of i* to hypercomplete sheaves defines a fully faithful right adjoint to i,, as desired. [

3.3.10 Example. Combining Warning 2.2.2 and Corollary 2.4.4 with Proposition 3.3.9
shows that Pyk(S) = S' and provides a fully faithful embedding

Pro(S,;) < Pyk(S).
In particular, the solidification X' of a bounded topos is naturally a Pyk-algebra.

3.3.11 Example. Combining Proposition 3.3.9 with [14, Example 7.1.7] we see that that
solidification of the étale topos X, of a coherent scheme X is the hypercompletion of
the proétale topos KXprost of Bhatt and Scholze [3].

r0é

3.3.12 Warning. In general, the solidification X of a bounded coherent topos X does
not coincide with its pyknotification Pyk(X).

4 Pyknotic categories

4.1 Pyknotic categories

4.1.1 Definition. A pyknotic category is a pyknotic object in Catg for some inaccessible
cardinal 8. A pyknotic functor is a morphism of Pyk(Catg).

Similarly, a pseudopyknotic category is a pseudopyknotic object in Cats for some
inaccessible cardinal 8. A pseudopyknotic functor is a morphism of YPyk(Cat;).

4.1.2. The inclusion S5 — Caty induces a fully faithful functor Pyk(S;) — Pyk(Cats).
Write H: Caty — S; for the left adjoint to the inclusion S5 — Catg, and i: Caty —
s for its right adjoint. Then H(C) is the classifying space obtained by inverting every
morphism in C, and «C ¢ C is the interor or maximal subgroupoid contained in C.
Since H and ¢ both preserve finite products, composition with H and  define functors

H,i: Pyk(Cats) — Pyk(S;)

which are left and right adjoint to the inclusion Pyk(Ss) — Pyk(Caty), respectively.
These are the formations of the classifying pyknotic space and the interior pyknotic space
of a pyknotic category.

4.1.3. The formation of the opposite (pseudo)pyknotic category to a (pseudo)pyknotic
category is performed objectwise.
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4.1.4 Construction. If Cisa Pyk-module, then C acquires a natural pyknotic structure
in the following manner. Let us abuse notation slightly and write C for the pyknotic
category EStn” — Pr’ given by

C(K) = C ®Pyk(s) Pyk(S)/K .

The category underlying this pyknotic category C is indeed our original C. Please ob-
serve also that if K and L are Stonean topological spaces, the natural morphism

C(KUL) = C®pys) PYk(S)(kur
= C ®py(s) (PYk(S),x ® Pyk(S),1)
— (C Bpyugs) PYK(S)j10) & (C Bpys) PYK(S)1)
=~ C(K)x C(L)

is an equivalence, so C is indeed a pyknotic category.
In particular, if f, : X — Pyk(S) is a geometric morphism, then as a pyknotic cate-
gory, X carries a Stonean topological space K to the fibre product of topoi

X(K) =X XPyk(S) PYk(S)/K .

4.1.5 Construction. Let C be a pyknotic category. Composing C with the twisted arrow
functor O: Caty — Caty provides a twisted arrow pyknotic category O(C) with its ob-
jectwise left fibration O(C) — C% x C. Armed with this, we obtain a pyknotic mapping
space functor

Map.: C x C — Pyk(S)

such that for any Stonean topological space K and any pair of objects X and Y in C(K),
the sheaf Map (X, Y)(K) on EStn  carries f: L — K to the space MapC(L)(f*X, frY).

4.1.6 Example. Let {C_},c» be an inverse system of categories. The limit

C:= lim Ci
aEA?
of pyknotic categories is generally not discrete. The interior pyknotic space of C is the
limit of the discrete interiors (:C,)**, but the classifying pyknotic space H(C) is not
prodiscrete.

4.1.7 Example. A stable pyknotic category is a pyknotic object in the category Cat} of
(6-small) stable categories and exact functors.

Since mapping spaces in pyknotic categories have natural pyknotic structures (Con-
struction 4.1.5), it follows that the Ext groups in a stable pyknotic category admit the
structure of pyknotic abelian groups. That is, if A is a stable pyknotic category, then one
may define, for any n € Z, the pyknotic abelian group

Ext} (X,Y) = my Map ,(X[-n],Y) .

The category Pyk(Sp) of pyknotic spectra is naturally a Pyk-algebra, and so for any
module A in Pr" over Pyk(Sp), the associated pyknotic category is a stable pyknotic
category. In particular, for any pyknotic ring R, the pyknotic derived category Dpy; (R)
has the natural structure of a stable pyknotic category.
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4.2 Pyknotic categories and complete Segal pyknotic spaces
4.2.1 Notation. Let D be a category with finite limits. Write
CS(D) ¢ Fun(A®, D)

for the full subcategory spanned by the complete Segal objects, that is, those functors
F: A% — D satisfying the following conditions:

» For every m € A, the natural morphism
Fm — F{O, 1} XF{I} F{I,Z} XF{Z} XF{mfl} F{m - l,m}
is an equivalence in D.

» The natural morphism
Fy = F5 Xpjoyxrq1,3) Fo

is an equivalence in D.

4.2.2. Joyal and Tierney [10] showed that the nerve construction defines an equivalence
N: Cat = CS(S)
from the category of categories to the category of complete Segal spaces.

From Lemma 3.1.3 we immediately deduce:

4.2.3 Lemma. Let B be a category with products and D a category with finite limits. Then
the natural equivalence of categories

Fun*(B, Fun(A”, D)) = Fun(A%, Fun*(B, D))
restricts to an equivalence
Fun*(B, CS(D)) = CS(Fun*(B, D)) .
4.2.4 Example. Lemma 4.2.3 provides an equivalence
Pyk(Cat) = CS(Pyk(S)) .
4.2.5. Similarly, we have an equivalence
YPyk(Cat) = CS(YPyk(S))

between pseudopyknotic categories and complete Segal objects in pseudopyknotic spaces.
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4.3 Ultracategories as pseudopyknotic categories

In recent work [14], Lurie studied 1-categories equipped with an ultrastructure, which
we simply refer to as 1-ultracategories*'. An ultracategory structure on a 1-category M
consists of, for each set S and ultrafilter 4 € 5(S), an ultraproduct functor

L(—)dy: 1M - M,

seS

along with data relating these ultraproduct functors suggested by the integral notation,
all subject to a number of coherence axioms [14, Definition 1.3.1]. The primary example
of a 1-ultracategory is the following:

4.3.1 Example ([14, Example 1.3.8]). Let M be a 1-category with products and filtered
colimits. Then M has an ultrastructure where for each set S and ultrafilter 4 € (S), the
ultraproduct IS(—)dy is defined by the usual ultraproduct formula

(4.3.2) L mdy = Cé)()lgl[l;n H mq,

SES,

where the colimit is taken over the filtered diagram of all subsets S, ¢ S in the ultrafilter
y. This ultrastructure is called the categorical ultrastructure on M.

More generally, if M' ¢ M is a full subcategory closed under ultraproducts in M
(defined by equation (4.3.2)), then the categorical ultrastructure on M restructs to an
ultrastructure on M'. In fact, every 1-ultracategory can be obtained in this way; see [14,

§8].

4.3.3 Recollection. Let X be a 1-topos. The category of points of X is the category
Pt(X) := Fun®(X, Set) of left exact left adjoints f*: X — Set and natural transfor-
mations between them. If X is a coherent 1-topos, then restriction along the inclusion
Xt < X of coherent objects defines a fully faithful functor

Pt(X) — Fun(X", Set)

with essential image the pretopos morphisms, i.e., those functors X" — Set that pre-
serve finite limits, finite coproducts, and effective epimorphisms.

4.3.4 Example. If X is a coherent 1-topos, then by the Lo§ ultraproduct theorem [14,
Theorem 2.1.1] and the equivalence between coherent 1-topoi and 1-pretopoi [ 14, Propo-
sition C.6.4], the cateory of points Pt(X) is closed under ultraproducts in Fun(X“", Set),
hence admits an ultrastructure.

If M and N are 1-ultracategories, a left ultrastrucature on a functor F: M — N
consists of comparison natural transformation of ultraproducts

(4.3.5) F([(-)du) — [(F(-)dp

"'Here we still follow our categorical conventions and use the term ‘1-ultracategory’ to refer to what Lurie
calls an ‘ultracategory’ in [14], and use the term ‘ultracategory’ for the higher-categorical notion.
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for each set S and ultrafilter y € S, subject to a number of coherences [14, Definition
1.4.1]. A left ultrafunctor is an ultrafunctor if all of the comparison morphisms (4.3.5)
are equivalences. Then 1-ultracategories and left ultrafunctors between them assemble
into a 2-category Ulty. The 2-category Ult} embeds into pseudopyknotic 1-categories
in the following manner. First, writing USet ¢ Ult} for the full subcategory spanned by
those 1-ultracategories whose underlying 1-category is discrete, there is an equivalence
of 1-categories
USet = Comp

[14, Theorem 3.1.5]. Moreover, in [14, §4] Lurie proves that for any 1-ultracategory M,
the functor
Fun'Y (-, M): Comp? = USet” — Cat,

given by sending a compactum K to the 1-category Fun'U(K, M) of left ultrafunctors
K — M defines a stack of 1-categories on Comp with respect to the effective epimor-
phism topology. Moreover, the construction

Ult} — ¥Pyk(Cat,), M — Fun'Y(-, M)

defines a fully faithful embedding.*?

The main motivation of the study of 1-ultracategories is the following result, which
implies both the Deligne Completeness Theorem and Makkai’s Strong Conecptual Com-
pleteness Theorem [15]:

4.3.6 Theorem ([14, Theorem 2.2.2]). Let X be a coherent 1-topos. Then there is a natural
equivalence of categories
Fun"(Pt(X), Set) = X,

where Set is given the categorical ultrastructure and Pt(X) is given the ultrastructure of
Example 4.3.4.

The ‘explicit’ definition of an 1-ultracategory as a 1-category with ultraproduct func-
tors subject to a collection of coherences isn't well-suited to generalise to the higher-
categorical setting. As such, we provide a different description of ultracategories follow-
ing [14, §8]; this material will appear in [Ker], so we do not provide proofs here.

4.3.7 Definition. Let E be a category with finite products. An object X € E with finite
products is coconnected if Mapp(—, X): E* — § carries finite products in E to finite
coproducts in S.

4.3.8 Definition ([14, Definition 8.2.2]). An ultracategory envelope is a category E sat-
isfying the following conditions:

(4.3.8.1) The category E admits products.

(4.3.8.2) Every object X € E can be written as a product [ |
is a coconnected object of E.

s Xs» where each factor X

>Ultracategories and left ultrafunctors really form a (2, 2)-category, and ultracategories and left ultrafunc-
tors embed fully faithfully into the (2, 2)-category of 1-categories, functors, and natural transformations.

35



(4.3.8.3) The full subcategory E“ ¢ E spanned by the coconnected objects has ultra-
products in E. That is, for every collection {X,},cs of coconnected objects of E
and every ultrafilter y on S, the filtered colimit

exists and is a coconnected object of E.

4.3.9 Definition. Let M be a category. An ultracategory structure on M consists of an
ultracategory envelope Env(M) along with an equivalence of categories M =~ Env(M)“.

4.3.10. Lurie shows [14, Theorem 8.2.5] that the theory of 1-ultracategories in the sense
of Definition 4.3.9 coincides with the ‘explicit’ theory of ultracategories (in the sense of
[14, Definition 1.3.1]).

4.3.11 Example ([14, Example 8.4.3]). Let X be a bounded coherent topos. Then again,

restriction along the inclusion X" < X defines an embedding

Pt(X) < Fun(X<,S)

[SAG, Proposition A.6.4.4]. Write Env(Pt(X)) ¢ Pun(Xi‘g’o, S) for the smallest full sub-
category containing Pt(X) and closed under small products. Then Env(Pt(X)) is an ul-
tracategory envelope and the inclusion Pt(X) ¢ Env(Pt(X)) provides an ultrastructure
on Pt(X).

More natural from the ultracategory envelope perspective are right ultrafunctors -
morphisms of the ultracategory envelopes that preserve products and coconnected ob-
jects [14, §8.2]. In terms of the explicit definition of 1-ultracategories, right ultrafunc-
tors are just like left ultrafunctors, but the ultraproduct comparisons (4.3.5) go in the
opposite direction [14, Definition 8.1.1]. From the ultracategory envelope perspective,
defining left ultrafunctors is more involved, but the upshot is that there’s still a fully
faithful embedding into pseudopyknotic categories:

4.3.12 Theorem. There is a fully faithful embedding
Ult" — WPyk(Cat)

from a category of ultracategories and left ultrafunctors between them to pseudopyknotic
categories.

4.3.13 Example. The assignment X +— Pt(X) defines a fully faithful functor from
bounded coherent topoi and arbitrary geometric morphisms to ultracategories and left
ultrafunctors — coherent geometric morphisms are identified ultrafunctors (cf. [14, Ex-
ample 2.2.8]).

Consider the category Str! of 7-finite stratified spaces*®. This is the full subcategory
Str! ¢ Cat with objects those categories IT with the property that every endomorphism
in IT is an equivalence, IT has only finitely many objects up to equivalence, and all of the

3Here we work with the natural stratification by the underlying poset.
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mapping spaces in IT are 7-finite spaces. In [2] showed that the extension to prodbjects
of the functor given by IT - Fun(I1, S) defines a fully faithful embedding

Pro(Str}) — Topcb)g

of profinite stratified spaces into bounded coherent topoi and coherent geometric mor-
phisms. We identified the essential image as the category Top* of spectral topoi — this
is our higher-categorical Hoschster Duality Theorem [2, Theorem 10.3.1].

This embedding has a left adjoint IT,, ) : Topgf) — Pro(Str!) given by the profi-
nite stratified shape. For a spectral topos X, the profinite statified shape ITf;,, ;)(X) has
the property that the materialisation mat ITf;,, ;)(X) is equivalent to the category Pt(X)
of points of X. It is thus possible to recast the profinite stratified shape and exodromy
equivalence of [2, Theorem 11.1.7] in terms of ultracategories (or pseudopyknotic cate-
gories). In particular, for a coherent scheme X, our profinite Galois category Gal(X)[1;
2, §13] is naturally a pyknotic category. The benefit of the perspective taken in [2] is that
the theory of profinite stratified spaces is appreciably more simple than that of pyknotic
categories.
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