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Abstract
We compare the classifying anima of two natural condensed∞-categories associated to a

coherent∞-topos. One from our work with Barwick and Glasman on exit-path categories in
algebraic geometry, and the other from Lurie’s work on ultracategories. The key consequence
of our comparison is a connection between algebraic geometry andmodel theory: up to amild
completion, the proétale fundamental group of a scheme and the Lascar group of a complete
�rst-order theory are both special cases of the same construction.
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0 Introduction
The purpose of this note is to compare the classifying anima of two natural condensed∞-cate-
gories associated to a coherent∞-topos. The �rst condensed∞-category makes sense for any
∞-toposX and was introduced (in the setting of 1-topoi) in Lurie’s work on ultracategories [15].
We call it the condensed∞-category of points Pt(X) of X; it is given by sending an extremally
disconnected pro�nite set K to the∞-category

Pt(X)(K) ≔ Fun∗(X, Sh(K))

of left exact left adjoints f∗ ∶ X → Sh(K). In particular, the global sections of Pt(X) recovers
the∞-category of points of X.

The second condensed ∞-category we consider only makes sense when X is a coherent
∞-topos (the topos-theoretic version of quasicompactness and quasiseparatedness in scheme
theory), and was implicitly introduced in our work with Barwick and Glasman [1, §13.5]. We call
it the condensed∞-category of coherent points Ptcoh(X) ofX; it is given by sending an extremally
disconnected pro�nite set K to the∞-category

Ptcoh(X)(K) ≔ Fun∗,coh(X, Sh(K))
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of left exact left adjoints f∗ ∶ X → Sh(K) that preserve coherent objects. In particular, Ptcoh(X)
is a full subcategory of Pt(X). Here are two examples to put these condensed∞-categories in
context.

0.1 Example. The simplest example is whenX is the∞-topos of sheaves on the Sierpiński space.
Then for each extremally disconnected pro�nite set K, the inclusion Ptcoh(X)(K) ↪ Pt(X)(K)
is simply the inclusion

Clopen(K) ↪ Open(K)
of the poset of clopen subsets of K into the poset of all open subsets.

More generally, if X is a spectral topological space and X = Sh(X), then Pt(X)(K) is the
posetMap(K,X) of continuous maps K → X ordered by pointwise specialization: f ≤ g if and
only if for each k ∊ K, we have f(k) ∊ {g(k)}. In this case, Ptcoh(X)(K) is the subposet

Mapqc(K, X) ⊂ Map(K, X)

of quasicompact maps, i.e., maps such that the preimage of a quasicompact open is clopen.

0.2 Example. Let T be a coherent �rst-order theory, and let X be the classifying∞-topos of T.
Then for each extremally disconnected pro�nite set K, the∞-category Pt(X)(K) is the∞-cat-
egory ModT(Sh(K; Set)) of models of the theory T valued in the 1-category of sheaves of sets
on K. We write ModT ≔ Pt(X) and refer to ModT as the condensed category of models of T.
The subcategory Ptcoh(X)(K) has not traditionally been considered in model theory, but is a
subcategory of models satisfying an additional �niteness property.

Aswe now explain, both algebraic geometry andmodel theory, these condensed∞-categories
give rise to interesting invariants. Write B∶ Cat∞ → An for the left adjoint to the inclusion of
anima into∞-categories; for an∞-category C, refer to BC as the classifying anima of C. Since
B preserves �nite products, pointwise application of B de�ned a left adjoint to the inclusion
Cond(An) ↪ Cond(Cat∞) of condensed anima into condensed∞-categories. We also denote
this left adjoint by B.
Algebraic geometry. Let X be a qcqs scheme. Building o� our work with Barwick–Glasman [1,
§13.5], in recent work with Holzschuh–Lara–Mair–Martini–Wolf [8], we studied the condensed
classifying anima BPtcoh(Xét) of the condensed∞-category of coherent points of the étale∞-
topos of X. We call this condensed anima the condensed homotopy type of X, and denote it by
Πcond
∞ (X). One of ourmain results is that amild completion of the fundamental group ofΠcond

∞ (X)
recovers the proétale fundamental group of Bhatt–Scholze [2]. See [8, Theorem 1.9].

Model theory. In forthcoming work with Damaj and Zhang [6], we prove a similar result, but
in the setting of model theory. Given a complete �rst-order theory T, in [13], Lascar introduced a
quasicompact topological groupGalL(T) now referred to as the Lascar group ofT. As the notation
suggests, the Lascar group plays the role of the absolute Galois group of the theory T. Campion–
Cousins–Ye [3] proved that the discrete group underlying the Lascar group is the fundamental
group of the classifying anima of the categoryModT(Set) of models of T valued in the category
of sets [3, Theorem 3.5]. As explained in Example 0.2, the condensed category of points of the
classifying ∞-topos of T is a natural enhancement of ModT(Set) to a condensed category. In
[6], we re�ne Campion, Cousins, and Ye’s result by showing that there is an isomorphism of
condensed groups

GalL(T) ≃ π1(BModT)
between the Lascar group and the fundamental group of the condensed classifying anima of
ModT .

2



The takeaway is that the proétale fundamental group and the Lascar group arise as special
cases of similar constructions. But the �rst uses the smaller condensed∞-category Ptcoh(X),
and the second uses Pt(X). The main result of this note is that, in fact, these two invariants are
special cases of the same construction.1 Namely, there is a large class of coherent∞-topoi X for
which the inclusion Ptcoh(X) ↪ Pt(X) induces an equivalence on condensed classifying anima.

The statement of our main result involves spectral ∞-topoi introduced in our work with
Barwick and Glasman [1]. These are the bounded coherent ∞-topoi X whose ∞-category of
pointsPt(X) satis�es the property that for every objectx∗ ∊ Pt(X), every endomorphismx∗ → x∗
is an equivalence. See §A.3 for a quick review. The most important example is that the étale
∞-topos of a qcqs scheme is spectral.

0.3 Theorem (Theorem 2.20). LetX be a spectral∞-topos. Then for each extremally disconnected
pro�nite set K, the inclusion

Ptcoh(X)(K) ↪ Pt(X)(K)
admits a left adjoint. As a consequence, the inclusion of condensed∞-categoriesPtcoh(X) ↪ Pt(X)
induces an equivalence on condensed classifying anima.

0.4. We conclude the introduction by unpacking the two simplest cases of Theorem 0.3. As in
Example 0.1, �rst consider the case when X is the∞-topos of sheaves on the Sierpiński space.
Then the statement is that the inclusion

Clopen(K) ↪ Open(K)

admits left adjoint. This is clear: it is given by sending U ⊂ K to the closure U (which is open
since K is extremally disconnected). More generally, ifX is the∞-topos of sheaves on a spectral
topological space X, then Theorem 0.3 says that the inclusion

Mapqc(K, X) ⊂ Map(K, X)

of the poset of quasicompactmaps into allmaps admits a left adjoint. That is, anymapf∶ K → X
has a best approximation by a quasicompact map that is a pointwise generization of f.

0.1 Linear overview
In §1, we explain a sheaf-theoretic interpretation of the Łoś ultraproduct theorem. This is the
key result that lets us analyze the condensed classifying anima of the condensed ∞-category
of points Pt(X). These ideas are certainly implicit in Lurie’s work on ultracategories, but the
results we need require a bit more work. In §2, we introduce the condensed ∞-categories of
points we consider in full detail, and prove Theorem 0.3. Since the results require a number of
technical notions from topos theory, in Appendix A, we’ve collected background on bounded
and Postnikov complete∞-topoi, coherent∞-topoi and the classi�cation of bounded coherent
∞-topoi in terms of∞-pretopoi, and spectral∞-topoi.

0.2 Notational conventions
(1) We write Cat∞ for the ∞-category of large ∞-categories, and An ⊂ Cat∞ for the full

subcategory spanned by the large anima (also referred to as spaces or ∞-groupoids). We
1Up to the mild completion of π1(Πcond

∞ (X)) needed to recover the proétale fundamental group as de�ned by Bhatt–
Scholze.
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write Cat∞ ⊂ Cat∞ and An ⊂ An for the full subcategories spanned by the small∞-cate-
gories and anima, respectively.

(2) WewriteRTop∞ for the∞-category of∞-topoi and geometricmorphisms, i.e., right adjoints
f∗ whose left adjoint f∗ is left exact.

(3) Given∞-categories X and Y with limits and colimits, we write

Fun∗(Y,X) ⊂ Fun(Y,X)

for the full subcategory spanned by the right adjoint functors whose left adjoint is left exact
(when X and Y are∞-topoi these are the geometric morphisms of∞-topoi). We write

Fun∗(X, Y) ⊂ Fun(X, Y)

for the full subcategory spanned by the left exact left adjoints (when X and Y are∞-topoi
these are the algebraicmorphisms of∞-topoi).

(4) Given an∞-topos X we write Pt(X) ≔ Fun∗(X,An) for the∞-category of points of X.

(5) IfX andY are coherent∞-topoi (seeDe�nitionA.10), wewriteFun∗,coh(X, Y) ⊂ Fun∗(X, Y)
for the full subcategory spanned by those left exact left adjoints that also preserve coherent
objects.

(6) Given ∞-pretopoi C and D (see De�nition A.18), we write Funpre(C,D) ⊂ Fun(C,D) for
the full subcategory spanned by the morphisms of ∞-pretopoi. That is, the functors that
preserve �nite limits, �nite coproducts, and e�ective epimorphisms.

0.3 Acknowledgments
We thank Clark Barwick for countless insightful conversations over the years around many of
the topics appearing in this note. We thank Jacob Lurie for enlightening discussions on his work
on ultracategories; in particular, for indicating that Corollary 1.12 should be true.

1 Around the Łoś ultraproduct theorem
In this section, we explain the following sheaf-theoretic formulation of the Łoś ultraproduct
theorem: for any set S with Čech–Stone compacti�cation β(S), the functor

Sh(S) ↪ Sh(β(S))

given by pushforward along the inclusion S ↪ β(S) preserves �nite limits, �nite coproducts, and
e�ective epimorphisms. See Corollary 1.10. This formulation has the important consequence
that for any coherent∞-topos X, the restriction functor

Fun∗(X, Sh(β(S)))⟶ Fun∗(X, Sh(S)) ≃ Pt(X)S

admits a fully faithful right adjoint (Corollary 1.12). This is what allows us to analyze the con-
densed classifying anima of the condensed ∞-category Pt(X) of points of X de�ned in the
introduction
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In § 1.1, we explain how to extract ultraproduct operations from the usual pushforward
and pullback operations in sheaf theory. In §1.2, we explain the sheaf-theoretic formulation of
the Łoś ultraproduct theorem, its relation to the usual formulation, and some topos-theoretic
consequences.

1.1 Ultraproducts via sheaf theory
We begin by recalling a bit of background on Čech–Stone compacti�cations. We refer the unfa-
miliar reader to [15, §3.2] for details.

1.1 Notation. Let S be a set. If we regard S as a topological space, it will always be with the dis-
crete topology. We write j ∶ S ↪ β(S) for the Čech–Stone compacti�cation of S. We identify β(S)
with the set of ultra�lters on S. We typically denote an ultra�lter by �. Under this identi�cation,
j sends an element s ∊ S to the principal ultra�lter generated by s.
1.2 Recollection. Let S be a set. Then the natural map of posets

Clopen(β(S)) → Sub(S) , U ↦ U ∩ S

is an isomorphism. The inverse sends a subset S0 ⊂ S to the closure S0 in β(S). Moreover, the
closure S0 ⊂ β(S) is the image of the natural closed immersion β(S0) ↪ β(S). The topology on
β(S) is such that an ultra�lter � is in S0 if and only if the subset S0 is contained in �.

1.3 Recollection. Let S be a set. There is a natural equivalence Sh(S) ≃ AnS . In one direction,
this sends a sheafX to the collection of stalks (Xs)s∊S . In the other direction, a collection of anima
(Xs)s∊S is sent to the sheaf given by the assignment

S0 ↦
∏

s∊S0
Xs ,

with restriction maps the projections. (More formally, the right Kan extension of the functor
S → An given by s ↦ Xs along the inclusion S ↪ Sub(S)op.) We often identify Sh(S) with AnS

via this equivalence.

1.4 Observation (formula for j∗ on clopens). Given a sheaf X ∊ Sh(S), unpacking the formula
for the pushforward of sheaves says that for each subset S0 ⊂ S, we have a natural identi�cation

j∗(X)(S0) ≃
∏

s∊S0
Xs .

Now we �x our notation for ultraproducts.

1.5 Recollection (ultraproducts). Let ℰ be an∞-category with �ltered colimits and products,
let S be a set, and let � ∊ β(S) be an ultra�lter. The ultraproduct functor ∫S(−)d�∶ ℰS → ℰ is the
functor given by the assignment

(Xs)s∊S ↦ ∫
S
Xsd� ≔ colim

S0∊�op
∏

s∊S0
Xs .

More formally, ∫S(−)d� is the composite

ℰS Fun(Sub(S)op, ℰ) Fun(�op, ℰ) ℰ .restrict colim

Here, the left-most functor is given by right Kan extension of the functor S → An given by
s ↦ Xs along the inclusion S ↪ Sub(S)op.

5



The following is the sheaf-theoretic interpretation of ultraproducts.

1.6 Proposition. Let S be a set and let � ∊ β(S) be an ultra�lter on S. Then the composite

AnS ≃ Sh(S) Sh(β(S)) An
j∗ �∗

is equivalent to the ultraproduct functor ∫S(−)d�∶ AnS → An.

Said di�erently, the stalks of the sheaf j∗(X) are the ultraproducts ∫S Xsd�.

Proof. Let (Xs)s∊S ∊ AnS be an S-indexed collection of anima corresponding to a sheafX ∊ Sh(S).
Since the clopen subsets of β(S) form a basis for the topology on β(S), we see that we have natural
equivalences

�∗j∗(X) = colim
U∍�

j∗(X)(U)

≃ colim
S0∍�

j∗(X)(S0) (Recollection 1.2)

≃ colim
S0∍�

∏

s∊S0
Xs (Observation 1.4)

≃ colim
S0∊�op

∏

s∊S0
Xs (de�nition of the topology on β(S))

= ∫
S
Xsd� .

1.2 The Łoś ultraproduct theorem & consequences
In ourmind, the following is themost fundamental formulation of the Łoś ultraproduct theorem:

1.7 Proposition (fundamental Łoś ultraproduct theorem, [SAG, Proposition E.3.3.8]). Let S be
a set and let � ∊ β(S) be an ultra�lter on S. Then the ultraproduct functor

∫
S
(−)d�∶ AnS → An

is a morphism of ∞-pretopoi, i.e., preserves �nite limits, �nite coproducts, and e�ective epimor-
phisms.

Proposition 1.7 has the following immediate consequence:

1.8 Corollary (categorical logic formulation of the Łoś ultraproduct theorem). Let C be an∞-
pretopos (see De�nition A.18). Then the full subcategory

Funpre(C,An) ⊂ Fun(C,An)

spanned by the morphisms of∞-pretopoi is closed under the formation of ultraproducts.

1.9 Remark (the usual formulation of the Łoś ultraproduct theorem). The usual Łoś ultra-
product theorem in logic can be deduced from Corollary 1.8. Let us sketch how to do so. First,
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Corollary 1.8 implies the following 1-categorical statement: if C is a 1-pretopos, then the full
subcategory

Funpre(C, Set) ⊂ Fun(C, Set)

of morphisms of 1-pretopoi (i.e., left exact functors that preserve e�ective epimorphisms and
�nite coproducts) is closed under ultraproducts. See [15, Theorem 2.1.1] for this formulation.

Let T be a coherent theory with classifying 1-topos Set[T]. Let Syn0(T) denote the full sub-
category spanned by the coherent objects of Set[T]. Then Syn0(T) is a 1-pretopos, often referred
to as the weak syntactic category [14, p. 2] or coherent syntactic category [4, De�nition 1.4.1] of
T. In this case, Funpre(Syn0(T), Set) is the 1-categoryModT of models of T, and the categorical
logic formulation of the Łoś ultraproduct theorem says thatModT is closed under ultraproducts
in the larger 1-category Fun(Syn0(T), Set). From this statement, it is relatively straightforward
to prove the usual statement of the Łoś ultraproduct theorem; see [16; 18] for details.

From the sheaf-theoretic description of ultraproducts (Proposition 1.6), we can give an equiv-
alent formulation of the fundamental Łoś ultraproduct theorem:

1.10 Corollary (sheaf-theoretic formulation of the Łoś ultraproduct theorem). For any set S, the
pushforward functor j∗ ∶ Sh(S) ↪ Sh(β(S)) is a morphism of∞-pretopoi.

Proof. Since the stalk functors (�∗ ∶ Sh(β(S)) → An)�∊β(S) are jointly conservative and also
morphisms of ∞-pretopoi, j∗ is a morphism of ∞-pretopoi if and only if for each ultra�lter
� ∊ β(S), the composite

�∗j∗ ∶ AnS ≃ Sh(S) → An

is a morphism of∞-pretopoi. By Proposition 1.6, the composite �∗j∗ is the ultraproduct functor
∫S(−)d�. Thus the claim is equivalent to Proposition 1.7.

This sheaf-theoretic formulation of the Łoś ultraproduct theorem has pleasant features. First,
it does not explicitly refer to ultra�lters or ultraproducts (indeed, it does not reference a speci�c
construction of the Čech–Stone compacti�cation of S). Second, it has some interesting topos-
theoretic consequences that aren’t easy to deduce directly from Proposition 1.7 or Corollary 1.8.
Let us now explain such a consequence.

1.11 Corollary. Let S be a set and let C be an∞-pretopos. Then the adjunction

Fun(C, Sh(β(S))) Fun(C, Sh(S)) ≃ Fun(C,An)S
j∗◦−

j∗◦−

restricts to an adjunction

Funpre(C, Sh(β(S))) Funpre(C, Sh(S)) ≃ Funpre(C,An)S .

Proof. Immediate from Corollary 1.10.

1.12 Corollary. LetX be a coherent∞-topos and let S be a set. Then the restriction functor

Fun∗(X, Sh(β(S))) Fun∗(X, Sh(S)) ≃ Pt(X)Sj∗◦−

admits a fully faithful right adjoint.
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Proof. Since Sh(β(S)) and Sh(S) are both bounded and Postnikov complete, by Proposition A.29,
the above functor is identi�ed with the functor

Funpre(Xcoh
<∞, Sh(β(S))) Funpre(Xcoh

<∞, Sh(S)) .
j∗◦−

By Corollary 1.11, this functor admits a fully faithful right adjoint given by post-composition
with j∗ ∶ Sh(S) ↪ Sh(β(S)).

2 Classifying anima of condensed∞-categories of points
The goal of this section is to prove the main result of this note (Theorem 2.20). In order to do so,
we begin in §2.1 by recalling the basics of the condensed∞-categories of points that we consider.
In §2.2, we record some facts about classifying anima that we need. Subsection 2.3 proves our
main result.

2.1 Condensed∞-categories of points
In this subsection, we de�ne the two condensed∞-categories of points relevant to this note. It
is important that our condensed∞-categories are not just valued in large∞-categories, but in
accessible∞-categories. So we begin by recalling some accessibility results in topos theory.

2.1 Recollection. Let X and Y be∞-topoi. Then

Fun∗(X, Y) ⊂ Fun(X, Y)

is an accessible subcategory [HTT, Proposition 6.3.1.13]. Moreover, since �ltered colimits in an
∞-topos commute with �nite limits, Fun∗(X, Y) is closed under �ltered colimits in Fun(X, Y)
As a consequence, for all left exact left adjoints f∗ ∶ W → X and g∗ ∶ Y → Z, the induced
functors

Fun∗(X, Y) Fun∗(W,Z)−◦f∗
and Fun∗(X, Y) Fun∗(X, Z)g∗◦−

preserve �ltered colimits (in particular, are accessible).

2.2 Notation. We write Acc ⊂ Cat∞ for the non-full∞-category with objects accessible∞-
categories and morphisms accessible functors. LetAcc�l ⊂ Acc denote the non-full subcategory
with objects accessible∞-categories that admit �ltered colimits and morphisms functors that
preserve �ltered colimits.

2.3 Recollection. The∞-category Acc admits limits and the forgetful functor Acc → Cat∞
preserves limits [Ker, Tag 06LQ]. Similarly, the∞-categoryAcc�l admits limits and the forgetful
functor Acc�l → Cat∞ preserves limits.

2.4 Notation. Write Extr for the category of extremally disconnected pro�nite sets. Given an
∞-categoryℰwith �nite products, the∞-category of condensed objects ofℰ is the full subcategory

Cond(ℰ) ⊂ Fun(Extrop, ℰ)

spanned by the �nite product-preserving presheaves.2

2Of course, one needs to be careful about the usual subtleties with size issues. We choose to deal with these by using
universes. See [8, Remark 2.36] for a detailed discussion about why how one chooses to deal with this does not a�ect
the results in an essential way.
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The �rst condensed∞-category of points we consider makes sense for any∞-topos. Recall
that we write RTop∞ for the∞-category with objects∞-topoi and morphisms the geometric
morphisms, i.e., right adjoints whose left adjoint is left exact.

2.5 De�nition (condensed∞-category of points). We write

Pt ∶ RTop∞⟶Cond(Acc�l)
for the functor

X⟼ [K ↦ Fun∗(X, Sh(K))] .

We refer to Pt(X) as the condensed∞-category of points of X.

2.6. Of course, the∞-category of global sections of Pt(X) is simply the∞-category Pt(X) of
points of X.

2.7 Remark. LetX be a∞-topos. Then by Proposition A.29, the natural geometric morphism
X → Xb to the bounded re�ection (see Recollection A.4) induces an equivalence

Pt(X) ⥲ Pt(Xb) .

2.8 Remark (the ∞-categorical enhancement of Lurie’s work on ultracategories). In Lurie’s
work on ultracategories, he introduces the functor Pt, at least in the setting of 1-topoi. One of
Lurie’s main results is that when restricted to coherent 1-topoi and all geometricmorphisms, this
functor is fully faithful [15, Remark 2.3.4, Theorem 4.3.3, & Remark 4.3.4]. In light of Remark 2.7,
the correct∞-categorical enhancement of this statement requires a bit more care. We expect
that the functor

Pt ∶
(

bounded coherent∞-topoi
and all geometric morphisms

)
⟶ Cond(Acc�l)

should be fully faithful (even as a functor of (∞, 2)-categories). Moreover, this functor should fac-
tor through an∞-categorical enhancement of ultracategories and left ultrafunctors (formulated
using ultracategory envelopes as explained in [15, §8]). Restricting to 1-localic coherent∞-topoi
would then recover Lurie’s result.

While many of Lurie’s arguments work verbatim in the∞-categorical setting, there seem to
be a few places where some nontrivial care is needed in order to generalize Lurie’s proof.

The second condensed ∞-category of points we consider is the full subcategory of Pt(X)
spanned by the coherent geometric morphisms; it is only well-behaved for coherent∞-topoi.
We write RTopcoh∞ ⊂ RTop∞ for the subcategory with objects coherent∞-topoi and morphisms
the coherent geometric morphisms. In this case, the relevant accessibility result is that for a
coherent∞-topos X and a pro�nite set K, the∞-category

Fun∗,coh(X, Sh(K))

of coherent algebraic morphisms f∗ ∶ X → Sh(K) is small and idempotent complete (see Propo-
sition A.29).

2.9 Notation. Write Catidem∞ ⊂ Cat∞ for the full subcategory spanned by the idempotent com-
plete∞-categories. Note that the small accessible∞-categories are exactly the small idempotent
complete∞-categories [Ker, Tag 06KS], and every functor out of a small idempotent complete
∞-category is accessible [Ker, Tag 06KW]. So Catidem∞ is also a full subcategory of Acc.
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2.10 De�nition (condensed∞-category of coherent points). We write

Ptcoh ∶ RTopcoh∞ ⟶Cond(Catidem∞ )
for the functor

X⟼ [K ↦ Fun∗,coh(X, Sh(K))] .

We refer to Ptcoh(X) as the condensed∞-category of coherent points of X.

2.11 Remark. LetX be a coherent∞-topos. Then by Proposition A.29, the natural geometric
morphism X → Xb to the bounded re�ection induces an equivalence

Ptcoh(X) ⥲ Ptcoh(Xb) .

2.12 Observation. Since the inclusions

Acc�l ⊂ Acc and Catidem∞ ⊂ Acc

both preserve limits, we can regard the functors Pt and Ptcoh as valued in the ∞-category
Cond(Acc) of condensed accessible∞-categories. Hence for any bounded coherent∞-topos, by
de�nition, there is a natural inclusion of condensed accessible∞-categories

Ptcoh(X) ↪ Pt(X) .

2.13 Remark (condensed∞-category of locally coherent points). There are also many∞-topoi
of interest that are only locally coherent, but not coherent. For example, the étale∞-topos of a
scheme that is not qcqs. For this larger class of∞-topoi, it is better to consider the variant ofPtcoh
that sends X to the condensed∞-category assigning an extremally disconnected pro�nite set K
to the full subcategory of Fun∗(X, Sh(K)) spanned by the locally coherent algebraic morphisms.

2.2 Classifying anima of free colimit completions
We are interested in studying the condensed classifying anima of the condensed∞-categories
Pt(X) and Ptcoh(X). For various reasons, it is useful to know that these take values in small
anima. In order to explain this, in this subsection, we record some basic facts about classifying
anima of free colimit completions. In particular, that the classifying anima of an accessible
∞-category is small (Corollary 2.17).

2.14 Recollection. Wewrite B∶ Cat∞ → An for the left adjoint to the inclusionAn↪ Cat∞.
For an∞-category C, we call BC the classifying anima of C. We say that a functor f∶ C → D
is a weak homotopy equivalence if Bf is an equivalence. We say that ∞-category C is weakly
contractible if BC ≃ ∗. Finally, note that if C is a small∞-category, then BC is also small.

Our �rst observation is that every anima admits limits and colimits indexed by weakly con-
tractible∞-categories:

2.15 Lemma. Let X be an anima and let ℐ be a weakly contractible∞-category. Then:

(1) The anima X admits weakly contractible limits and colimits.

(2) Let f∶ ℐ → C be a functor to any ∞-category. If f admits a (co)limit, then every functor
g∶ C → X preserves this (co)limit.
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Proof. For (1), it su�ces to show that the constant functor

X → Fun(ℐ, X)

is an equivalence. Since ∗ is an anima, the unique functor ℐ → ∗ factors as

ℐ Bℐ ∗ .p q

Moreover, since ℐ is weakly contractible, q is an equivalence. Hence the constant functor factors
as

X Fun(Bℐ, X) Fun(ℐ, X) .q∗
∼

p∗

Moreover, since X is an anima, p∗ is an equivalence. Hence the constant functor p∗q∗ is an
equivalence, as desired.

For (2), note that since X ≃ Xop, the claims for limits and colimits are dual. We prove the
claim for colimits. If f∶ ℐ → C admits a colimit, and g∶ C → X is any functor, we need to show
that the natural map

colimℐ gf → g(colimℐ f)

is an equivalence in X. But in X, every map is an equivalence, so there is nothing to prove.

2.16 Notation. LetK be a collection of small∞-categories. Given a small∞-category C0, let
PShK(C0) be the free cocompletion of C0 under colimits of diagrams indexed by∞-categories
inK. The existence of PShK(C0) follows from [HTT, Proposition 5.3.6.2]. Explicitly, PShK(C0)
can be constructed as the smallest full subcategory of presheaves of anima on C0 containing the
image of the Yoneda embedding and closed under colimits indexed by∞-categories inK.

2.17 Corollary. LetC0 be a small∞-category and letK be a collection of small weakly contractible
∞-categories. Then the inclusion y∶ C0 ↪ PShK(C0) induces an equivalence

BC0 ⥲ B(PShK(C0)) .

In particular, the anima B(PShK(C0)) is small.

Proof. First notice that the �nal claim follows from the fact that since C0 is small, BC0 is also
small. For the main claim, we prove that for every anima X, the functor

Fun(B(PShK(C0)), X) Fun(BC0, X)
−◦By

is an equivalence. Notice that by Lemma 2.15, X admits weakly contractible colimits and every
functorD → X preserves all weakly contractible colimits thatD admits. Thus we see that the
inclusion

FunK-colim(PShK(C0), X) ⊂ Fun(PShK(C0), X)

of the full subcategory spanned by functors that preserve colimits indexed by∞-categories in
K is an equality. Hence by the universal property of PShK(C0), restriction along the inclusion
y∶ C0 ↪ PShK(C0) de�nes an equivalence

Fun(PShK(C0), X) ⥲ Fun(C0, X) .
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By adjunction we have a commutative square

Fun(PShK(C0), X) Fun(C0, X)

Fun(B(PShK(C0)), X) Fun(BC0, X) .

−◦y
∼

≀ ≀

−◦By

Since all other functors are equivalences, the bottom horizontal functor is an equivalence. Thus
By∶ BC0 → B(PShK(C0)) is an equivalence, as desired.

2.18 Corollary. If C is an accessible∞-category, then the classifying anima BC is small.

Proof. Since C is accessible, there exists a regular cardinal � and small ∞-category C0 such
that C is equivalent to the free cocompletion Ind�(C0) of C0 under �-�ltered colimits. Since �-
�ltered∞-categories are weakly contractible [Ker, Tags 02PJ & 02QL], the claim follows from
Corollary 2.17.

2.19 Observation (classifying anima of accessible∞-categories). Note that every small anima
is idempotent complete, and by Lemma 2.15, every functor between small anima is accessible.
Hence we have an inclusion An ⊂ Acc. Since the classifying anima of an accessible∞-category
is small (Corollary 2.18), we deduce that the classifying anima functor B∶ Cat∞ → An restricts
to a left adjoint

B∶ Acc→ An

to the inclusion. Moreover, since Acc ⊂ Cat∞ is closed under limits, B∶ Acc→ An preserves
�nite products. Hence pointwise application of B de�nes a left adjoint to the inclusion

Cond(An) ↪ Cond(Acc) .

We also denote this left adjoint by B∶ Cond(Acc) → Cond(An). Given a condensed accessible
∞-category C, we refer to BC as the condensed classifying anima of C.

2.3 The case of spectral∞-topoi
We’re now ready to prove the main result of this note. The result applies to spectral ∞-topoi
introduced in our work with Barwick and Glasman [1]. The unfamiliar reader can consult §A.3
for a quick review.

2.20 Theorem. LetX be a spectral∞-topos. Then:

(1) For each extremally disconnected pro�nite set K, the inclusion Ptcoh(X)(K) ↪ Pt(X)(K) ad-
mits a left adjoint.

(2) The inclusion Ptcoh(X) ↪ Pt(X) induces an equivalence on condensed classifying anima.

Proof. First note that since the classifying anima functor sends adjunctions to equivalences, (2)
is an immediate consequence of (1). For (1), note that by Gleason’s theorem [7; 12, Chapter III,
§3.7] there exists a set S such that K is a retract of the Čech–Stone compacti�cation β(S). Thus
the inclusion Ptcoh(X)(K) ↪ Pt(X)(K) is a retract of the inclusion

(2.21) Ptcoh(X)(β(S)) ↪ Pt(X)(β(S)) .
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Since Ptcoh(X)(K) is idempotent complete, by [SAG, Lemma 21.1.2.14] it su�ces to show that
the inclusion (2.21) admits a left adjoint. That is, we’re reduced to the case where K = β(S).

In this case, we have a commutative triangle

Ptcoh(X)(β(S)) = Fun∗,coh(X, Sh(β(S)))

Pt(X)(β(S)) = Fun∗(X, Sh(β(S))) Fun∗(X, Sh(S)) ≃ Pt(X)S .

∼

j∗◦−

Since X is spectral, the diagonal functor is an equivalence (see Lemma A.38). Since X is co-
herent, by Corollary 1.12, the bottom horizontal functor admits a fully faithful right adjoint
Pt(X)S ↪ Pt(X)(β(S)). Thus, under the equivalence Ptcoh(X)(β(S)) ⥲ Pt(X)S , the left-hand
vertical inclusion is identi�ed with the fully faithful right adjoint Pt(X)S ↪ Pt(X)(β(S)) to the
horizontal functor. Hence the left-hand vertical functor also admits a left adjoint.

2.22 Warning. If K is a pro�nite set which is not extremally disconnected, then the inclusion

Fun∗,coh(X, Sh(K)) ↪ Fun∗(X, Sh(K))

generally does not admit a left adjoint. In particular, the inclusion Ptcoh(X) ↪ Pt(X) is not usu-
ally a right adjoint of condensed∞-categories in the sense of [17, De�nition 3.1.1 & Proposition
3.2.9]. To see this, let K = N+ be the one-point compacti�cation of the natural numbers and let
X be the∞-topos of sheaves on the Sierpiński space. Then we’re considering the inclusion

(2.23) Clopen(N+) ↪ Open(N+)

of clopen subsets ofN+ into all open subsets.
To see that (2.23) does not admit a left adjoint, recall that a subset U ⊂ N+ is clopen if and

only ifU is either �nite and doesn’t contain∞ orU is co�nite and does contain∞. Consider the
subspace

Y = 2N ∪ {∞}

consisting of even natural numbers and∞; then Y is not clopen. If the inclusion (2.23) admitted
a left adjoint L, then there would be a smallest clopen subset L(Y) containing Y. To see that no
such clopen exists, note that for each odd natural number n, the clopenUn ≔ N+ ∖ {n} contains
Y. Hence

L(Y) ⊂
⋂

n odd
Un = Y .

Since Y ⊂ L(Y), this says that L(Y) = Y; but this is impossible since Y is not clopen.
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A Complements on∞-topoi
In the main body of this note, we needed a few results from the theory of coherent∞-topoi that
are not hard, but not easily citeable from the literature. Since some parts of the theory get quite
technical, for the convenience of the reader, we recall the necessities in this appendix. In §A.1,
we recall background on bounded and Postnikov complete∞-topoi. This is mostly not needed in
this note, but we prove some technical lemmas that allow us to state a few results more cleanly
in the main body. In §A.2, we recall the basics of coherent ∞-topoi and the classi�cation of
bounded coherent∞-topoi in terms of∞-pretopoi. Finally, Subsection A.3 recalls the theory of
spectral∞-topoi introduced in our work with Barwick and Glasman [1].

A.1 Bounded and Postnikov complete∞-topoi
In this subsection, we recall two technical conditions on∞-topoi that make an appearance in
our proofs: boundedness and Postnikov completeness. They both guarantee that the∞-topos is
controlled by its full subcategory of truncated objects, and are particular to the theory of∞-topoi
(meaning there is no analogue in 1-topos theory). The reader should refer to [SAG, §A.7] for full
details, or to [1, Chapter 3] for a more detailed overview than the one provided here.

For boundedness, we �rst recall a bit about n-localic∞-topoi. The idea is that n-localic∞-
topoi are the∞-topoi that are determined by their underling n-topoi of (n−1)-truncated objects.

A.1 Notation. Given an∞-topos X and integer n ≥ −2, we write X≤n ⊂ X for the full sub-
category spanned by the n-truncated objects. The inclusion X≤n ↪ X admits a left adjoint
τ≤n ∶ X → X≤n called n-truncation. We write X<∞ ≔ ⋃

n≥−2X≤n for the full subcategory
spanned by the truncated objects.

A.2 De�nition [HTT, §6.4.5]. Let n ≥ 0 be an integer. We say that an∞-topos X is n-localic if
for every∞-topos Y, the natural functor

Fun∗(Y,X) → Fun∗(Y≤n−1, X≤n−1)

is an equivalence of∞-categories. The inclusion of the full subcategory of RTop∞ spanned by
the n-localic∞-topoi admits a left adjoint Ln. We call Ln(X) the n-localic re�ection of X.

A.3. The proof of [HTT, Proposition 6.4.5.9] demonstrates that an∞-topos X is n-localic if and
only if there exists a small n-site with all �nite limits (C, �) and an equivalence X ≃ Sh�(C).

A.4 Recollection (boundedness). Let X be an ∞-topos. The bounded re�ection of X is the
co�ltered limit

Xb ≔ lim
n∊Nop

Ln(X)

formed in RTop∞. We say thatX is bounded if the natural geometric morphism b∗ ∶ X → Xb is
an equivalence. The assignment X ↦ Xb is left adjoint to the inclusion of the full subcategory
of RTop∞ spanned by the bounded∞-topoi [SAG, Proposition A.7.1.5].

The second condition is de�ned in terms of the ∞-categories X≤n of n-truncated objects
directly. Note that these subcategories are not themselves∞-topoi.

A.5 Recollection (Postnikov completeness). LetX be an∞-topos. The Postnikov completion of
X is the limit

Xpost ≔ lim( ⋯ X≤n+1 X≤n ⋯ X≤0
τ≤n τ≤0 )
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formed in∞-categories. We write t∗ ∶ X → Xpost for the natural comparison functor. We say
that the∞-topos X is Postnikov complete if t∗ ∶ X → Xpost is an equivalence.

The Posnikov completion Xpost is also an∞-topos; moreover, t∗ ∶ X → Xpost is a left exact
left adjoint [SAG, Theorem A.7.2.4]. The assignment X ↦ Xpost is right adjoint to the inclusion
of the full subcategory of RTop∞ spanned by the Postnikov complete∞-topoi [SAG, Corollary
A.7.2.6]. Moreover, the functors X ↦ Xpost and X ↦ Xb de�ne inverse equivalences between
the full subcategories ofRTop∞ spanned by the bounded and Postnikov complete∞-topoi [SAG,
Corollary A.7.2.6].

In summary, if we write RTopb∞ and RToppost∞ for the full subcategories of RTop∞ spanned
by the bounded and Postnikov complete coherent∞-topoi, respectively, we have the following
diagram

RToppost∞ RTopb∞

RTop∞ .

∼
(−)b

(−)post

(−)b(−)post

In particular, for any∞-topos X, there are natural identi�cations

Xb = (Xpost)b and Xpost = (Xb)post .

A.6 Observation. Let X be an∞-topos. Then the natural geometric morphisms

Xpost → X → Xb

restrict to equivalences
(Xpost)<∞ ⥲ X<∞ ⥲ (Xb)<∞

on truncated objects. See [SAG, Lemma A.7.1.4 & Proposition A.7.3.7].

A.7 Example. For any small∞-category C, the∞-topos PSh(C) of presheaves on C is Postnikov
complete.

A.8 Example. IfX is a paracompact topological space of �nite covering dimension or a spectral
space of �nite Krull dimension, then Sh(X) is Postnikov complete [HTT, Corollary 7.2.1.12,
Theorem 7.2.3.6 & Remark 7.2.4.18; 5, Theorem 3.12]. In particular, the∞-topos of sheaves on
a pro�nite set is Postnikov complete.

A.9 Example [11]. Let X be a topological space. If X admits a CW structure, then the∞-topos
Sh(X) is Postnikov complete.

A.2 Coherent∞-topoi and∞-pretopoi
Wenow recall the basics of coherent∞-topoi and the classi�cation of bounded coherent∞-topoi
in terms of∞-pretopoi. The reader should refer to [SAG, Appendix A] for full details, or to [1,
Chapter 3] for a more detailed overview than the one provided here.

A.10 De�nition (coherence). Let X be an∞-topos. We say that X is 0-coherent (or quasicom-
pact) if for every e�ective epimorphism e∶ ∐

i∊I Ui ↠ 1X , there exists a �nite subset I0 ⊂ I
such that the restriction

∐
i∊I0

Ui ↠ 1X of e is still an e�ective epimorphism. Let n ≥ 0, and
de�ne n-coherence of∞-topoi and their objects recursively as follows.
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(1) An object U ∊ X is n-coherent if the∞-topos X∕U is n-coherent.

(2) The ∞-topos X is locally n-coherent if every object U ∊ X admits a cover {Vi → U}i∊I in
which each Vi is n-coherent.

(3) The∞-topos X is (n + 1)-coherent if X is locally n-coherent, and the n-coherent objects of
X are closed under �nite products.

An∞-topos X is coherent if for each n ≥ 0, the∞-topos X is n-coherent. An object U of an
∞-toposX is coherent ifX∕U is a coherent∞-topos. Finally, an∞-toposX is locally coherent if
every object U ∊ X admits a cover {Vi → U}i∊I in which each Vi is coherent.

A.11 Notation. Let X be an∞-topos. Write Xcoh ⊂ X for the full subcategory of X spanned
by the coherent objects and Xcoh

<∞ ⊂ X for the full subcategory of X spanned by the truncated
coherent objects.

A.12 De�nition (coherent geometric morphism). A geometric morphism between coherent
∞-topoi f∗ ∶ Y → X is coherent if, for each coherent object U ∊ X, the object f∗(U) ∊ Y is
coherent. This is equivalent to the requirement that f∗ carries Xcoh

<∞ to Ycoh<∞ [1, Corollary 3.4.5].

A.13 Recollection (coherence is detected on Postnikov completions and bounded re�ections).
Given an∞-toposX, the natural geometricmorphismsXpost → X → Xb restrict to equivalences

(Xpost)coh<∞ ⥲ Xcoh
<∞ ⥲ (Xb)coh<∞ .

Moreover, X is coherent if and only if Xpost is coherent if and only if Xb is coherent. See [1,
Lemma 3.4.12]. In addition, ifX and Y are coherent, then a geometric morphism f∗ ∶ Y → X is
coherent if and only if fpost∗ ∶ Ypost → Xpost is coherent if and only if fb∗ ∶ Yb → Xb is coherent
[1, 3.4.13]

Some examples are in order. The main one comes from sheaves on a �nitary∞-site.

A.14 De�nition. An ∞-site (C, �) is �nitary if C admits �ber products, and, for every object
U ∊ C and every covering sieve S ⊂ C∕U , there is a �nite subset {Ui}i∊I ⊂ S that generates a
covering sieve.

A.15 Proposition [SAG, Proposition A.3.1.3]. Let (C, �) be a �nitary∞-site. Then:

(1) The∞-topos Sh�(C) locally coherent.

(2) For every object U ∊ C, the image of U under the shea��ed Yoneda embedding is a coherent
object of Sh�(C).

(3) If, in addition, C admits a terminal object, then Sh�(C) is coherent.

Here are some more geometric examples that can be deduced from this.

A.16Example. IfX is a sober topological space, then Sh(X) is coherent if and only ifX is spectral,
i.e., additionally quasicompact, quasiseparated, and has a basis of quasicompact opens. In this
case, Sh(X)coh<∞ is the full subcategory spanned by the constructible sheaves of anima on X. If
f∶ Y → X is amap between spectral spaces, then the geometricmorphism f∗ ∶ Sh(Y) → Sh(X)
is coherent if and only if the map f is quasicompact.
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A.17 Example. A scheme X is quasicompact and quasiseparated if and only if its étale∞-topos
Xét is coherent. In this case, (Xét)coh<∞ is the full subcategory spanned by the constructible étale
sheaves of anima onX. If f∶ Y → X is anymorphism between qcqs schemes, then the geometric
morphism f∗ ∶ Yét → Xét is coherent.

Let us now turn to explaining how an ∞-topos that is both bounded and coherent is de-
termined by its truncated coherent objects. The following is an axiomatization of the formal
properties satis�ed by the truncated coherent objects:

A.18 De�nition (∞-pretopos). An∞-category C is an∞-pretopos if:

(1) The∞-category C admits �nite limits.

(2) The∞-category C admits �nite coproducts, which are universal and disjoint.

(3) Groupoid objects in C are e�ective, and their geometric realizations are universal.

IfC andD are∞-pretopoi, then a functor f∗ ∶ C → D is amorphism of∞-pretopoi if f∗ preserves
�nite limits, �nite coproducts, and e�ective epimorphisms.

A.19 Notation. We write Pretop∞ ⊂ Cat∞ for the subcategory consisting of∞-pretopoi and
morphisms of∞-pretopoi. Given∞-pretopoi C andD, we write

Funpre(C,D) ⊂ Fun(C,D)

for the full subcategory spanned by the morphisms of∞-pretopoi.

A.20 Example [SAG, Corollary A.6.1.7]. Every∞-topos is an∞-pretopos. If X is a coherent
∞-topos, then the full subcategoryXcoh ⊂ X spanned by the coherent objects is an∞-pretopos.

A.21 De�nition. An∞-pretopos C is bounded if C is small and every object of C is truncated.
We write

Pretopb∞ ⊂ Pretop∞
for the full subcategory spanned by the bounded∞-pretopoi.

A.22 Example. IfX is a coherent∞-topos, then the full subcategoryXcoh
<∞ is a bounded∞-pre-

topos.

In order to state the key classi�cation theorem for bounded coherent∞-topoi, we need to �x
some notation. The �rst is for a natural Grothendieck topology on any∞-pretopos.

A.23 Notation (e�ective epimorphism topology). Let C be an∞-pretopos. We write e� for the
topology on C where a sieve S on X ∊ C is covering if and only if there exist �nitely many object
U1, … ,Un ∊ S such that the induced map U1 ⊔ ⋯ ⊔ Un → X is an e�ective epimorphism.
This is a �nitary topology that we refer to as the e�ective epimorphism topology [SAG, §A.6.2].
Importantly, the e�ective epimorphism topology on an∞-pretopos is a subcanonical topology
[SAG, Corollary A.6.2.6].

A.24 Notation. We write RTopcoh∞ ⊂ RTop∞ for the subcategory whose objects are coherent
∞-topoi and whose morphisms are coherent geometric morphisms. Given coherent∞-topoi X
and Y, we write

Fun∗,coh(X, Y) ⊂ Fun∗(X, Y)
for the full subcategory spanned by those algebraic morphisms f∗ ∶ X → Y that preserve co-
herent objects, i.e., the coherent algebraic morphisms. We write RTopbc∞ ⊂ RTopcoh∞ for the full
subcategory spanned by those coherent∞-topoi that are also bounded.
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A.25 Theorem (classi�cation of bounded coherent ∞-topoi, [SAG, Theorem A.7.5.3]). The
constructions

X ↦ Xcoh
<∞ and C ↦ She�(C)

are mutually inverse equivalences of∞-categories

RTopbc∞ ≃ Pretopb,op∞ .

Moreover, for bounded coherent∞-topoiX andY, restriction along the inclusionXcoh
<∞ ↪ X de�nes

an equivalence if∞-categories

Fun∗,coh(X, Y) ⥲ Funpre(Xcoh
<∞, Ycoh<∞) .

We conclude this subsection by collecting a few technical results that we could not �nd
references for. They’re concernedwith describing arbitrary algebraicmorphisms from a coherent
∞-topos in terms of truncated coherent objects, and the idempotent completeness of∞-cate-
gories of coherent algebraic morphisms. First we record what happens in the bounded case:

A.26 Proposition. LetX and Y be∞-topoi. IfX is bounded coherent, then restriction along the
inclusionXcoh

<∞ ↪ X de�nes an equivalence of∞-categories

Fun∗(X, Y) ⥲ Funpre(Xcoh
<∞, Y) .

Proof. Since X is bounded coherent, by Theorem A.25 we have X ≃ She�(Xcoh
<∞). Hence the

claim follows from [SAG, Proposition A.6.4.4].

A.27 Lemma. LetX be a bounded coherent∞-topos. Then the full subcategoryXcoh
<∞ ⊂ X is closed

under retracts. In particular,Xcoh
<∞ is a small idempotent complete∞-category.

Proof. See the proof of [SAG, Corollary A.7.5.4].

A.28 Lemma. LetX and Y be bounded coherent∞-topoi. Then the full subcategory

Fun∗,coh(X, Y) ⊂ Fun∗(X, Y)

is closed under retracts. Hence, Fun∗,coh(X, Y) is a small idempotent complete∞-category.

Proof. By the classi�cation of bounded coherent∞-topoi,

Fun∗,coh(X, Y) ≃ Funpre(Xcoh
<∞, Ycoh<∞) .

Since both Xcoh
<∞ and Ycoh<∞ are small∞-categories, Fun∗,coh(X, Y) is also a small∞-category.

For the statement about closure under retracts (which immediately implies idempotent com-
pleteness), let f∗ ∶ X → Y be an algebraic morphism that is a retract in Fun∗(X, Y) of an
algebraic morphism g∗ ∶ X → Y that preserves truncated coherent objects. Then for each trun-
cated coherent object X ∊ X, the object f∗(X) is a retract of the truncated coherent object g∗(X).
Lemma A.27 then implies that f∗(X) is truncated coherent; that is f∗ preserves truncated co-
herent objects, as desired.

For the condensed ∞-categories of points considered in this note, we’re interested in (co-
herent) geometric morphisms from an arbitrary coherent ∞-topos to the ∞-topos of sheaves
on a pro�nite set. The latter is bounded and Postnikov complete. In this situation, variants of
Proposition A.26 and Lemma A.28 hold without the boundedness assumption on X.
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A.29 Proposition. LetX and Y be∞-topoi. If Y is bounded and Postnikov complete, then:

(1) The natural geometric morphismX → Xb induces an equivalence

Fun∗(X, Y) ⥲ Fun∗(Xb, Y) .

(2) If X is coherent, then restriction along the inclusion Xcoh
<∞ ↪ X de�nes an equivalence of

∞-categories
Fun∗(X, Y) ⥲ Funpre(Xcoh

<∞, Y) .

(3) IfX andY are coherent, then the natural geometricmorphismX → Xb induces an equivalence

Fun∗,coh(X, Y) ⥲ Fun∗,coh(Xb, Y) .

Moreover, Fun∗,coh(X, Y) is a small idempotent complete∞-category.

Proof. For (1), notice that since Y is both bounded and Postnikov complete by Recollection A.5
we have natural equivalences

Fun∗(X, Y) ≃ Fun∗(Xpost, Y)
≃ Fun∗((Xpost)b, Y)
≃ Fun∗(Xb, Y) .

For (2), note that since the natural geometric morphism X → Xb restricts to an equivalence
on truncated coherent objects, the claim follows from (1) and Proposition A.26. Similarly, the
equivalence in (3) follows from the fact that the natural geometric morphism X → Xb restricts
to an equivalence on truncated coherent objects, item (2), and Theorem A.25. The statement
that Fun∗,coh(X, Y) is small and idempotent complete then follows from Lemma A.28.

A.3 Spectral∞-topoi
We now brie�y review the theory of spectral∞-topoi introduced in our work with Barwick and
Glasman [1]. In addition to bounded coherence, spectrality asks for an additional condition on
the∞-category of points of an∞-topos.

A.30 Recollection. An∞-category C is layered if for each object x ∊ C, every endomorphism
x → x is an equivalence. Equivalently, C is layered if and only if there exists a poset P and a
conservative functor C → P. We write Lay ⊂ Cat∞ for the full subcategory spanned by the
layered∞-categories.

A.31 Recollection (spectral∞-topoi). An∞-toposX is spectral ifX is bounded coherent and
the∞-category of points Pt(X) is layered. If X is a spectral∞-topos, then every point of X is
coherent. We write RTopspec∞ ⊂ RTopcoh∞ for the full subcategory spanned by the spectral ∞-
topoi.

Here’s the most important example:

A.32 Example. If X is a qcqs scheme, then the étale∞-topos of X is spectral.

One of the main results is that spectral∞-topoi admit an even more simple classi�cation
than bounded coherent∞-topoi, in terms of pro�nite layered∞-categories. Here’s the correct
notion of �niteness:
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A.33 Recollection. An animaX is π-�nite if π0(X) is �nite,X is trunctated, and for each integer
n ≥ 1 and point x ∊ X, the group πn(X, x) is �nite. An∞-category C is π-�nite if C has �nitely
many objects up to equivalence and all mapping anima are π-�nite. We write Cat∞,π ⊂ Cat∞
for the full subcategory spanned by the π-�nite∞-categories, and Layπ ⊂ Cat∞,π for the full
subcategory spanned by the π-�nite layered∞-categories.

A.34 Example. If C is a π-�nite layered∞-category, then there is a natural equivalence

C ⥲ Pt(Fun(C,An)) .

Moreover, the∞-topos Fun(C,An) is spectral.
A.35 Recollection (∞-categorical Hochster duality). The assignment C ↦ Fun(C,An) with
functoriality given by right Kan extension de�nes a left exact functor

Layπ → RTopcoh∞ .

The∞-category RTopcoh∞ admits limits, so by the universal property of pro-objects, this functor
extends to a limit-preserving functor

(A.36) Pro(Layπ) → RTopcoh∞ .

One of themain results of ourworkwith Barwick andGlasman is that this functor is fully faithful
with imageRTopspec∞ [1, Theorem 9.3.1]. We refer to this result as∞-categorical Hochster duality;
it generalizes Hoschster’s equivalence between the category of pro-objects in the category of
�nite posets and the category of spectral spaces and quasicompact maps [10; 9].

Even better, the fully faithful functor (A.36) is a right adjoint. We denote the left adjoint by

Π̂(∞,1) ∶ RTopcoh∞ → Pro(Layπ) ,

and for a coherent ∞-topos X, refer to Π̂(∞,1)(X) as the pro�nite strati�ed shape of X. The
composite

RTopspec∞ Pro(Layπ) Cat∞
Π̂(∞,1)
∼

lim

is equivalent to the functor sending a spectral∞-topos X to its∞-category Pt(X) of points.
A.37 Recollection (relationship to condensed mathematics). The constant sheaf functor

Cat∞,π ↪ Cond(Cat∞)

extends along co�ltered limits to a fully faithful functor

Pro(Cat∞,π) ↪ Cond(Cat∞) .

By∞-categorical Hochster duality, the composite

RTopspec∞ Pro(Layπ) Pro(Cat∞,π) Cond(Cat∞)
Π̂(∞,1)
∼

is given by the assignment
X ↦ [K ↦ Fun∗,coh(X, Sh(K))] .

That is, the composite is the functor Ptcoh of De�nition 2.10. As a result,

Ptcoh ∶ RTopspec∞ → Cond(Cat∞)

is fully faithful.
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The key property of spectral∞-topoi that we need to prove our main result (Theorem 2.20)
is that the value of Ptcoh(X) on a Čech–Stone compacti�cation is particularly simple:

A.38 Lemma. LetX be a spectral∞-topos and let S be a set. Then the restriction functor

Fun∗,coh(X, Sh(β(S))) Fun∗(X, Sh(S)) ≃ Pt(X)Sj∗◦−

is an equivalence of∞-categories.

Proof. There are two ways to see this; both use that every point of a spectral∞-topos is coherent
(see Recollection A.31). The �rst is to appeal to the fact that for every condensed∞-category C
in the image of the fully faithful embedding Pro(Cat∞,π) ↪ Cond(Cat∞), the restriction map

C(β(S))⟶ C(S) =
∏

s∊S
C({s})

is an equivalence of∞-categories [8, Proposition 2.22]. The claim then follows from Recollec-
tion A.37.

Here’s a second, more direct, proof. The limit functor lim∶ Pro(Cat∞,π) → Cat∞ admits a
left adjointC ↦ C∧π , thatwe refer to as pro�nite completion. For any set S, the pro�nite completion
S∧π is simply the pro�nite set β(S) [SAG, Remark E.5.2.6]. So the claim follows by combining
∞-categorical Hochster duality with the universal property of pro�nite completion.
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