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Abstract

We compare the classifying anima of two natural condensed co-categories associated to a
coherent co-topos. One from our work with Barwick and Glasman on exit-path categories in
algebraic geometry, and the other from Lurie’s work on ultracategories. The key consequence
of our comparison is a connection between algebraic geometry and model theory: up to a mild
completion, the proétale fundamental group of a scheme and the Lascar group of a complete
first-order theory are both special cases of the same construction.
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0 Introduction

The purpose of this note is to compare the classifying anima of two natural condensed co-cate-
gories associated to a coherent co-topos. The first condensed co-category makes sense for any
oo-topos X and was introduced (in the setting of 1-topoi) in Lurie’s work on ultracategories [15].
We call it the condensed oo-category of points Pt(X) of XX; it is given by sending an extremally
disconnected profinite set K to the co-category

Pt(2X)(K) := Fun*(X, Sh(K))

of left exact left adjoints f*: X — Sh(K). In particular, the global sections of Pt(XL') recovers
the co-category of points of X.

The second condensed co-category we consider only makes sense when X is a coherent
oo-topos (the topos-theoretic version of quasicompactness and quasiseparatedness in scheme
theory), and was implicitly introduced in our work with Barwick and Glasman [1, §13.5]. We call
it the condensed co-category of coherent points Pt°°h(DC ) of ; it is given by sending an extremally
disconnected profinite set K to the co-category

Pt ()(K) := Fun**°®(x, Sh(K))



of left exact left adjoints f* : X — Sh(K) that preserve coherent objects. In particular, Pt ()
is a full subcategory of Pt(XX'). Here are two examples to put these condensed co-categories in
context.

0.1 Example. The simplest example is when X is the co-topos of sheaves on the Sierpinski space.
Then for each extremally disconnected profinite set K, the inclusion | (X)K) & Pt(X)(K)
is simply the inclusion

Clopen(K) < Open(K)

of the poset of clopen subsets of K into the poset of all open subsets.

More generally, if X is a spectral topological space and X' = Sh(X), then Pt(X)(K) is the
poset Map(K, X) of continuous maps K — X ordered by pozntWLse specialization: f < gifand
only if for each k € K, we have f(k) € {g(k)}. In this case, Pt™"(:)(K) is the subposet

Map“(K,X) c Map(K,X)
of quasicompact maps, i.e., maps such that the preimage of a quasicompact open is clopen.

0.2 Example. Let T be a coherent first-order theory, and let XX’ be the classifying co-topos of T
Then for each extremally disconnected profinite set K, the oo-category Pt(XX)(K) is the co-cat-
egory Mod7(Sh(K; Set)) of models of the theory T valued in the 1-category of sheaves of sets
on K. We write Mod{l = Pt(X) and refer to Modr as the condensed category of models of T.
The subcategory Pt*"(X)(K) has not traditionally been considered in model theory, but is a
subcategory of models satisfying an additional finiteness property.

Aswe now explain, both algebraic geometry and model theory, these condensed co-categories
give rise to interesting invariants. Write B : Cat,, — An for the left adjoint to the inclusion of
anima into co-categories; for an co-category C, refer to BC as the classifying anima of €. Since
B preserves finite products, pointwise application of B defined a left adjoint to the inclusion
Cond(An) & Cond(Cat,,) of condensed anima into condensed oo-categories. We also denote
this left adjoint by B.

Algebraic geometry. Let X be a qcgs scheme. Building off our work with Barwick-Glasman [1,
§13.5], in recent work with Holzschuh-Lara-Mair-Martini-Wolf [8], we studied the condensed
classifying anima BPtCOh(Xet) of the condensed co-category of coherent points of the étale co-
topos of X. We call this condensed anima the condensed homotopy type of X, and denote it by
1$9"4(X). One of our main results is that a mild completion of the fundamental group of IT2"4(X)
recovers the proétale fundamental group of Bhatt-Scholze [2]. See [8, Theorem 1.9].

Model theory. In forthcoming work with Damaj and Zhang [6], we prove a similar result, but
in the setting of model theory. Given a complete first-order theory T, in [13], Lascar introduced a
quasicompact topological group Gal; (T) now referred to as the Lascar group of T. As the notation
suggests, the Lascar group plays the role of the absolute Galois group of the theory T. Campion-
Cousins-Ye [3] proved that the discrete group underlying the Lascar group is the fundamental
group of the classifying anima of the category Modr(Set) of models of T valued in the category
of sets [3, Theorem 3.5]. As explained in Example 0.2, the condensed category of points of the
classifying co-topos of T is a natural enhancement of Mody(Set) to a condensed category. In
[6], we refine Campion, Cousins, and Ye’s result by showing that there is an isomorphism of
condensed groups
GalL(T) ~ T[l(BMOdT)

between the Lascar group and the fundamental group of the condensed classifying anima of
MOdT.



The takeaway is that the proétale fundamental group and the Lascar group arise as special
cases of similar constructions. But the first uses the smaller condensed co-category Pt°°h(JC ),
and the second uses Pt(XX'). The main result of this note is that, in fact, these two invariants are
special cases of the same construction.! Namely, there is a large class of coherent co-topoi X for
which the inclusion PtCOh(DC ) & Pt(X) induces an equivalence on condensed classifying anima.

The statement of our main result involves spectral oco-topoi introduced in our work with
Barwick and Glasman [1]. These are the bounded coherent co-topoi X' whose co-category of
points Pt(XX) satisfies the property that for every object x* € Pt(XX'), every endomorphism x* — x*
is an equivalence. See § A.3 for a quick review. The most important example is that the étale
oo-topos of a qcgs scheme is spectral.

0.3 Theorem (Theorem 2.20). Let X be a spectral co-topos. Then for each extremally disconnected
profinite set K, the inclusion
PtP()(K) & Pt(X)(K)

admits a left adjoint. As a consequence, the inclusion of condensed co-categories PtCOh(I ) & Pt(X)
induces an equivalence on condensed classifying anima.

0.4. We conclude the introduction by unpacking the two simplest cases of Theorem 0.3. As in
Example 0.1, first consider the case when XX is the co-topos of sheaves on the Sierpinski space.
Then the statement is that the inclusion

Clopen(K) < Open(K)

admits left adjoint. This is clear: it is given by sending U C K to the closure U (which is open
since K is extremally disconnected). More generally, if 2 is the oco-topos of sheaves on a spectral
topological space X, then Theorem 0.3 says that the inclusion

Map®(K,X) c Map(K, X)

of the poset of quasicompact maps into all maps admits a left adjoint. Thatis,anymap f : K - X
has a best approximation by a quasicompact map that is a pointwise generization of f.

0.1 Linear overview

In §1, we explain a sheaf-theoretic interpretation of the Lo$ ultraproduct theorem. This is the
key result that lets us analyze the condensed classifying anima of the condensed co-category
of points Pt(XX'). These ideas are certainly implicit in Lurie’s work on ultracategories, but the
results we need require a bit more work. In § 2, we introduce the condensed oo-categories of
points we consider in full detail, and prove Theorem 0.3. Since the results require a number of
technical notions from topos theory, in Appendix A, we’ve collected background on bounded
and Postnikov complete co-topoi, coherent co-topoi and the classification of bounded coherent
oo-topoi in terms of co-pretopoi, and spectral co-topoi.

0.2 Notational conventions

(1) We write CAT,, for the oo-category of large co-categories, and AN C CAT,, for the full
subcategory spanned by the large anima (also referred to as spaces or co-groupoids). We

1Up to the mild completion of 7r; (TI"(X)) needed to recover the proétale fundamental group as defined by Bhatt—
Scholze.



write Cat,, C CAT,, and An C AN for the full subcategories spanned by the small co-cate-
gories and anima, respectively.

(2) We write RTop , for the co-category of co-topoi and geometric morphisms, i.e., right adjoints
[+ whose left adjoint f* is left exact.

(3) Given oco-categories X and ¥ with limits and colimits, we write
Fun,(¥Y,X) C Fun(Y,X)

for the full subcategory spanned by the right adjoint functors whose left adjoint is left exact
(when XX and ¥ are oo-topoi these are the geometric morphisms of co-topoi). We write

Fun®(X, Y) € Fun(X, Y)

for the full subcategory spanned by the left exact left adjoints (when XX’ and Y are co-topoi
these are the algebraic morphisms of co-topoi).

(4) Given an co-topos X' we write Pt(X') := Fun*(X, An) for the co-category of points of X.

(5) IfX and Y are coherent co-topoi (see Definition A.10), we write Fun™“ (X, ¥) ¢ Fun®(X, ¥)
for the full subcategory spanned by those left exact left adjoints that also preserve coherent
objects.

(6) Given co-pretopoi € and D (see Definition A.18), we write Fun®"*(€, D) c Fun(e, D) for
the full subcategory spanned by the morphisms of co-pretopoi. That is, the functors that
preserve finite limits, finite coproducts, and effective epimorphisms.

0.3 Acknowledgments

We thank Clark Barwick for countless insightful conversations over the years around many of
the topics appearing in this note. We thank Jacob Lurie for enlightening discussions on his work
on ultracategories; in particular, for indicating that Corollary 1.12 should be true.

1 Around the Lo$ ultraproduct theorem

In this section, we explain the following sheaf-theoretic formulation of the Lo$ ultraproduct
theorem: for any set S with Cech-Stone compactification B(S), the functor

Sh(S) & Sh(f(S))

given by pushforward along the inclusion S & ((S) preserves finite limits, finite coproducts, and
effective epimorphisms. See Corollary 1.10. This formulation has the important consequence
that for any coherent co-topos XX, the restriction functor

Fun®(X, Sh(B(S))) — Fun™(X, Sh(S)) ~ Pt(X)°

admits a fully faithful right adjoint (Corollary 1.12). This is what allows us to analyze the con-
densed classifying anima of the condensed co-category Pt(XX) of points of X' defined in the
introduction



In § 1.1, we explain how to extract ultraproduct operations from the usual pushforward
and pullback operations in sheaf theory. In §1.2, we explain the sheaf-theoretic formulation of
the L.o$ ultraproduct theorem, its relation to the usual formulation, and some topos-theoretic
consequences.

1.1 Ultraproducts via sheaf theory

We begin by recalling a bit of background on Cech-Stone compactifications. We refer the unfa-
miliar reader to [15, §3.2] for details.

1.1 Notation. Let S be a set. If we regard S as a topological space, it will always be with the dis-
crete topology. We write j : S < B(S) for the Cech-Stone compactification of S. We identify B(S)
with the set of ultrafilters on S. We typically denote an ultrafilter by x. Under this identification,
j sends an element s € S to the principal ultrafilter generated by s.

1.2 Recollection. Let S be a set. Then the natural map of posets

Clopen(f(S)) » Sub(S), U~ UNS

is an isomorphism. The inverse sends a subset S; C S to the closure §0 in B(S). Moreover, the
closure S, C (S) is the image of the natural closed immersion B(Sy) < B(S). The topology on
B(S) is such that an ultrafilter u is in S if and only if the subset S is contained in u.

1.3 Recollection. Let S be a set. There is a natural equivalence Sh(S) ~ An®.In one direction,
this sends a sheaf X to the collection of stalks (X),es. In the other direction, a collection of anima
(X,)ses is sent to the sheaf given by the assignment

So []Xs.

seSy

with restriction maps the projections. (More formally, the right Kan extension of the functor
S — An given by s = X, along the inclusion S < Sub(S)°P.) We often identify Sh(S) with An’®
via this equivalence.

1.4 Observation (formula for j, on clopens). Given a sheaf X e Sh(S), unpacking the formula
for the pushforward of sheaves says that for each subset S, C S, we have a natural identification

3o = T % -
seSy
Now we fix our notation for ultraproducts.

1.5 Recollection (ultraproducts). Let £ be an co-category with filtered colimits and products,
let S be a set, and let u € B(S) be an ultrafilter. The ultraproduct functor [¢(—)du : &S — Eisthe
functor given by the assignment

(Xs)seS g J Xsd,u = gohm HXS .
S

0€u® s€Sg
More formally, [(—)du is the composite

restrict

& — Fun(Sub(S)%, &) Fun(u, &) —dim_, ¢

Here, the left-most functor is given by right Kan extension of the functor S — An given by
s — X, along the inclusion S < Sub(S)°P.



The following is the sheaf-theoretic interpretation of ultraproducts.

1.6 Proposition. Let S be a set and let u € 3(S) be an ultrafilter on S. Then the composite
An® ~ Sh(S) < Sh(A(S)) —“— An

is equivalent to the ultraproduct functor [((—)du : An® - An.

Said differently, the stalks of the sheaf j,(X) are the ultraproducts [ Xdu.

Proof. Let(X)ses € An® be an S-indexed collection of anima corresponding to a sheaf X € Sh(S).
Since the clopen subsets of 3(S) form a basis for the topology on 3(S), we see that we have natural
equivalences

K*j(X) = colim j,.(X)(U)
Usu

~ colim j.(X )(§0) (Recollection 1.2)
So3u

~ colim HX s (Observation 1.4)
So3k seS,

~ (S:oling HX B (definition of the topology on ((S))
OEMO seS,

=J Xdu . O
s

1.2 The Los$ ultraproduct theorem & consequences
In our mind, the following is the most fundamental formulation of the Lo$ ultraproduct theorem:
1.7 Proposition (fundamental Lo$ ultraproduct theorem, [SAG, Proposition E.3.3.8]). Let S be
a set and let u € B(S) be an ultrafilter on S. Then the ultraproduct functor

J (=)du: An® > An

s

is a morphism of co-pretopoi, i.e., preserves finite limits, finite coproducts, and effective epimor-
phisms.
Proposition 1.7 has the following immediate consequence:

1.8 Corollary (categorical logic formulation of the £o$ ultraproduct theorem). Let € be an co-
pretopos (see Definition A.18). Then the full subcategory

Fun®®(¢, An) ¢ Fun(C, An)
spanned by the morphisms of co-pretopoi is closed under the formation of ultraproducts.

1.9 Remark (the usual formulation of the Lo$ ultraproduct theorem). The usual Lo$ ultra-
product theorem in logic can be deduced from Corollary 1.8. Let us sketch how to do so. First,


http://www.math.ias.edu/~lurie/papers/SAG-rootfile.pdf#theorem.E.3.3.8

Corollary 1.8 implies the following 1-categorical statement: if C is a 1-pretopos, then the full
subcategory
FunP™(¢, Set) c Fun(C, Set)

of morphisms of 1-pretopoi (i.e., left exact functors that preserve effective epimorphisms and
finite coproducts) is closed under ultraproducts. See [15, Theorem 2.1.1] for this formulation.

Let T be a coherent theory with classifying 1-topos Set[T]. Let Syn,(T) denote the full sub-
category spanned by the coherent objects of Set[T]. Then Syn(T) is a 1-pretopos, often referred
to as the weak syntactic category [14, p. 2] or coherent syntactic category [4, Definition 1.4.1] of
T. In this case, Fun”“(Syn,(T), Set) is the 1-category Modr of models of T, and the categorical
logic formulation of the Lo$ ultraproduct theorem says that Mody is closed under ultraproducts
in the larger 1-category Fun(Syn,(T), Set). From this statement, it is relatively straightforward
to prove the usual statement of the Lo$ ultraproduct theorem; see [16; 18] for details.

From the sheaf-theoretic description of ultraproducts (Proposition 1.6), we can give an equiv-
alent formulation of the fundamental Lo$ ultraproduct theorem:

1.10 Corollary (sheaf-theoretic formulation of the L.o$ ultraproduct theorem). For any set S, the
pushforward functor j, : Sh(S) < Sh(B(S)) is a morphism of co-pretopoi.

Proof. Since the stalk functors (u* : Sh(B(S)) — An),cgs) are jointly conservative and also
morphisms of co-pretopoi, j, is a morphism of co-pretopoi if and only if for each ultrafilter
u € B(S), the composite

u*j.: An® ~ Sh(S) > An

is a morphism of co-pretopoi. By Proposition 1.6, the composite u* j, is the ultraproduct functor
J¢(=)du. Thus the claim is equivalent to Proposition 1.7. O

This sheaf-theoretic formulation of the L.o$ ultraproduct theorem has pleasant features. First,
it does not explicitly refer to ultrafilters or ultraproducts (indeed, it does not reference a specific
construction of the Cech-Stone compactification of S). Second, it has some interesting topos-
theoretic consequences that aren’t easy to deduce directly from Proposition 1.7 or Corollary 1.8.
Let us now explain such a consequence.

1.11 Corollary. Let S be a set and let C be an co-pretopos. Then the adjunction

Fun(@, Sh((S))) j:_ Fun(G, Sh(S)) ~ Fun(€, An)®

Jx0—

restricts to an adjunction
Fun®(e, Sh(B(S))) ———= Fun®"(G, Sh(S)) ~ Fun’(e, An)" .

Proof. Immediate from Corollary 1.10. O

1.12 Corollary. Let X be a coherent co-topos and let S be a set. Then the restriction functor

Fun®(2C, Sh(B(S))) ——="— Fun*(X,Sh(S)) =~ Pt(X)S

admits a fully faithful right adjoint.



Proof. Since Sh(B(S)) and Sh(S) are both bounded and Postnikov complete, by Proposition A.29,
the above functor is identified with the functor
FunP*(r<%h Sh(B(S))) AN FunP™*(rh, Sh(s)) .

By Corollary 1.11, this functor admits a fully faithful right adjoint given by post-composition
with j, : Sh(S) & Sh(B(S)). O

2 Classifying anima of condensed co-categories of points

The goal of this section is to prove the main result of this note (Theorem 2.20). In order to do so,
we begin in §2.1 by recalling the basics of the condensed co-categories of points that we consider.
In §2.2, we record some facts about classifying anima that we need. Subsection 2.3 proves our
main result.

2.1 Condensed co-categories of points

In this subsection, we define the two condensed co-categories of points relevant to this note. It
is important that our condensed co-categories are not just valued in large co-categories, but in
accessible co-categories. So we begin by recalling some accessibility results in topos theory.

2.1 Recollection. Let X and Y be co-topoi. Then
Fun®(X,Y) c Fun(X, %)

is an accessible subcategory [HTT, Proposition 6.3.1.13]. Moreover, since filtered colimits in an
oo-topos commute with finite limits, Fun®(2X, Y) is closed under filtered colimits in Fun(:X, %)
As a consequence, for all left exact left adjoints f*: W — X and g*: Y — Z, the induced
functors

Fun®(X, Y) AN Fun*(W, 2) and Fun*(X, Y) ——— Fun®(X, 2)

preserve filtered colimits (in particular, are accessible).

2.2 Notation. We write Acc C CAT,, for the non-full co-category with objects accessible co-
categories and morphisms accessible functors. Let Accfll ¢ Acc denote the non-full subcategory
with objects accessible co-categories that admit filtered colimits and morphisms functors that
preserve filtered colimits.

2.3 Recollection. The oo-category Acc admits limits and the forgetful functor Acc — CAT,,
preserves limits [Ker, Tag 06LQ]. Similarly, the co-category Acc!!! admits limits and the forgetful
functor Accl! - CAT,, preserves limits.

2.4 Notation. Write Extr for the category of extremally disconnected profinite sets. Given an
oo-category € with finite products, the co-category of condensed objects of £ is the full subcategory
Cond(&) C Fun(Extr®, &)

spanned by the finite product-preserving presheaves.?

20f course, one needs to be careful about the usual subtleties with size issues. We choose to deal with these by using
universes. See [8, Remark 2.36] for a detailed discussion about why how one chooses to deal with this does not affect
the results in an essential way.


http://www.math.ias.edu/~lurie/papers/HTT.pdf#theorem.6.3.1.13
http://kerodon.net/tag/06LQ

The first condensed oco-category of points we consider makes sense for any co-topos. Recall
that we write RTop __ for the co-category with objects co-topoi and morphisms the geometric
morphisms, i.e., right adjoints whose left adjoint is left exact.

2.5 Definition (condensed co-category of points). We write

Pt: RTop  — Cond(Accfil)
for the functor
X — [K ~ Fun™(X, Sh(K))] .

We refer to Pt(XX') as the condensed co-category of points of X.

2.6. Of course, the oco-category of global sections of Pt(XX) is simply the co-category Pt(XX) of
points of XX.

2.7 Remark. Let X be a co-topos. Then by Proposition A.29, the natural geometric morphism
X — X to the bounded reflection (see Recollection A.4) induces an equivalence

Pt(X) = Pt(XY).

2.8 Remark (the co-categorical enhancement of Lurie’s work on ultracategories). In Lurie’s
work on ultracategories, he introduces the functor Pt, at least in the setting of 1-topoi. One of
Lurie’s main results is that when restricted to coherent 1-topoi and all geometric morphisms, this
functor is fully faithful [15, Remark 2.3.4, Theorem 4.3.3, & Remark 4.3.4]. In light of Remark 2.7,
the correct co-categorical enhancement of this statement requires a bit more care. We expect
that the functor

. bounded coherent co-topoi fil
Pt: (and all geometric morphisrns) Cond(Acc™)

should be fully faithful (even as a functor of (00, 2)-categories). Moreover, this functor should fac-
tor through an co-categorical enhancement of ultracategories and left ultrafunctors (formulated
using ultracategory envelopes as explained in [15, §8]). Restricting to 1-localic coherent co-topoi
would then recover Lurie’s result.

While many of Lurie’s arguments work verbatim in the co-categorical setting, there seem to
be a few places where some nontrivial care is needed in order to generalize Lurie’s proof.

The second condensed oo-category of points we consider is the full subcategory of Pt(XX)
spanned by the coherent geometric morphisms; it is only well-behaved for coherent co-topoi.
We write RTopZSh C RTop_ for the subcategory with objects coherent co-topoi and morphisms
the coherent geometric morphisms. In this case, the relevant accessibility result is that for a

coherent co-topos X and a profinite set K, the co-category
Fun*“°"(X, Sh(K))

of coherent algebraic morphisms f* : X — Sh(K) is small and idempotent complete (see Propo-

sition A.29).

2.9 Notation. Write Cati,‘;em C Cat,, for the full subcategory spanned by the idempotent com-

plete co-categories. Note that the small accessible co-categories are exactly the small idempotent

complete co-categories [Ker, Tag 06KS], and everydfunctor out of a small idempotent complete
aem

oo-category is accessible [Ker, Tag 06KW]. So Cat,  is also a full subcategory of Acc.


http://kerodon.net/tag/06KS
http://kerodon.net/tag/06KW

2.10 Definition (condensed co-category of coherent points). We write

Pt“" : RTop®™" — Cond(Cats™)
for the functor
X — [K ~ Fun™°"(x, Sh(K))] .

coh

We refer to Pt (XX) as the condensed co-category of coherent points of XX.

2.11 Remark. Let X be a coherent co-topos. Then by Proposition A.29, the natural geometric
morphism X — X to the bounded reflection induces an equivalence

PtCOh(x) ~ PtCOh(xb) )

2.12 Observation. Since the inclusions

Accfl cAcc  and  Cat®®™ c Acc

both preserve limits, we can regard the functors Pt and Pt" as valued in the oo-category

Cond(Acc) of condensed accessible co-categories. Hence for any bounded coherent co-topos, by
definition, there is a natural inclusion of condensed accessible co-categories

Pt () & PL(X).

2.13 Remark (condensed co-category of locally coherent points). There are also many co-topoi
of interest that are only locally coherent, but not coherent. For example, the étale co-topos of a
scheme that is not qcgs. For this larger class of co-topoi, it is better to consider the variant of pteh
that sends X to the condensed oo-category assigning an extremally disconnected profinite set K
to the full subcategory of Fun® (X, Sh(K)) spanned by the locally coherent algebraic morphisms.

2.2 Classifying anima of free colimit completions

We are interested in studying the condensed classifying anima of the condensed co-categories
Pt(X) and Pt°°h(DC ). For various reasons, it is useful to know that these take values in small
anima. In order to explain this, in this subsection, we record some basic facts about classifying
anima of free colimit completions. In particular, that the classifying anima of an accessible
oo-category is small (Corollary 2.17).

2.14 Recollection. We write B: CAT,, — AN for the left adjoint to the inclusion AN < CAT,,.
For an oo-category C, we call BC the classifying anima of C. We say that a functor f: € - D
is a weak homotopy equivalence if Bf is an equivalence. We say that co-category C is weakly
contractible if BC ~ . Finally, note that if C is a small co-category, then BC is also small.

Our first observation is that every anima admits limits and colimits indexed by weakly con-
tractible co-categories:

2.15 Lemma. Let X be an anima and let J be a weakly contractible co-category. Then:
(1) The anima X admits weakly contractible limits and colimits.
(2) Let f: J — C be a functor to any co-category. If f admits a (co)limit, then every functor

g: C — X preserves this (co)limit.

10



Proof. For (1), it suffices to show that the constant functor
X - Fun(J,X)
is an equivalence. Since * is an anima, the unique functor J — = factors as

gL ,p7r L, 4,

Moreover, since J is weakly contractible, g is an equivalence. Hence the constant functor factors
as

X —L Fun(B7,X) —£— Fun(7,X).

Moreover, since X is an anima, p* is an equivalence. Hence the constant functor p*q* is an
equivalence, as desired.

For (2), note that since X ~ X°P, the claims for limits and colimits are dual. We prove the
claim for colimits. If f : J — C admits a colimit, and g: € — X is any functor, we need to show
that the natural map

colimy gf — g(colimg f)

is an equivalence in X. But in X, every map is an equivalence, so there is nothing to prove. [
2.16 Notation. Let K be a collection of small co-categories. Given a small co-category Cy, let
PSh4(Cy) be the free cocompletion of G, under colimits of diagrams indexed by co-categories
in X . The existence of PShy(C,) follows from [HTT, Proposition 5.3.6.2]. Explicitly, PSh4(C)

can be constructed as the smallest full subcategory of presheaves of anima on €, containing the
image of the Yoneda embedding and closed under colimits indexed by co-categories in XK.

2.17 Corollary. Let Cq be a small co-category and let I be a collection of small weakly contractible
oo-categories. Then the inclusion 'y : Cy < PShy(Cy) induces an equivalence

BCy = B(PShy(Cy)) .
In particular, the anima B(PSh4(Cy)) is small.
Proof. First notice that the final claim follows from the fact that since € is small, BC, is also

small. For the main claim, we prove that for every anima X, the functor

Fun(B(PShye (o)), X) ——2- Fun(BCy, X)

is an equivalence. Notice that by Lemma 2.15, X admits weakly contractible colimits and every
functor D — X preserves all weakly contractible colimits that 2 admits. Thus we see that the
inclusion )

Fun® ™ (PSh,(Cy), X) C Fun(PShy(Cy), X)

of the full subcategory spanned by functors that preserve colimits indexed by co-categories in
X is an equality. Hence by the universal property of PShy-(C,), restriction along the inclusion
¥y : Gy © PShy(C,) defines an equivalence

Fun(PSh(Cy), X) = Fun(Cy, X) .
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By adjunction we have a commutative square

Fun(PShyc(Cy), X) ———— Fun(Cy, X)

Fun(B(PShK(@O)),X) TBy) Fun(B@O,X) .

Since all other functors are equivalences, the bottom horizontal functor is an equivalence. Thus
By : BCy — B(PSh4(Cy)) is an equivalence, as desired. O

2.18 Corollary. If Cis an accessible co-category, then the classifying anima BC is small.

Proof. Since C is accessible, there exists a regular cardinal x and small co-category €, such
that C is equivalent to the free cocompletion Ind, (C,) of €, under x-filtered colimits. Since -
filtered co-categories are weakly contractible [Ker, Tags 02PJ & 02QL], the claim follows from
Corollary 2.17. O

2.19 Observation (classifying anima of accessible co-categories). Note that every small anima
is idempotent complete, and by Lemma 2.15, every functor between small anima is accessible.
Hence we have an inclusion An C Acc. Since the classifying anima of an accessible co-category
is small (Corollary 2.18), we deduce that the classifying anima functor B : CAT,, — AN restricts
to a left adjoint

B: Acc — An

to the inclusion. Moreover, since Acc C CAT,, is closed under limits, B: Acc — An preserves
finite products. Hence pointwise application of B defines a left adjoint to the inclusion

Cond(An) < Cond(Acc) .

We also denote this left adjoint by B: Cond(Acc) — Cond(An). Given a condensed accessible
oo-category C, we refer to BC as the condensed classifying anima of C.

2.3 The case of spectral co-topoi

We’re now ready to prove the main result of this note. The result applies to spectral co-topoi
introduced in our work with Barwick and Glasman [1]. The unfamiliar reader can consult §A.3
for a quick review.

2.20 Theorem. Let XX be a spectral co-topos. Then:

(1) For each extremally disconnected profinite set K, the inclusion PtCOh(DC )K) & Pt(X)(K) ad-
mits a left adjoint.

(2) The inclusion Pt°°h(x ) & Pt(X) induces an equivalence on condensed classifying anima.

Proof. First note that since the classifying anima functor sends adjunctions to equivalences, (2)
is an immediate consequence of (1). For (1), note that by Gleason’s theorem [7; 12, Chapter III,
§3.7] there exists a set S such that K is a retract of the Cech-Stone compactification 3(S). Thus
the inclusion PtM(20)(K) < Pt(X)(K) is a retract of the inclusion

(2.21) Pt (X)(B(S)) & PL)(B(S)) .
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Since PtCOh(I )(K) is idempotent complete, by [SAG, Lemma 21.1.2.14] it suffices to show that
the inclusion (2.21) admits a left adjoint. That is, we’re reduced to the case where K = f(S).
In this case, we have a commutative triangle

Pt"(X)(B(S)) = Fun***"(x, Sh(B(S)))

Pt(X)(B(S)) = Fun® (X, Sh(B(S))) — Fun® (2, Sh(S)) ~ Pt(X)° .

Since X is spectral, the diagonal functor is an equivalence (see Lemma A.38). Since XX is co-
herent, by Corollary 1.12, the bottom horizontal functor admits a fully faithful right adjoint
Pt(X)S < Pt(X)(B(S)). Thus, under the equivalence PtM(X)(B(S)) = Pt(X)5, the left-hand
vertical inclusion is identified with the fully faithful right adjoint Pt(X)% < Pt(X)(B(S)) to the
horizontal functor. Hence the left-hand vertical functor also admits a left adjoint. O

2.22 Warning. If X is a profinite set which is not extremally disconnected, then the inclusion
Fun®™*°"(2(, Sh(K)) < Fun*(X, Sh(K))

generally does not admit a left adjoint. In particular, the inclusion PtCOh(DC ) & Pt(XX) is not usu-
ally a right adjoint of condensed co-categories in the sense of [17, Definition 3.1.1 & Proposition
3.2.9]. To see this, let K = N be the one-point compactification of the natural numbers and let
X be the co-topos of sheaves on the Sierpiniski space. Then we’re considering the inclusion

(2.23) Clopen(N*) < Open(N')

of clopen subsets of N* into all open subsets.

To see that (2.23) does not admit a left adjoint, recall that a subset U C N is clopen if and
only if U is either finite and doesn’t contain oo or U is cofinite and does contain co. Consider the
subspace

Y = 2N U {oo}

consisting of even natural numbers and oo; then Y is not clopen. If the inclusion (2.23) admitted
a left adjoint L, then there would be a smallest clopen subset L(Y') containing Y. To see that no
such clopen exists, note that for each odd natural number n, the clopen U,, :== N* « {n} contains
Y. Hence
LY) C ﬂ U,=Y.
n odd

Since Y C L(Y), this says that L(Y) = Y; but this is impossible since Y is not clopen.
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A Complements on co-topoi

In the main body of this note, we needed a few results from the theory of coherent co-topoi that
are not hard, but not easily citeable from the literature. Since some parts of the theory get quite
technical, for the convenience of the reader, we recall the necessities in this appendix. In §A.1,
we recall background on bounded and Postnikov complete co-topoi. This is mostly not needed in
this note, but we prove some technical lemmas that allow us to state a few results more cleanly
in the main body. In § A.2, we recall the basics of coherent co-topoi and the classification of
bounded coherent co-topoi in terms of co-pretopoi. Finally, Subsection A.3 recalls the theory of
spectral co-topoi introduced in our work with Barwick and Glasman [1].

A.1 Bounded and Postnikov complete co-topoi

In this subsection, we recall two technical conditions on co-topoi that make an appearance in
our proofs: boundedness and Postnikov completeness. They both guarantee that the co-topos is
controlled by its full subcategory of truncated objects, and are particular to the theory of co-topoi
(meaning there is no analogue in 1-topos theory). The reader should refer to [SAG, §A.7] for full
details, or to [1, Chapter 3] for a more detailed overview than the one provided here.

For boundedness, we first recall a bit about n-localic co-topoi. The idea is that n-localic co-
topoi are the co-topoi that are determined by their underling n-topoi of (n — 1)-truncated objects.

A.1 Notation. Given an oco-topos XX and integer n > —2, we write X, C X for the full sub-
category spanned by the n-truncated objects. The inclusion X, < X admits a left adjoint
Ten o X = X, called n-truncation. We write X, = Un>_2 X, for the full subcategory
spanned by the truncated objects.

A.2 Definition [HTT, §6.4.5]. Letn > 0 be an integer. We say that an co-topos X is n-localic if
for every co-topos Y, the natural functor

Fun*(y, x) - Fun*(ySn—b x§n—1)

is an equivalence of co-categories. The inclusion of the full subcategory of RTop_, spanned by
the n-localic co-topoi admits a left adjoint L,,. We call L,,(X) the n-localic reflection of XX.

A.3. The proof of [HTT, Proposition 6.4.5.9] demonstrates that an co-topos X is n-localic if and
only if there exists a small n-site with all finite limits (G, 7) and an equivalence X' ~ Sh.(C).

A.4 Recollection (boundedness). Let X' be an co-topos. The bounded reflection of X is the
cofiltered limit
x° = lim L,(X)
neN°P

formed in RTop . We say that X is bounded if the natural geometric morphism b, : X — X bis
an equivalence. The assignment X — X is left adjoint to the inclusion of the full subcategory
of RTop_, spanned by the bounded co-topoi [SAG, Proposition A.7.1.5].

The second condition is defined in terms of the co-categories X, of n-truncated objects
directly. Note that these subcategories are not themselves co-topoi.

A.5 Recollection (Postnikov completeness). Let X' be an oo-topos. The Postnikov completion of
X is the limit

. T< T<0
xpOSt = 11m< e — x§n+1 _n) xsn _ e —/— xSO )
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formed in co-categories. We write t* : X — XP%! for the natural comparison functor. We say
that the co-topos XX is Postnikov complete if t* : X' — XP%' is an equivalence.

The Posnikov completion XP%' is also an co-topos; moreover, t* : X — XP! is a left exact
left adjoint [SAG, Theorem A.7.2.4]. The assignment X — 2P is right adjoint to the inclusion
of the full subcategory of RTop_, spanned by the Postnikov complete co-topoi [SAG, Corollary
A.7.2.6]. Moreover, the functors XX — XP%tand X — XY define inverse equivalences between
the full subcategories of RTop , spanned by the bounded and Postnikov complete co-topoi [SAG,
Corollary A.7.2.6].

In summary, if we write RTopEo and RTopE;’St for the full subcategories of RTop_, spanned
by the bounded and Postnikov complete coherent co-topoi, respectively, we have the following
diagram
(-)P

RTop?>* RTop';o

(_)post
w /

RTop_
In particular, for any co-topos XX, there are natural identifications
xb — (:X-post)b and post — (xb)post .
A.6 Observation. Let X be an co-topos. Then the natural geometric morphisms
xpost xb

restrict to equivalences
(AP g 2 Xgo = (X0) o

on truncated objects. See [SAG, Lemma A.7.1.4 & Proposition A.7.3.7].

A.7 Example. For any small co-category €, the co-topos PSh(C) of presheaves on C is Postnikov
complete.

A.8 Example. If X isa paracompact topological space of finite covering dimension or a spectral
space of finite Krull dimension, then Sh(X) is Postnikov complete [HTT, Corollary 7.2.1.12,
Theorem 7.2.3.6 & Remark 7.2.4.18; 5, Theorem 3.12]. In particular, the co-topos of sheaves on
a profinite set is Postnikov complete.

A.9 Example [11]. Let X be a topological space. If X admits a CW structure, then the co-topos
Sh(X) is Postnikov complete.

A.2 Coherent co-topoi and co-pretopoi

We now recall the basics of coherent co-topoi and the classification of bounded coherent co-topoi
in terms of co-pretopoi. The reader should refer to [SAG, Appendix A] for full details, or to [1,
Chapter 3] for a more detailed overview than the one provided here.

A.10 Definition (coherence). Let X' be an co-topos. We say that XX is 0-coherent (or quasicom-
pact) if for every effective epimorphism e : Hid U; » 1y, there exists a finite subset [ C I
such that the restriction ]_[ido U; » 1y of e is still an effective epimorphism. Let n > 0, and

define n-coherence of co-topoi and their objects recursively as follows.
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(1) Anobject U € X is n-coherent if the co-topos X'y is n-coherent.

(2) The oo-topos X is locally n-coherent if every object U € X admits a cover {V; — U} in
which each V; is n-coherent.

(3) The co-topos X is (n + 1)-coherent if X is locally n-coherent, and the n-coherent objects of
X are closed under finite products.

An oco-topos X is coherent if for each n > 0, the co-topos X is n-coherent. An object U of an
oco-topos XX is coherent if X ;i is a coherent co-topos. Finally, an co-topos X is locally coherent if
every object U € X admits a cover {V; — U};¢; in which each V; is coherent.

A.11 Notation. Let X be an co-topos. Write X" ¢ X for the full subcategory of X spanned
by the coherent objects and X 2‘12 C X for the full subcategory of X spanned by the truncated
coherent objects.

A.12 Definition (coherent geometric morphism). A geometric morphism between coherent
oo-topoi f, 1 Y — X is coherent if, for each coherent object U € XX, the object f*(U) € Y is

coherent. This is equivalent to the requirement that f* carries X i‘{i} to yi‘;}j [1, Corollary 3.4.5].

A.13 Recollection (coherence is detected on Postnikov completions and bounded reflections).

Given an co-topos X, the natural geometric morphisms APt — X — X restrict to equivalences
e

Moreover, X is coherent if and only if Pt is coherent if and only if A is coherent. See [1,

Lemma 3.4.12]. In addition, if X’ and ¥ are coherent, then a geometric morphism f, : ¥ - X is

coherent if and only if f EOSt : YPpost _, rPost js coherent if and only if f2 : Y® — AP is coherent
[1,3.4.13]

Some examples are in order. The main one comes from sheaves on a finitary co-site.

A.14 Definition. An oo-site (C, 7) is finitary if € admits fiber products, and, for every object
U e C and every covering sieve S C €y, there is a finite subset {U;};c; C S that generates a
covering sieve.

A.15 Proposition [SAG, Proposition A.3.1.3]. Let (G, t) be a finitary co-site. Then:

(1) The oco-topos Sh.(C) locally coherent.

(2) For every object U € C, the image of U under the sheafified Yoneda embedding is a coherent
object of Sh,(C).

(3) If, in addition, € admits a terminal object, then Sh,(C) is coherent.
Here are some more geometric examples that can be deduced from this.

A.16 Example. IfX isasober topological space, then Sh(X) is coherent if and only if X is spectral,
i.e., additionally quasicompact, quasiseparated, and has a basis of quasicompact opens. In this
case, Sh(X )C<°°2 is the full subcategory spanned by the constructible sheaves of anima on X. If

f: Y — Xisamap between spectral spaces, then the geometric morphism f, : Sh(Y) — Sh(X)
is coherent if and only if the map f is quasicompact.
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A.17 Example. A scheme X is quasicompact and quasiseparated if and only if its étale co-topos
X is coherent. In this case, (Xét)i"o}; is the full subcategory spanned by the constructible étale
sheavesof animaon X.If f : Y — X is any morphism between qcgs schemes, then the geometric
morphism f, : Y — X is coherent.

Let us now turn to explaining how an oco-topos that is both bounded and coherent is de-
termined by its truncated coherent objects. The following is an axiomatization of the formal
properties satisfied by the truncated coherent objects:

A.18 Definition (co-pretopos). An co-category C is an co-pretopos if:
(1) The oco-category € admits finite limits.

(2) The oco-category € admits finite coproducts, which are universal and disjoint.

(3) Groupoid objects in C are effective, and their geometric realizations are universal.

If € and D are co-pretopoi, then a functor f* : € — D isa morphism of co-pretopoi if f* preserves
finite limits, finite coproducts, and effective epimorphisms.

A.19 Notation. We write Pretop , C CAT,, for the subcategory consisting of co-pretopoi and
morphisms of co-pretopoi. Given co-pretopoi € and D, we write

Fun®(e, D) c Fun(C, D)
for the full subcategory spanned by the morphisms of co-pretopoi.

A.20 Example [SAG, Corollary A.6.1.7]. Every oco-topos is an co-pretopos. If X is a coherent
co-topos, then the full subcategory X°°" ¢ XX spanned by the coherent objects is an co-pretopos.

A.21 Definition. An co-pretopos C is bounded if € is small and every object of C is truncated.
We write
Pretopgo C Pretop

for the full subcategory spanned by the bounded co-pretopoi.

coh
<oo

A.22 Example. If X is a coherent co-topos, then the full subcategory X'
topos.

is a bounded oco-pre-

In order to state the key classification theorem for bounded coherent co-topoi, we need to fix
some notation. The first is for a natural Grothendieck topology on any co-pretopos.

A.23 Notation (effective epimorphism topology). Let € be an co-pretopos. We write eff for the
topology on C where a sieve S on X € € is covering if and only if there exist finitely many object
Ui,...,U, € S such that the induced map U; U --- U U,, — X is an effective epimorphism.
This is a finitary topology that we refer to as the effective epimorphism topology [SAG, §A.6.2].
Importantly, the effective epimorphism topology on an co-pretopos is a subcanonical topology
[SAG, Corollary A.6.2.6].

A.24 Notation. We write RTopffo’h C RTop_, for the subcategory whose objects are coherent
oo-topoi and whose morphisms are coherent geometric morphisms. Given coherent co-topoi X'
and Y, we write

Fun**°"(, ¥) ¢ Fun®* (X, ¥)

for the full subcategory spanned by those algebraic morphisms f*: X — Y that preserve co-

herent objects, i.e., the coherent algebraic morphisms. We write RTopl;f C RTopf;)h for the full
subcategory spanned by those coherent co-topoi that are also bounded.

17


http://www.math.ias.edu/~lurie/papers/SAG-rootfile.pdf#theorem.A.6.1.7
http://www.math.ias.edu/~lurie/papers/SAG-rootfile.pdf#subsection.A.6.2
http://www.math.ias.edu/~lurie/papers/SAG-rootfile.pdf#theorem.A.6.2.6

A.25 Theorem (classification of bounded coherent co-topoi, [SAG, Theorem A.7.5.3]). The
constructions
XX and €@ She(C)

are mutually inverse equivalences of co-categories
RTop" =~ Pretop’ ™" .

Moreover, for bounded coherent co-topoi X and Y, restriction along the inclusion X i‘i} < X defines
an equivalence if co-categories

Fun*’mh(%, y) SN Funpre(xcoh yzoh) .

<o0? [e]

We conclude this subsection by collecting a few technical results that we could not find
references for. They’re concerned with describing arbitrary algebraic morphisms from a coherent
oo-topos in terms of truncated coherent objects, and the idempotent completeness of co-cate-
gories of coherent algebraic morphisms. First we record what happens in the bounded case:

A.26 Proposition. Let X and Y be co-topoi. If X is bounded coherent, then restriction along the

. . coh . .
inclusion X2} < X defines an equivalence of co-categories

Fun®(X, ¥) = Fun®(x<h, y).
Proof. Since X is bounded coherent, by Theorem A.25 we have X =~ Sheff(xff;). Hence the
claim follows from [SAG, Proposition A.6.4.4]. O

A.27 Lemma. Let X be a bounded coherent co-topos. Then the full subcategory X i‘{“}j C Xisclosed

under retracts. In particular, X 2‘2}; is a small idempotent complete co-category.

Proof. See the proof of [SAG, Corollary A.7.5.4]. O

A.28 Lemma. Let X and Y be bounded coherent co-topoi. Then the full subcategory

Fun**°"(, ¥) € Fun®* (X, ¥)

*,coh

is closed under retracts. Hence, Fun (X, Y) is a small idempotent complete co-category.

Proof. By the classification of bounded coherent co-topoi,

Fun*’COh(x, y) ~ Funpre(xcoh y?h) .

<00’ 00

Since both X Z‘z}; and yg‘;{} are small co-categories, Fun™"(, ¥) is also a small co-category.

For the statement about closure under retracts (which immediately implies idempotent com-
pleteness), let f*: X — Y be an algebraic morphism that is a retract in Fun*(X, ¥) of an
algebraic morphism g* : X' — Y that preserves truncated coherent objects. Then for each trun-
cated coherent object X € XX, the object f*(X) is a retract of the truncated coherent object g*(X).
Lemma A.27 then implies that f*(X) is truncated coherent; that is f* preserves truncated co-
herent objects, as desired. O

For the condensed oo-categories of points considered in this note, we’re interested in (co-
herent) geometric morphisms from an arbitrary coherent co-topos to the co-topos of sheaves
on a profinite set. The latter is bounded and Postnikov complete. In this situation, variants of
Proposition A.26 and Lemma A.28 hold without the boundedness assumption on X.
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A.29 Proposition. Let X and Y be co-topoi. If Y is bounded and Postnikov complete, then:

(1) The natural geometric morphism X — X° induces an equivalence

Fun®(X, Y) = Fun™ (XY, Y).

(2) If X is coherent, then restriction along the inclusion xg‘f; S X defines an equivalence of
co-categories
Fun®(X, Y) = FunP*(x®h, y).

<00’

(3) IfX and Y are coherent, then the natural geometric morphism X — X induces an equivalence

Fun®™*"(X, ¥) = Fun™" (b, y) .

%,coh

Moreover, Fun (X, Y) is a small idempotent complete co-category.

Proof. For (1), notice that since Y is both bounded and Postnikov complete by Recollection A.5
we have natural equivalences

Fun®(X, Y) ~ Fun* (P!, y)
~ Fun*((DCPOSt)b, 7))
~ Fun*(X®,y).

For (2), note that since the natural geometric morphism X — X restricts to an equivalence
on truncated coherent objects, the claim follows from (1) and Proposition A.26. Similarly, the
equivalence in (3) follows from the fact that the natural geometric morphism X' — X restricts
to an equivalence on truncated coherent objects, item (2), and Theorem A.25. The statement
that Fun®*°"(2x, ¥) is small and idempotent complete then follows from Lemma A.28. O

A.3 Spectral co-topoi

We now briefly review the theory of spectral co-topoi introduced in our work with Barwick and
Glasman [1]. In addition to bounded coherence, spectrality asks for an additional condition on
the co-category of points of an co-topos.

A.30 Recollection. An co-category C is layered if for each object x € €, every endomorphism
X — x is an equivalence. Equivalently, C is layered if and only if there exists a poset P and a
conservative functor € — P. We write Lay C Cat,, for the full subcategory spanned by the
layered co-categories.

A.31 Recollection (spectral co-topoi). An co-topos X is spectral if X is bounded coherent and
the co-category of points Pt(XX) is layered. If XX is a spectral co-topos, then every point of XX is
coherent. We write RTop*?*® ¢ RTop®" for the full subcategory spanned by the spectral co-
topoi.

Here’s the most important example:
A.32 Example. If X is a qcgs scheme, then the étale co-topos of X is spectral.

One of the main results is that spectral co-topoi admit an even more simple classification
than bounded coherent co-topoi, in terms of profinite layered co-categories. Here’s the correct
notion of finiteness:
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A.33 Recollection. Ananima X is wt-finite if 1y (X) is finite, X is trunctated, and for each integer
n > 1 and point x € X, the group =, (X, x) is finite. An co-category C is n-finite if C has finitely
many objects up to equivalence and all mapping anima are n-finite. We write Cat,, ; C Cat,,
for the full subcategory spanned by the nt-finite co-categories, and Lay_ C Cat,, , for the full
subcategory spanned by the m-finite layered co-categories.

A.34 Example. If Cis a m-finite layered co-category, then there is a natural equivalence
€ = Pt(Fun(C,An)).
Moreover, the co-topos Fun(C, An) is spectral.

A.35 Recollection (co-categorical Hochster duality). The assignment € — Fun(C, An) with
functoriality given by right Kan extension defines a left exact functor

Lay_ — RTopCogh :
The co-category RTopf)gh admits limits, so by the universal property of pro-objects, this functor
extends to a limit-preserving functor
(A.36) Pro(Lay, ) — RTongh .

One of the main results of our work with Barwick and Glasman is that this functor is fully faithful
with image RTopiE‘SC [1, Theorem 9.3.1]. We refer to this result as co-categorical Hochster duality;
it generalizes Hoschster’s equivalence between the category of pro-objects in the category of
finite posets and the category of spectral spaces and quasicompact maps [10; 9].

Even better, the fully faithful functor (A.36) is a right adjoint. We denote the left adjoint by

ﬁ(oo’l) : RTopf;’h — Pro(Lay, ),

and for a coherent co-topos X, refer to ﬁ(m,l)(x ) as the profinite stratified shape of X. The
composite

Tl ~
RTop>* &b, Pro(Lay, ) —im_, cat,,

is equivalent to the functor sending a spectral co-topos X to its co-category Pt(XX) of points.

A.37 Recollection (relationship to condensed mathematics). The constant sheaf functor
Cat,, . < Cond(Cat,,)

extends along cofiltered limits to a fully faithful functor

Pro(Cat,, ;) < Cond(Cat,,) .

By oo-categorical Hochster duality, the composite

PN

HDO
RTop P &b, Pro(Lay,) —— Pro(Cat,, ;) —— Cond(Cat,,)

~

is given by the assignment
X~ [K = Fun®*°P(x, Sh(K))] .

That is, the composite is the functor Pt of Definition 2.10. As a result,
pteh RTop>** — Cond(Cat,,)

is fully faithful.
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The key property of spectral co-topoi that we need to prove our main result (Theorem 2.20)
is that the value of Pt°°h(x ) on a Cech-Stone compactification is particularly simple:

A.38 Lemma. Let XX be a spectral co-topos and let S be a set. Then the restriction functor

Fun*,coh(x’ Sh(ﬁ(S))) L Fun*(x, Sh(S)) ~ P'[(.X)S

is an equivalence of co-categories.

Proof. There are two ways to see this; both use that every point of a spectral co-topos is coherent
(see Recollection A.31). The first is to appeal to the fact that for every condensed co-category C
in the image of the fully faithful embedding Pro(Cat,, ) < Cond(Cat,,), the restriction map

CB©) — e =[] edsh

seS

is an equivalence of co-categories [8, Proposition 2.22]. The claim then follows from Recollec-
tion A.37.

Here’s a second, more direct, proof. The limit functor lim : Pro(Cat,, ;) — Cat,, admits a
leftadjoint € — CZ, that we refer to as profinite completion. For any set S, the profinite completion
S2 is simply the profinite set B(S) [SAG, Remark E.5.2.6]. So the claim follows by combining
oo-categorical Hochster duality with the universal property of profinite completion. O
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