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0 Introduction
In this note, we prove the following result, as well as a generalization to n-localic coherent
∞-topoi:

0.1 Proposition (Example 2.36). Let X ∊ Pro(Anπ) be a pro�nite anima. Then there exists a
pro�nite set Y and an e�ective epimorphism Y ↠ X in Pro(Anπ).

We claimed this result in [4, Proposition 13.4.9; 5, Proposition 3.3.8], however the proof there is
incorrect. So the main purpose of this note is to correct the proof.

Since every π-�nite anima admits an e�ective epimorphism from a �nite set, Proposition 0.1
follows from the following more general result. To state it, let C be an∞-category with �nite
limits, and letP be a class ofmaps inC that is closed under composition, contains all equivalences,
and is stable under pullback.

0.2 Proposition (Proposition 2.22). Let ℬ ⊂ C be a full subcategory with the property that for
each X ∊ C, there exists a map Y → X in P with Y ∊ ℬ. Then for each X ∊ Pro(C), there exists a
map Y → X in Pro(P) with Y ∊ Pro(ℬ).

0.3 Remark. Proposition 0.1 also follows from a more re�ned result of Lurie [SAG, Lemma
E.1.6.6]. Lurie’s proof makes use of model categories and uses constructions speci�c to working
with simplicial sets. However, Lurie’s proof inspired our proof of Proposition 0.2.

We prove Proposition 0.2 by making a number of choices to construct Y. A key point is that
the pro-object X can always be represented by a diagram X∶ Sop → C where S is a �ltered
poset with the additional property that for each s ∊ S, the set S≤s ≔ { t ∊ S | t ≤ s } is �nite
(see Lemma 2.24). There is a height function S → N sending s to the Krull dimension of S≤s;
this height function provides a N-indexed �ltration on S. Using this �ltration, one can try to
construct Y inductively, starting with the height 0 elements (which are the minimal elements

1

http://www.math.ias.edu/~lurie/papers/SAG-rootfile.pdf#theorem.E.1.6.6
http://www.math.ias.edu/~lurie/papers/SAG-rootfile.pdf#theorem.E.1.6.6


of S). In order for the inductive step to work, one needs the following closure property for the
class P, which may be of independent interest:

0.4 Proposition (Proposition 2.14). Let S be a �nite poset and let f∶ Y → X be a map in
Fun(Sop, C) such that for each s ∊ S, the induced map

(0.5) Ys → Xs ×
lim
t<s

Xt

lim
t<s

Ys

is in P. Then the induced map on limits lims∊Sop Ys → lims∊Sop Xs is in P.

0.6 Remark (Reedy �brations). Those familiar with Reedy categories may recognize the hy-
potheses of Proposition 0.4. The object limt<s Xs is thematching object of X at s ∊ S. The condi-
tion that (0.5) be in P is a version of the notion of a Reedy �bration in this context.

Proposition 0.4 seems to be a nontrivial closure property of classes of maps stable under
pullback and composition. Our proof relies on an inductive description of (co)limits of diagrams
indexed by posets of �nite Krull dimension (Proposition 2.9 and Corollary 2.13), which may also
be of independent interest.

We note that in the most simple case, Proposition 0.4 says that given a commutative diagram

Y1 Y0 Y2

X1 X0 X2 ,

f1 f0 f2

if f0 and the induced maps Y1 → X1 ×X0 Y0 and Y2 → X2 ×X0 Y0 are in P, then the induced
map on pullbacks Y1 ×Y0 Y2 → X1 ×X0 X2 is in P.

0.1 Linear overview
The main technical ingredient of this note (Proposition 0.4) is elementary in the sense that
it only relies on more basic closure properties of a class P of maps stable under composition
and pullback, together with a formula for limits over �nite posets. As a result, aside from some
speci�c applications and examples, we realized that this note could be completely self-contained,
possibly at the cost of adding some length. Thus, in order to make this note accessible to a wider
audience, we have decided to make it self-contained.

With that in mind, even though they are well-known to experts, in §1, we explain the more
basic closure properties of the classP that we need. In §2, we give a formula for limits over posets
of �nite Krull dimension (Proposition 2.9 and Corollary 2.13), then prove Propositions 0.1, 0.2,
and 0.4.

0.2 Notational conventions
We write An for the∞-category of anima (also referred to as spaces or∞-groupoids) and Cat∞
for the∞-category of∞-categories.
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1 Basic closure properties

1.1 Reasonable classes of maps
We start by �xing some convenient terminology. First recall that given an∞-category C, a class
of maps in C is a full subcategory P ⊂ Fun([1], C) of the arrow∞-category of C.

1.1 De�nition. Let C be an∞-category with pullbacks. We say that a class of maps P in C is
reasonable if the following conditions are satis�ed:

(1) The class P contains all equivalences.

(2) The class P is closed under composition.

(3) The class P is stable under pullback.

There are countless examples of reasonable classes of maps. Here are some that we �nd
particularly interesting or useful.

1.2 Example (properties of maps of schemes). IfP is the class of maps of schemes satisfying any
of the following properties, then P is reasonable: a�ne, closed immersion, étale, �nite, (locally)
of �nite type, (locally) of �nite presentation, (faithfully) �at, integral, open immersion, proper,
quasicompact, quasiseparated, qcqs, separated, universally closed.

1.3 Example (regular∞-categories). An∞-category C with �nite limits is regular if for every
map f∶ Y → X in C, the Čech nerve Y×X∙ of f admits a geometric realization, and geometric
realizations of Čech nerves are universal [11, De�nition 2.1.1]. Examples of regular ∞-cate-
gories include local∞-pretopoi [SAG, De�nition A.6.1.1] and∞-topoi. In particular, in a regular
∞-category, the class of e�ective epimorphisms is a reasonable class of maps.

1.4 Example (Kan �brations). Let C be a regular ∞-category. Then using the notion of an
e�ective epimorphism, one can de�ne the notions of Kan �brations and trivial Kan �brations
of (semi)simplicial objects in C. See [SAG, §A.5.2; 11, §4.1]. Both Kan �brations and trivial Kan
�brations form reasonable classes of maps of (semi)simplicial objects.

1.5 Example (connectivity structures). Let C be an ∞-category equipped with a connectivity
structure in the sense of [6, De�nition 2.1]. Then for each n ∊ Z, the class of n-connected maps
in C is reasonable.

1.6 Example (factorization systems). Let C be an∞-category with �nite limits and let (ℒ,ℛ)
be a factorization system on C, so that every map f in C admits a factorization f = rl where
l ∊ ℒ and r ∊ ℛ. Then ℛ is a reasonable class of maps [2, Lemma 3.1.6].
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The following two classes of examples from the theory of∞-topoi are due toAnel–Biedermann–
Finster–Joyal [1; 2].

1.7 Example (modalities on∞-topoi). LetX be an∞-topos. Amodality onX is a factorization
system (ℒ,ℛ) in which ℒ is stable under pullback (see [2, De�nition 3.4.1]). In this case, ℒ is
also a reasonable class of maps. Here are some examples of modalities:

(1) For an integer n ≥ −2, the classes ℒ of n-connected maps in X and ℛ of n-truncated maps
in ℒ form a modality on X.

(2) Let F∶ X → Y is a left exact localization, and letℒ be the class of F-equivalences andℛ the
class of F-local maps. Then (ℒ,ℛ) forms a modality on X [1, Lemma 2.6.4].

1.8 Example (Goodwillie calculus). LetX be an∞-topos and let C be a small∞-category with
�nite colimits and a terminal object and let n ∊ N. Then the inclusion Excn(C,X) ⊂ Fun(C,X)

of the full subcategory of n-excisive functors admits a left exact accessible left adjoint Pn. See [HA,
Theorem 6.1.1.10 & Remark 6.1.1.11; 1, §3.1]. In particular, the Pn-equivalences and Pn-local
maps form a modality on the∞-topos Fun(C,X).

1.2 Basic closure properties
Now we turn to proving the most basic closure properties of reasonable classes of maps. First
recall that since limits commute, we have:

1.9 Lemma. Let C be an∞-category with pullbacks and

(1.10)

X1 Z1 Y1

X0 Z0 Y0

X2 Z2 Y2

a commutative diagram in C. Then the limit of the diagram (1.10) exists and is equivalent to both
of the following two iterated pullbacks:

(1) Form the pullback of the columns of (1.10), then take the pullback of the resulting cospan

X1 ×
X0

X2 Z1 ×
Z0

Z2 Y1 ×
Y0

Y2 .

(2) Form the pullback of the rows of (1.10), then take the pullback of the resulting cospan

X1 ×
Z1

Y1 X0 ×
Z0

Y0 X2 ×
Z2

Y2 .

The following consequence of Lemma 1.9 is quite useful in proving our �rst closure property.
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1.11 Example. Let C be an ∞-category with pullbacks and let f∶ X → Z, g∶ Y → Z, and
z∶ Z → Z′ be maps in C. Then the natural square

(1.12)

X ×Z Y X ×Z′ Y

Z Z ×Z′ Z

idX ×z idY

f×Z′g

∆z

is a pullback. To see this, apply Lemma 1.9 to the diagram

X Z′ Y

Z Z′ Z

Z Z Z .

zf

f

zg

g

z z

z

Taking pullbacks vertically then horizontally yieldsX×Z Y. On the other hand, taking pullbacks
horizontally yields the cospan in (1.12) given by the removing the initial vertex of the square.

We now arrive at our �rst closure property:

1.13 Lemma. Let C be an∞-category with pullbacks and let P be a reasonable class of maps in
C. Consider a commutative diagram

(1.14)

Y1 Y0 Y2

X1 X0 X2

f1 f0 f2

in C. Assume that one of the following conditions holds:

(1) The induced map Y1 → X1 ×X0 Y0 is in P (e.g., the left-hand square is a pullback) and f2 is in
P.

(2) The maps f1, f2, and diagonal ∆f0 ∶ Y0 → Y0 ×X0 Y0 are in P.

(3) The induced maps Y1 → X1 ×X0 Y0 and Y2 → X2 ×X0 Y0 are in P and f0 is in P.

Then the induced map on pullbacks Y1 ×Y0 Y2 → X1 ×X0 X2 is in P.

1.15 Warning. One might hope that if f0, f1, and f2 are all in P, then the induced map on
pullbacks Y1 ×Y0 Y2 → X1 ×X0 X2 is in P. However, this is not generally true: it is false even
when C is the category of sets and P is the class of surjections.

Before proving Lemma 1.13, we give an example.
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1.16 Example. Let X be an ∞-topos and let n ≥ −2 be an integer. Consider a commutative
diagram (1.14) where f1 and f2 are n-connected and f0 is (n+1)-connected. Then, by de�nition,
∆f0 is n-connected. Hence Lemma 1.13 shows that the induced map Y1 ×Y0 Y2 → X1 ×X0 X2 is
in n-connected. This recovers [8, Proposition 4.13].

Proof of Lemma 1.13. For (1), we �rst prove the claim under the stronger assumption that the
left-hand square is a pullback. Consider the commutative cube

(1.17)

Y1 ×Y0 Y2 Y2

X1 ×X0 X2 X2

Y1 Y0

X1 X0 .

f2

f1

f0

By de�nition, the front and back vertical faces are pullback squares. By assumption, the bottom
horizontal face is also a pullback square. By the gluing lemma for pullbacks, the top horizontal
face is also a pullback. Since f2 ∊ P and the class P is stable under pullback, we deduce that the
induced map on pullbacks Y1 ×Y0 Y2 → X1 ×X0 X2 is also in P.

Now we treat the general case of (1), only assuming that Y1 → X1 ×X0 Y0 and f2 are in P.
For this, consider the commutative diagram

Y1 Y0 Y2

X1 ×X0 Y0 Y0 Y2

X1 X0 X2 .

⌞

⌟

f0 f2

By the special case, the map from the pullback of the top horizontal span to the pullback of
the middle horizontal span is in P. Again by the special case, the map from the pullback of the
middle horizontal span to the pullback of the bottom horizontal span is in P. Since P is closed
under composition, we deduce that the the induced map on pullbacks Y1 ×Y0 Y2 → X1 ×X0 X2
is in P.

Now we prove (2). First note that the natural map Y1 ×Y0 Y2 → X1 ×X0 X2 factors as a
composite

Y1 ×Y0 Y2 Y1 ×X0 Y2 X1 ×X0 X2 .

Since P is stable under composition, it su�ces to prove that each of these maps is in P. (That
is, we need to show the claim in the special cases when f1 and f2 are identities, and when f0 is
the identity.)
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For the right-hand map, note that the map Y1 ×X0 Y2 → X1 ×X0 X2 factors as a composite

Y1 ×X0 Y2 X1 ×X0 Y2 X1 ×X0 X2 .
f1×X0 idY2 idX1 ×X0f2

Since f1, f2 ∊ P and P is stable under pullback, both of the above maps are in P; hence so is
their composite

That the left-hand map is in P follows from the fact that the natural square

Y1 ×Y0 Y2 Y1 ×X0 Y2

Y0 Y0 ×X0 Y0

idY1 ×f0 idY2

f1×X0f2

∆f0

is a pullback (Example 1.11), the assumption that ∆f0 ∊ P, and the assumption that P is stable
under pullback.

To prove (3), consider the commutative diagram

Y1 Y0 Y2

X1 ×X0 Y0 Y0 X2 ×X0 Y0

X1 X0 X2 .

⌟

f0

⌞

Since the induced maps Y1 → X1×X0 Y0 and Y2 → X2×X0 Y0 are in P, by part (2), the map from
the pullback of the top horizontal cospan to the pullback of the middle horizontal cospan is in
P. Since f0 ∊ P and P is stable under pullback, all of the vertical maps in the bottom half of the
diagram are in P. Hence by part (1), the map from the pullback of the middle horizontal cospan
to the pullback of the bottom horizontal cospan is in P. Since P is closed under composition, we
deduce that the natural map Y1 ×Y0 Y2 → X1 ×X0 X2 is in P.

An important consequence of Lemma 1.13 is that reasonable classes ofmaps are closed under
�nite products.
1.18 Corollary. Let C be an∞-category with �nite limits and let P be a reasonable class of maps
in C. Then given a �nite set (fi ∶ Yi → Xi)i∊I of maps in P, the product

∏

i∊I

fi ∶
∏

i∊I

Yi →
∏

i∊I

Xi

is also in P.
Proof. It su�ces to treat the case #I = 2. For this, apply Lemma 1.13 to the diagram

Y1 1C Y2

X1 1C X2 .

f1 f2
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1.3 Cancellation
We conclude this section by proving a cancellation result for reasonable classes of maps. This is
not needed in §2, but is quite useful. Especially in algebraic geometry.

1.19 Recollection. Let C be an∞-category with �nite products and f∶ X → Y a map in C. The
graph of f is the map gr

f
∶ X → X × Y induced by the universal property of the product by the

identity X → X and f∶ X → Y.

1.20. If C has pullbacks, Z ∊ C, and f∶ X → Y is a map in C∕Z , then note that the graph of f in
C∕Z is a map X → X ×Z Y.

1.21 Lemma. Let C be an∞-category with pullbacks and let f∶ X → Y and g∶ Y → Z be maps
in C. Then the square

X X ×Z Y

Y Y ×Z Y

f

gr
f

f×Z idY

∆g

is a pullback square.

Proof. Consider the commutative diagram

X X ×Z Y X

Y Y ×Z Y Y .

f

gr
f

idX

f×Z idY

pr1

f

∆g

idY

pr1

By cancellation for pullbacks, the right-hand square is a pullback. The large outer rectangle is
clearly a pullback square. By the pasting lemma for pullback squares, the left-hand square is
also a pullback, as desired.

The following is the promised cancellation result.

1.22 Lemma (cancellation). Let C be an∞-category with pullbacks and let P be a reasonable
class of maps in C. Given maps f∶ X → Y and g∶ Y → Z, if gf ∊ P and ∆g ∊ P, then f ∊ P.

Proof. By Example 1.11 and Lemma 1.21 have pullback squares

X X ×Z Y

Y Y ×Z Y

f

gr
f

⌟

f×Z idY

∆g

and

X ×Z Y Y

X Z .

pr1

pr2

⌟

g

gf
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Since ∆g, gf ∊ P and P is stable under pullback, we see that gr
f
and pr

2
∶ X ×Z Y → Y are in P.

Since P is closed under composition, we deduce that pr
2
◦gr

f
= f is in P.

2 Limits over posets & covering pro-objects
Let C be an∞-category with �nite limits, let P be a reasonable class of maps in C, and letℬ ⊂ C

be a full subcategory with the property that for each X ∊ C, there exists a map Y → X in P
with Y ∊ ℬ. The main goal of this section is to show that for every pro-object X ∊ Pro(C), there
exists a map f∶ Y → X in Pro(P)where Y ∊ Pro(ℬ). See Proposition 2.22. The main example of
such a situation is where C = Anπ is the∞-category of π-�nite anima, P is the class of e�ective
epimorphisms, and ℬ = Set�n is the category of �nite sets.

The key technical input is a closure property for P under limits indexed by �nite posets,
explained in Proposition 0.4 of the introduction. To establish it, we start in §2.1 by giving an in-
ductive formula for limits over �nite dimensional posets. In §2.2, we establish the desired closure
property. Subsection 2.3 is dedicated to applying this closure property to cover pro-objects.

2.1 A formula for limits over �nite dimensional posets
We begin by �xing some conventions for dimensions of posets and heights of elements of posets.

2.1 Notation. Let S be a poset and s ∊ S. We write

S≤s ≔ { t ∊ S | t ≤ s } and S<s ≔ { t ∊ S | t < s } .

We regard S≤s and S<s as subposets of S.

2.2 De�nition. Let S be a poset. The (Krull) dimension of S is the supremum

dim(S) ≔ sup { n ∊ N | there is a chain of strict inequalities s0 < ⋯ < sn in S } .

Given an element s ∊ S, the height of s is the dimension

ht(s) ≔ dim(S≤s) .

2.3. Note that ht(s) = 0 if and only if s is a minimal element of S. Similarly, if S is a poset of
dimension n ∊ N, then ht(s) = n if and only if s is a maximal element of S. Also note that if s
and t are two elements of the same �nite height, then s and t are incomparable.

2.4 Remark. If A is a ring and Spec(A) is the set of prime ideals regarded as a poset under
inclusion, then dim(Spec(A)) in the sense of De�nition 2.2 recovers the Krull dimension of A.
Moreover, for a prime p ⊂ A, the height of p as an element of the poset Spec(A) agrees with the
height of p in the sense of commutative algebra.

2.5 Notation. Let S be a poset and n ∊ N. We write

Sht≤n ≔ { s ∊ S | ht(s) ≤ n } and Sht=n ≔ { s ∊ S | ht(s) = n } .

We regard Sht≤n and Sht=n as subposets of S.

We now proceed to give a formula for a (co)limit indexed by a poset of �nite dimension. To
do this, we construct an∞-category out of Sht=n and Sht≤n−1 that approximates S.
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2.6 Construction. Let n ∊ N and let S be a poset. We write Gn(S) for the∞-category given by
the pushout of the span

Sht=n

∐

s∊Sht=n

S<s Sht≤n−1 .

Here, the left-hand map is induced by the universal property of the coproduct and the maps
S<s → {s} ↪ Sht=n. The right-hand map is induced by the universal property of the coproduct
and the inclusions S<s ↪ Sht≤n−1. Note that the ∞-category Gn(S) comes equipped with a
natural functor �∶ Gn(S) → S.

2.7 Recollection. We write B∶ Cat∞ → An for the left adjoint to the inclusion An ↪ Cat∞.
For an∞-category C, we call BC the classifying anima of C. We say that a functor F∶ C → D

is a weak homotopy equivalence if BF is an equivalence. We say that ∞-category C is weakly
contractible if BC ≃ ∗.

2.8 Recollection. We follow the terminology of Clausen and Jansen in [7, Theorem 2.19] and
say that a functor of∞-categories f∶ ℐ → J is a colim-equivalence if for every∞-category C
and functor X∶ J → C, the colimit colimj∊J Xj exists if and only if colimi∊ℐ Xf(i) exists, and in
this case the map

colim
i∊ℐ

Xf(i) → colim
j∊J

Xj

is an equivalence.1 By Quillen’s TheoremA [Ker, Tag 02NY], this holds if and only if for all j ∊ J,
the∞-category ℐ ×J Jj∕ is weakly contractible.

Now for the main result of this subsection:

2.9 Proposition. Let n ∊ N and let S be a poset of dimension n. Then the functor �∶ Gn(S) → S

is a colim-equivalence.

2.10 Warning. The functor �∶ Gn(S) → S is almost never an equivalence. For example, if S
has a unique maximal element s, then Gn(S) ≃ {s} is the terminal poset.

Proof of Proposition 2.9. By Quillen’s Theorem A, we need to check that for each � ∊ S, the∞-
category Gn(S) ×S S≥� is weakly contractible. Note that the inclusion S≥� ↪ S is a left �bration
(see [9, Lemma A.2.6]), in particular, an exponentiable �bration. Hence the functor (−) ×S S≥�
preserves colimits. Thus Gn(S) ×S S≥� is the pushout of the span

(2.11)
∐

s∊Sht=n
s≥�

{s}
∐

s∊Sht=n
s≥�

(S<s ∩ S≥�) Sht≤n−1 ∩ S≥� .

We separate the proof that B(Gn(S) ×S S≥�) is contractible into two cases.
Case 1: ht(�) = n. Equivalently, � is a maximal element. In this case, the middle and right

terms in the span (2.11) are empty, and the left term is {�}. Since B∶ Cat∞ → An preserves
colimits, we see that

B(Gn(S) ×S S≥�) ≃ B{�} = ∗ .

Case 2: ht(�) ≤ n − 1. We �rst claim that the left-hand map in (2.11) is a weak homotopy
equivalence. In fact, for each s ∊ Sht=n with s > �, the poset S<s ∩ S≥� is weakly contractible.

1Such functors are also commonly called �nal or co�nal, depending on the author.
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This is because S<s ∩ S≥� has an initial object, namely �. To conclude the proof, note that since
B preserves colimits and Sht≤n−1 ∩ S≥� also has initial object �, we deduce that

B(Gn(S) ×S S≥�) ≃ B(Sht≤n−1 ∩ S≥�) ≃ ∗ .

2.12 Recollection. Let C be an∞-category, let ℐ∙ ∶ Λ → Cat∞ be a diagram of∞-categories,
and let F∶ colim�∊Λ ℐ� → C be a diagram in C indexed by the colimit of ℐ∙. Then, provided all
of the relevant limits exist, the limit

lim
i∊colim�∊Λ ℐ�

Fi

is equivalent to the iterated limit lim�∊Λ limi∊ℐ�
Fi .

2.13 Corollary. Let n ∊ N, let S be a (�nite) poset of dimension n, and let C be an∞-category with
(�nite) limits. Let X∶ Sop → C be a diagram. Then the natural square

lim
s∊Sop

Xs lim
t∊S

op

ht≤n−1

Xt

∏

s∊S
op

ht=n

Xs

∏

s∊S
op

ht=n

lim
t<s

Xt

is a pullback square in C.

Proof. By Proposition 2.9, the functor �op ∶ Gn(S)op → Sop is a lim-equivalence. The claim now
follows from the de�nition of Gn(S) as a pushout and Recollection 2.12.

2.2 Stability properties for limits over posets
We now prove the following closure property of reasonable classes of maps, which is the key
technical result of this note.

2.14 Proposition. Let C be an ∞-category with �nite limits and let P be a reasonable class of
maps in C. Let S be a �nite poset and let f∶ Y → X be a map in Fun(Sop, C) such that for each
s ∊ S, the induced map

(2.15) Ys → Xs ×
lim
t<s

Xt

lim
t<s

Ys

is in P. Then the induced map on limits lims∊Sop Ys → lims∊Sop Xs is in P.

2.16 Remark. Note that if s ∊ S is a minimal element, then the condition that the map (2.15)
be in P says that the map fs ∶ Ys → Xs is in P.

2.17 Remark. In the special case where the poset S is 1 ← 0 → 2, Proposition 2.14 recovers
Lemma 1.13-(3).

2.18 Remark. If the∞-category C admits small limits and P is closed under small products,
our proof shows that Proposition 2.14 is true under the weaker assumption that the poset S is
�nite dimensional.
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Proof of Proposition 2.14. We prove the claim by induction on the dimension of S. In the base
case dim(S) = 0, the poset S is just a set. The claim then follows from the fact that P is closed
under �nite products (Corollary 1.18).

For the induction step, let n ≥ 1, assume that dim(S) = n and that the claim has been proven
for all �nite posets of dimension ≤ n − 1. Consider the commutative diagram

∏

s∊S
op

ht=n

Ys

∏

s∊S
op

ht=n

lim
t<s

Yt lim
t∊S

op

ht≤n−1

Yt

∏

s∊S
op

ht=n

Xs

∏

s∊S
op

ht=n

lim
t<s

Xt lim
t∊S

op

ht≤n−1

Xt

where the vertical maps are induced by the natural transformation f∶ Y → X. Since we have
dim(Sht≤n−1) = n−1, by the inductive hypothesis, the right-hand vertical map is in P. Note that
since limits commute, the induced map from

∏

s∊S
op

ht=n

Ys to the pullback of the left-hand cospan
is the product of the induced maps

Ys → Xs ×
lim
t<s

Xt

lim
t<s

Ys .

By assumption, each of thesemaps is inP. SinceP is closed under �nite products (Corollary 1.18),
we deduce that the induced map from

∏

s∊S
op

ht=n

Ys to the pullback of the left-hand cospan is also
inP. By Lemma 1.13 and the description of limits over posets of �nite dimension (Corollary 2.13),
we conclude that the induced map

lim
s∊Sop

Ys → lim
s∊Sop

Xs

is also in P.

We conclude this subsection with an application of Corollary 2.13 and Proposition 2.14 to
simplicial objects in a regular∞-category (in the sense of Example 1.3). Since geometric real-
izations of simplicial objects do not generally commute with �nite limits, this application is not
obvious from the de�nitions.

2.19 Proposition. LetX be a regular∞-category, let S be a �nite poset, and let

Y∶ Sop → Fun(�op, X)

be a diagram of simplicial objects. Assume that for each s ∊ S, the induced map Ys → limt<s Yt is
a Kan �bration. Then:

(1) The limit lims∊Sop Ys satis�es the Kan condition.

(2) IfX is a hypercomplete∞-topos, then natural map | lims∊Sop Ys| → lims∊Sop |Ys| is an equiva-
lence.

12



Proof. We �rst prove (1). Recall from Example 1.4 that the class of Kan �brations is reasonable.
Let X denote the terminal object of Fun(�op, X), i.e., the constant diagram with value the termi-
nal object of X. Let f∶ Y → X denote the unique map. Since the limit of the constant diagram
with value the terminal object is still the terminal object, our assumption on Y is equivalent to
the condition that for each s ∊ S, the induced map

Ys → Xs ×
lim
t<s

Xt

lim
t<s

Ys

is a Kan �bration. Hence applying Proposition 2.14 to f∶ Y → X, we see that the map

lim
s∊Sop

Ys → lim
s∊Sop

Xs ≃ 1Fun(�op,X)

is aKan�bration. Since the target is the terminal object, this is equivalent to saying that lims∊Sop Ys
satis�es the Kan condition.

We prove (2) by induction on the dimension of S. In the base case dim(S) = 0, the poset S is
just a �nite set. In this case, since �op is sifted and S is �nite, we deduce that the natural map

|||||

∏

s∊Sop

Ys
|||||
→

∏

s∊Sop

|Ys|

is an equivalence.
For the induction step, let n ≥ 1, assume that dim(S) = n and that we have proven the claim

for all �nite posets of dimension ≤ n − 1. By Corollary 2.13, the natural square

(2.20)

lim
s∊Sop

Ys lim
t∊S

op

ht≤n−1

Yt

∏

s∊S
op

ht=n

Ys

∏

s∊S
op

ht=n

lim
t<s

Yt

is a pullback. Since X is a hypercomplete∞-topos, geometric realization commutes with pull-
backs along Kan �brations [SAG, Theorem A.5.4.1]. Thus, again applying Corollary 2.13, it
su�ces to show that the bottom horizontal map in (2.20) is a Kan �bration and that geometric
realization commutes with each of the limits in the three non-initial vertices of the square (2.20).

First, note that that the bottom horizontal map in (2.20) is a �nite product of the natural
maps Ys → limt<s Yt. By assumption, each of these maps is a Kan �bration. The closure of Kan
�brations under �nite products implies that the bottom horizontal map is a Kan �bration.

Now we show that that geometric realization commutes with each of the limits in the three
non-initial vertices of the square (2.20). For the lower left-hand corner, this follows from the fact
that �op is sifted. For the upper right-hand corner, note that since dim(Sht≤n−1) = n − 1, by the
inductive hypothesis, the natural map

|||||
lim

t∊S
op

ht≤n−1

Yt
|||||
→ lim

t∊S
op

ht≤n−1

|Yt|

is an equivalence. For the lower right-hand corner, note that since �op is sifted, geometric real-
ization commutes with the product appearing in that corner. Thus it su�ces to show that for
each s ∊ Sht=n, the natural map

|||| limt<s
Yt
|||| → lim

t<s
|Yt|
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is an equivalence. Since the poset S<s has dimension at most n − 1, this again follows from the
inductive hypothesis.

2.3 Application: covering pro-objects
In order to state the main result of this subsection, we �x some notation.

2.21 Recollection. Let C be an∞-category and P ⊂ Fun([1], C) a class of maps in C. Since the
walking arrow [1] is a �nite poset, the inclusion Fun([1], C) ↪ Fun([1], Pro(C)) extends to an
equivalence of∞-categories

Pro(Fun([1], C)) ⥲ Fun([1], Pro(C)) .

See [HTT, Proposition 5.3.5.15]. We abuse notation and write Pro(P) ⊂ Fun([1], Pro(C)) for the
image of Pro(P) ⊂ Pro(Fun([1], C)) under this equivalence. Equivalently, a map f in Pro(C) is
in Pro(P) if and only if f can be represented as a natural transformation of co�ltered diagrams
f∙ ∶ Y∙ → X∙ where each fs ∶ Ys → Xs is in P.

Our goal is to prove the following:

2.22 Proposition. Let C be an∞-category with �nite limits, let P be a reasonable class of maps
in C, and letℬ ⊂ C be a full subcategory with the property that for each X ∊ C, there exists a map
Y → X in P with Y ∊ ℬ. Then for each X ∊ Pro(C), there exists a map f∶ Y → X in Pro(P) with
Y ∊ Pro(ℬ).

To prove Proposition 2.22, we’ll use the fact that a pro-object can always be chosen to be
indexed on the opposite of a �ltered poset satisfying the following additional property:

2.23 De�nition. A poset S is down-�nite if for each s ∊ S, the poset S≤s is �nite.

2.24 Lemma [SAG, Lemma E.1.6.4]. Let S′ be a �ltered poset. Then there exists a down-�nite
�ltered poset S and a colim-equivalence �∶ S → S′.

Proof. Let S be the collection of all �nite subsets of S′ that contain a largest element, partially
ordered by inclusion. Let �∶ S → S′ be the function that sends such a subset to its largest
element. By Quillen’s Theorem A, we need to show that for each s ∊ S, the poset S ×S′ S′≥s
is weakly contractible. Notice that S ×S′ S′≥s is the full subposet of S consisting of those �nite
subsets of S′ whose largest element is ≥ s. Note that the element {s} is initial in S ×S′ S′≥s; hence
S ×S′ S

′
≥s

is weakly contractible

Thus Proposition 2.22 follows from the more re�ned statement that we can always cover a
diagram in C indexed by the opposite of a down-�nite poset by a diagram inℬ. To prove this, we
use the following observation.

2.25 Observation. Let S be a down-�nite poset. Then the height of every element of S is �nite.
Hence the assignment s ↦ ht(s) de�nes a map of posets ht∶ S → N. In this case, the height
is determined by the following requirement: for each s ∊ S, the number ht(s) is the smallest
natural number not equal to ht(t) for t < s.

2.26 Proposition. Let C be an∞-category with �nite limits, let P be a reasonable class of maps
in C, and letℬ ⊂ C be a full subcategory with the property that for each X ∊ C, there exists a map
Y → X in P with Y ∊ ℬ.

Let S be a down-�nite poset. Then for every diagram X∶ Sop → C, there exists a diagram
Y∶ Sop → ℬ and a natural transformation f∶ Y → X with the following properties:
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(1) For each s ∊ S, the map fs ∶ Ys → Xs is in P.

(2) For each s ∊ S, the induced map Ys → Xs ×
lim
t<s

Xt

limt<s Ys is in P.

Proof. Note that since S is down-�nite,

S =
⋃

n∊N

Sht≤n .

For each n ∊ N, denote the restriction of X to Sop
ht≤n

by X(n). We proceed by constructing Y as an
amalgam of diagramsY(n) ∶ Sop

ht≤n
→ ℬ by induction on n ∊ N. For the base case n = 0, note that

Sht=0 is the set of minimal elements of S (there are no nontrivial inequalities). For each s ∊ Sht=0,
choose a map fs ∶ Ys → Xs in P with Ys ∊ ℬ. Then Y(0) ∶ Sop

ht=0
→ ℬ is given by sending s to Ys

and the natural transformation Y(0) → X(0) is determined by the maps (fs)s∊Sop
ht=0

.
For the induction step, let n ≥ 1 and assume that a diagram

Y(n−1) ∶ S
op

ht≤n−1
→ ℬ

and a natural transformation f(n−1) ∶ Y(n−1) → X(n−1) satisfying (1) and (2) have been con-
structed. Let s ∊ Sht=n. To de�ne the value of Y on s, �rst consider the pullback

Y′s lim
t<s

Y
(n−1)

t

Xs lim
t<s

Xt ,

⌟

where the right-hand vertical map is induced by f(n−1). By Proposition 2.14 and part (2) of the
inductive hypothesis, the right-hand vertical map is in P. Since P is stable under pullback, the
left-hand vertical map is in P. By assumption, we can choose a map

es ∶ Ys → Y′s

in P with Ys ∊ ℬ. Let fs be the composite

Ys Y′s Xs ,
es

and note that since P is closed under composition, fs ∊ P.
Now extend Y(n−1) to a functor Y(n) ∶ Sop

ht≤n
→ ℬ de�ned on objects by sending s ∊ Sht=n to

Ys. Using the speci�ed maps

Ys Y′s lim
t<s

Y
(n−1)

t
,

es

to de�ne the functoriality of Y(n), we see that Y(n) actually de�nes a diagram S
op

ht≤n
→ ℬ extend-

ing Y(n−1).2 Moreover, the maps (fs)s∊Sop
ht=n

allow us to extend f(n−1) to a natural transformation
f(n) ∶ Y(n) → X(n). By construction, the properties (1) and (2) are satis�ed.

2See [10, Theorem 5.12] for a detailed explanation of why this is enough to extend the diagram.
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2.27 Remark. Essentially the only nontrivial point in the proof of Proposition 2.26 is an appli-
cation of Proposition 2.14. Thus, in light of Remark 2.18, if C admits small limits and P is closed
under small products, one can relax the assumption that S be down-�nite to the assumption
that for each s ∊ S, the height ht(s) = dim(S≤s) is �nite.

Proof of Proposition 2.22. First note that X can be represented by a diagram X∶ Sop → C, where
S is a �ltered poset. Moreover, by Lemma 2.24, we can without loss of generality assume that S
is down-�nite. The claim now follows from Proposition 2.26.

We conclude with a few applications of Proposition 2.22 to regular∞-categories. To do so,
we begin with some remarks about e�ective epimorphisms of pro-objects.

2.28 De�nition. Let C be a regular∞-category and write e� for the class of e�ective epimor-
pisms in C. We say that a map f in Pro(C) is a levelwise e�ective epimorphism if f is in Pro(e� ).

In many examples that arise in practice, every object of C is truncated. In this case, the levelwise
e�ective epimorphisms admit a better description:

2.29 Remark. Let C be a regular∞-category in which every object is truncated. Then by [11,
Proposition 5.2.2], Pro(C) is a regular ∞-category and the class of e�ective epimorphisms in
Pro(C) coincides with the class of levelwise e�ective epimorphisms.

2.30 Corollary. Let C be a regular ∞-category, and let ℬ ⊂ C be a full subcategory with the
property that for each X ∊ C, there exists an e�ective epimorphism Y → X with Y ∊ ℬ. Then for
each X ∊ Pro(C), there exists a levelwise e�ective epimorphism f∶ Y → X with Y ∊ Pro(ℬ).

Proof. In a regular∞-category, the class of e�ective epimorphisms is reasonable. So this is a
special case of Proposition 2.22

Corollary 2.30 applies to regular∞-categories that are determined by their full subcategories
of n-truncated objects.

2.31 Recollection [11, De�nition 2.3.8]. Let C be a regular∞-category and let n ≥ −2 be an
integer. We say that C is n-complicial if for every object X ∊ C, there exists an n-truncated object
Y ∊ C≤n and an e�ective epimorphism Y ↠ X.

There are many examples of regular ∞-categories with this property. The �rst source is
algebra:

2.32 Example. IfA is a Grothendieck abelain category, then the connective part D(A)≥0 of the
derived∞-category ofA is 0-complicial [SAG, Proposition C.5.3.2]. Similarly, if A is an E1-ring
that is connective and n-truncated, then the ∞-category ModA of A-modules is n-complicial
[SAG, Example C.5.3.5].

The second source of examples is topos theory:

2.33 Example (n-localic coherent∞-topoi). Let n ≥ 1 be an integer and let X be an n-localic
coherent∞-topos. Write Xcoh

<∞ ⊂ X for the full subcategory spanned by the truncated coherent
objects (see [SAG, §A.2; 4, §§3.3 & 3.8] for the relevant de�nitions and background). Then Xcoh

<∞

is a bounded∞-pretopos and X is naturally equivalent to the∞-topos She�(Xcoh
<∞) of sheaves

on Xcoh
<∞ for the e�ective epimorphism topology. Write Xcoh

≤n−1
⊂ Xcoh

<∞ for the full subcategory
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spanned by the (n − 1)-truncated coherent objects. Since X is n-localic, restriction along the
inclusion de�nes an equivalence of∞-topoi

X ≃ She�(X
coh
<∞) ⥲ She�(X

coh
≤n−1

) .

As a consequence, for eachX ∊ Xcoh
<∞, there exists an e�ective epimorphismY ↠ XwithY ∊ Xcoh

≤n−1
.

That is, the regular∞-category Xcoh
<∞ is (n − 1)-complicial.

Now for the key consequence of Corollary 2.30:

2.34 Corollary. Let n ≥ −2 be an integer and let C be an n-complicial regular∞-category. Then:

(1) For every object X ∊ Pro(C), there exists an n-truncated object Y ∊ Pro(C≤n) and a levelwise
e�ective epimorphism Y ↠ X.

(2) If every object of C is truncated, then Pro(C) is n-complicial.

Proof. Item (1) is a special case of Corollary 2.30, whereℬ = C≤n is the full subcategory spanned
by the n-truncated objects. Item (2) follows from item (1) and Remark 2.29.

2.35 Example. IfX is an n-localic coherent∞-topos, then for every objectX ∊ Pro(Xcoh
<∞), there

exists an object Y ∊ Pro(Xcoh
≤n−1

) and an e�ective epimorphism Y ↠ X. Moreover, the regular
∞-category Pro(Xcoh

<∞) is (n − 1)-complicial.
Give Pro(Xcoh

<∞) and Pro(X
coh
≤n−1

) the e�ective epimorphism topologies, where covers are gen-
erated by �nite jointly e�ectively epimorphic families of maps. Then [3, Corollary A.8] implies
that restriction along the inclusion Pro(Xcoh

≤n−1
) ⊂ Pro(Xcoh

<∞) de�nes an equivalence

Sh
hyp

e� (Pro(Xcoh
<∞)) ⥲ Sh

hyp

e� (Pro(Xcoh
≤n−1

))

of∞-categories of hypersheaves for e�ective epimorphism topology.3

2.36 Example. TakingX = An and n = 1 in Example 2.35, we see that for every pro�nite anima
X ∊ Pro(Anπ), there exists a pro�nite set Y and an e�ective epimorphism Y ↠ X. Moreover,
restriction along the inclusion de�nes an equivalence

Sh
hyp

e� (Pro(Anπ)) ⥲ Sh
hyp

e� (Pro(Set�n)) .

Here, up to set-theoretic conventions, Shhype� (Pro(Set�n)) is the de�nition of the∞-category of
condensed anima.
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