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0 Introduction

In this note, we prove the following result, as well as a generalization to n-localic coherent
co-topoi:

0.1 Proposition (Example 2.36). Let X € Pro(An,) be a profinite anima. Then there exists a
profinite set Y and an effective epimorphism' Y -» X in Pro(An,,).

We claimed this result in [4, Proposition 13.4.9; 5, Proposition 3.3.8], however the proof there is
incorrect. So the main purpose of this note is to correct the proof.

Since every n-finite anima admits an effective epimorphism from a finite set, Proposition 0.1
follows from the following more general result. To state it, let C be an co-category with finite
limits, and let ? be a class of maps in € that is closed under composition, contains all equivalences,
and is stable under pullback.

0.2 Proposition (Proposition 2.22). Let B C € be a full subcategory with the property that for
each X € C, thereexistsamap Y — X in P with Y € B. Then for each X € Pro(C), there exists a
mapY — X in Pro(P) with Y € Pro(B).

0.3 Remark. Proposition 0.1 also follows from a more refined result of Lurie [SAG, Lemma
E.1.6.6]. Lurie’s proof makes use of model categories and uses constructions specific to working
with simplicial sets. However, Lurie’s proof inspired our proof of Proposition 0.2.

We prove Proposition 0.2 by making a number of choices to construct Y. A key point is that
the pro-object X can always be represented by a diagram X : S°? — € where S is a filtered
poset with the additional property that for each s € S, the set S¢; == {t € S|t < s}is finite
(see Lemma 2.24). There is a height function S — N sending s to the Krull dimension of Sc;
this height function provides a N-indexed filtration on S. Using this filtration, one can try to
construct Y inductively, starting with the height 0 elements (which are the minimal elements
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of S). In order for the inductive step to work, one needs the following closure property for the
class 2, which may be of independent interest:

0.4 Proposition (Proposition 2.14). Let S be a finite poset and let f: Y — X be a map in
Fun(S°P, @) such that for each s € S, the induced map

(0.5) Y, — X, X limY;
l[ingt t<s

isin P. Then the induced map on limits limgcgop Yy — limgegop X is in P.

0.6 Remark (Reedy fibrations). Those familiar with Reedy categories may recognize the hy-
potheses of Proposition 0.4. The object lim; ., X is the matching object of X at s € S. The condi-
tion that (0.5) be in 2 is a version of the notion of a Reedy fibration in this context.

Proposition 0.4 seems to be a nontrivial closure property of classes of maps stable under
pullback and composition. Our proof relies on an inductive description of (co)limits of diagrams
indexed by posets of finite Krull dimension (Proposition 2.9 and Corollary 2.13), which may also
be of independent interest.

We note that in the most simple case, Proposition 0.4 says that given a commutative diagram

Yy Yy Y,
|
fll fo fa
l
X1 Xo X5,

if fo and the induced maps Y, — X; Xx, Yo and Y, — X, Xx, Y, are in P, then the induced
map on pullbacks Y; Xy, Y, = X; Xx, X, isin P.

0.1 Linear overview

The main technical ingredient of this note (Proposition 0.4) is elementary in the sense that
it only relies on more basic closure properties of a class ? of maps stable under composition
and pullback, together with a formula for limits over finite posets. As a result, aside from some
specific applications and examples, we realized that this note could be completely self-contained,
possibly at the cost of adding some length. Thus, in order to make this note accessible to a wider
audience, we have decided to make it self-contained.

With that in mind, even though they are well-known to experts, in §1, we explain the more
basic closure properties of the class P that we need. In §2, we give a formula for limits over posets
of finite Krull dimension (Proposition 2.9 and Corollary 2.13), then prove Propositions 0.1, 0.2,
and 0.4.

0.2 Notational conventions

We write An for the co-category of anima (also referred to as spaces or co-groupoids) and Cat,,
for the co-category of co-categories.
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1 Basic closure properties

1.1 Reasonable classes of maps

We start by fixing some convenient terminology. First recall that given an co-category C, a class
of maps in C is a full subcategory ? C Fun([1], €) of the arrow co-category of C.

1.1 Definition. Let C be an co-category with pullbacks. We say that a class of maps 2 in € is
reasonable if the following conditions are satisfied:

(1) The class P contains all equivalences.
(2) The class 2 is closed under composition.

(3) The class 2 is stable under pullback.

There are countless examples of reasonable classes of maps. Here are some that we find
particularly interesting or useful.

1.2 Example (properties of maps of schemes). If P is the class of maps of schemes satisfying any
of the following properties, then X is reasonable: affine, closed immersion, étale, finite, (locally)
of finite type, (locally) of finite presentation, (faithfully) flat, integral, open immersion, proper,
quasicompact, quasiseparated, gcgs, separated, universally closed.

1.3 Example (regular co-categories). An oo-category € with finite limits is regular if for every
map f: Y — X in G, the Cech nerve Y*x* of f admits a geometric realization, and geometric
realizations of Cech nerves are universal [11, Definition 2.1.1]. Examples of regular co-cate-
gories include local co-pretopoi [SAG, Definition A.6.1.1] and oo-topoi. In particular, in a regular
oo-category, the class of effective epimorphisms is a reasonable class of maps.

1.4 Example (Kan fibrations). Let C be a regular co-category. Then using the notion of an
effective epimorphism, one can define the notions of Kan fibrations and trivial Kan fibrations
of (semi)simplicial objects in €. See [SAG, §A.5.2; 11, §4.1]. Both Kan fibrations and trivial Kan
fibrations form reasonable classes of maps of (semi)simplicial objects.

1.5 Example (connectivity structures). Let C be an co-category equipped with a connectivity
structure in the sense of [6, Definition 2.1]. Then for each n € Z, the class of n-connected maps
in C is reasonable.

1.6 Example (factorization systems). Let C be an co-category with finite limits and let (£, R)
be a factorization system on C, so that every map f in € admits a factorization f = r¢ where
¢ € L and r € R. Then R is a reasonable class of maps [2, Lemma 3.1.6].
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The following two classes of examples from the theory of co-topoi are due to Anel-Biedermann-—
Finster-Joyal [1; 2].

1.7 Example (modalities on co-topoi). Let X be an co-topos. A modality on X is a factorization
system (£, R) in which £ is stable under pullback (see [2, Definition 3.4.1]). In this case, £ is
also a reasonable class of maps. Here are some examples of modalities:

(1) For an integer n > —2, the classes £ of n-connected maps in X' and R of n-truncated maps
in £ form a modality on X.

(2) LetF: X — Yisa left exact localization, and let £ be the class of F-equivalences and R the
class of F-local maps. Then (£, R) forms a modality on X [1, Lemma 2.6.4].

1.8 Example (Goodwillie calculus). Let XX be an co-topos and let € be a small co-category with
finite colimits and a terminal object and let n € N. Then the inclusion Exc"(C, X) c Fun(C, X)
of the full subcategory of n-excisive functors admits a left exact accessible left adjoint P,,. See [HA,
Theorem 6.1.1.10 & Remark 6.1.1.11; 1, §3.1]. In particular, the P,,-equivalences and P,-local
maps form a modality on the co-topos Fun(C, XX).

1.2 Basic closure properties

Now we turn to proving the most basic closure properties of reasonable classes of maps. First
recall that since limits commute, we have:

1.9 Lemma. Let C be an co-category with pullbacks and

Xl—)Zl(_Yl

]

[

Xz—)Zz(—Yz

a commutative diagram in C. Then the limit of the diagram (1.10) exists and is equivalent to both
of the following two iterated pullbacks:

(1) Form the pullback of the columns of (1.10), then take the pullback of the resulting cospan

X XX Z1 X Z Y  XY,.
1X0 2 — 1202‘— 1Y0 2

(2) Form the pullback of the rows of (1.10), then take the pullback of the resulting cospan

X1 XY — Xg XYy «— X, XY,.
170 ozoo 25 %2

The following consequence of Lemma 1.9 is quite useful in proving our first closure property.
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1.11 Example. Let € be an co-category with pullbacks and let f: X — Z,g: Y — Z, and
z: Z — Z' be maps in C. Then the natural square

idy X, idy

XxzY == XXy Y

(1.12) ‘ foz'g

ZA—)ZXZ’Z

is a pullback. To see this, apply Lemma 1.9 to the diagram

x LBy
f Ig
Z —z2— 27 —z—Z
1
z
|
Z Z Z.

Taking pullbacks vertically then horizontally yields X X Y. On the other hand, taking pullbacks
horizontally yields the cospan in (1.12) given by the removing the initial vertex of the square.

We now arrive at our first closure property:

1.13 Lemmma. Let C be an oo-category with pullbacks and let P be a reasonable class of maps in
C. Consider a commutative diagram

Y, Yo Y,
|
(1.14) f1| fo f2
!
X1 Xo X5

in C. Assume that one of the following conditions holds:

(1) Theinduced map Y, — Xy Xx, Yy is in P (e.g, the left-hand square is a pullback) and f is in
P.

(2) The maps f1, [, and diagonal Ag, @ Yy — Yo Xx, Y arein P.
(3) Theinduced maps Y, — X; Xx, Yoand Y, — X, Xx, Yo arein P and f is in P.
Then the induced map on pullbacks Y, Xy, Y, = X Xx, X, isin P.

1.15 Warning. One might hope that if f, f;, and f, are all in P, then the induced map on
pullbacks Y, Xy, Y, — X; Xx, X, is in . However, this is not generally true: it is false even
when C is the category of sets and 2 is the class of surjections.

Before proving Lemma 1.13, we give an example.



1.16 Example. Let XX be an oo-topos and let n > —2 be an integer. Consider a commutative
diagram (1.14) where f, and f, are n-connected and f, is (n + 1)-connected. Then, by definition,
Ay, is n-connected. Hence Lemma 1.13 shows that the induced map Y; Xy, Y, = X; Xx, X3 is

in n-connected. This recovers [8, Proposition 4.13].

Proof of Lemma 1.13. For (1), we first prove the claim under the stronger assumption that the
left-hand square is a pullback. Consider the commutative cube

YiXy, Y — Y,

N X

X1 Xy, Xy ———— X5

(1.17)

Y,

_)YO

\ Ny
f1 0\

X, — > X,.

By definition, the front and back vertical faces are pullback squares. By assumption, the bottom
horizontal face is also a pullback square. By the gluing lemma for pullbacks, the top horizontal
face is also a pullback. Since f, € P and the class 2 is stable under pullback, we deduce that the
induced map on pullbacks Y Xy, Y, — X; Xx, X; is also in 2.

Now we treat the general case of (1), only assuming that Y; — X; Xx, Y, and f, are in 2.
For this, consider the commutative diagram

Y, Y, Y,
L
X1 Xx, Yo Yy Y,
- |
fo fa
!
X, X, X,.

By the special case, the map from the pullback of the top horizontal span to the pullback of
the middle horizontal span is in 2P. Again by the special case, the map from the pullback of the
middle horizontal span to the pullback of the bottom horizontal span is in . Since 2 is closed
under composition, we deduce that the the induced map on pullbacks Y; Xy, Y, = X; Xx, X
isin .

Now we prove (2). First note that the natural map Y, Xy, Y, — X; Xx, X, factors as a
composite

Yl XYO Yz — Yl XXO Y2 — Xl XXO Xz .

Since 2 is stable under composition, it suffices to prove that each of these maps is in . (That
is, we need to show the claim in the special cases when f; and f, are identities, and when f, is
the identity.)



For the right-hand map, note that the map Y; Xy, Y, — X; Xx, X, factors as a composite

Sf1Xx,idy, idx, Xx,f2
YiXx, Yo —— X1 Xx, Yo ———— X1 Xx, X2 -

Since f1, f, € P and P is stable under pullback, both of the above maps are in ; hence so is
their composite
That the left-hand map is in 2 follows from the fact that the natural square

idy1 ><f0 idYZ
YiXy, Yo ————— V1 Xx, Y

J Jflxxofz

Y, Yo Xx, Yo

Afo

is a pullback (Example 1.11), the assumption that Ay € P, and the assumption that 2 is stable
under pullback.
To prove (3), consider the commutative diagram

Y, Yy Y,
X1 Xx, Yo Yy X5 Xx, Yo
| | L
fo
!
X1 Xo X

Since the induced maps Y; — X; Xx, Yo and Y, — X, Xx, Y are in 2, by part (2), the map from
the pullback of the top horizontal cospan to the pullback of the middle horizontal cospan is in
P.Since f € P and P is stable under pullback, all of the vertical maps in the bottom half of the
diagram are in 2. Hence by part (1), the map from the pullback of the middle horizontal cospan
to the pullback of the bottom horizontal cospan is in 2. Since 2 is closed under composition, we
deduce that the natural map Y; Xy, Y, — X; Xx, X, isin . O

An important consequence of Lemma 1.13 is that reasonable classes of maps are closed under
finite products.

1.18 Corollary. Let C be an co-category with finite limits and let P be a reasonable class of maps
in C. Then given a finite set (f; : Y; = X;)i; of maps in P, the product

L7 v~ I1x

iel iel iel
is also in P.

Proof. It suffices to treat the case #I = 2. For this, apply Lemma 1.13 to the diagram




1.3 Cancellation

We conclude this section by proving a cancellation result for reasonable classes of maps. This is
not needed in §2, but is quite useful. Especially in algebraic geometry.

1.19 Recollection. Let € be an co-category with finite productsand f : X — Y amapin €. The
graph of f is the map gr Ix X — X XY induced by the universal property of the product by the
identity X > Xand f: X - Y.

1.20. If C has pullbacks, Z € €,and f : X — Y isamap in C/,, then note that the graph of f in
C/zisamapX - X X7 Y.

1.21 Lemma. Let C be an co-category with pullbacksandlet f : X - Yandg: Y — Z be maps
in C. Then the square

8y
X —— XXzY

f l l fxzidy

Y — > YX; Y
Ag

is a pullback square.

Proof. Consider the commutative diagram

idy

By cancellation for pullbacks, the right-hand square is a pullback. The large outer rectangle is
clearly a pullback square. By the pasting lemma for pullback squares, the left-hand square is
also a pullback, as desired. O

The following is the promised cancellation result.

1.22 Lemma (cancellation). Let € be an co-category with pullbacks and let P be a reasonable
classof mapsin C. Givenmaps f : X > Yandg: Y — Z,ifgf € P and Ay € P, then f € P.

Proof. By Example 1.11 and Lemma 1.21 have pullback squares

gry pr,
X —L s Xx, ¥ Xx; Y — 2 Y
< a
f\ jfoidy and prlj ‘g
Y — S Yx, ¥ X— .7,
Ag gf



Since Ag, gf € P and P is stable under pullback, we see that gry andpr,: X Xz Y — Y arein .
Since P is closed under composition, we deduce that pr, ogr = fisin 2. 0

2 Limits over posets & covering pro-objects

Let C be an oo-category with finite limits, let P be a reasonable class of maps in €, and let B C €
be a full subcategory with the property that for each X e C, there existsamapY — X in P
with Y e B. The main goal of this section is to show that for every pro-object X € Pro(C), there
existsamap f : Y — X in Pro(?) where Y € Pro(3B). See Proposition 2.22. The main example of
such a situation is where C = An,, is the co-category of mt-finite anima, % is the class of effective
epimorphisms, and B = Setg, is the category of finite sets.

The key technical input is a closure property for 2’ under limits indexed by finite posets,
explained in Proposition 0.4 of the introduction. To establish it, we start in §2.1 by giving an in-
ductive formula for limits over finite dimensional posets. In §2.2, we establish the desired closure
property. Subsection 2.3 is dedicated to applying this closure property to cover pro-objects.

2.1 A formula for limits over finite dimensional posets
We begin by fixing some conventions for dimensions of posets and heights of elements of posets.

2.1 Notation. Let S be a poset and s € S. We write
Ses={teS|t<s} and Seyg={teS|t<s}.
We regard S<; and S as subposets of S.
2.2 Definition. Let S be a poset. The (Krull) dimension of S is the supremum
dim(S) := sup {n € N | there is a chain of strict inequalities sy < --- < s5,in S} .
Given an element s € S, the height of s is the dimension
ht(s) := dim(Sy) .

2.3. Note that ht(s) = 0 if and only if s is a minimal element of S. Similarly, if S is a poset of
dimension n € N, then ht(s) = n if and only if s is a maximal element of S. Also note that if s
and t are two elements of the same finite height, then s and ¢ are incomparable.

2.4 Remark. If A is a ring and Spec(A) is the set of prime ideals regarded as a poset under
inclusion, then dim(Spec(A)) in the sense of Definition 2.2 recovers the Krull dimension of A.
Moreover, for a prime p C A, the height of p as an element of the poset Spec(A) agrees with the
height of p in the sense of commutative algebra.

2.5 Notation. Let S be a poset and n € N. We write
Sht<n =15 € S|ht(s) <n} and Shi=n ={s€S|ht(s)=n}.
We regard Sy, and Sy, as subposets of S.

We now proceed to give a formula for a (co)limit indexed by a poset of finite dimension. To
do this, we construct an co-category out of Sy;—,, and Sy;<,—; that approximates S.



2.6 Construction. Letn € N and let S be a poset. We write G,,(S) for the co-category given by
the pushout of the span

Sht:n ¢ H S<s > ShtSn—l .
S€Sht=n

Here, the left-hand map is induced by the universal property of the coproduct and the maps
S<s = {s} © Spi=n- The right-hand map is induced by the universal property of the coproduct
and the inclusions Sy < Spi<,—1. Note that the oco-category G, (S) comes equipped with a
natural functor ¢ : G,(S) — S.

2.7 Recollection. We write B: Cat,, — An for the left adjoint to the inclusion An & Cat,,.
For an oo-category C, we call BC the classifying anima of €. We say that a functor F: ¢ — D
is a weak homotopy equivalence if BF is an equivalence. We say that co-category C is weakly
contractible if BC = .

2.8 Recollection. We follow the terminology of Clausen and Jansen in [7, Theorem 2.19] and
say that a functor of co-categories f : J — J is a colim-equivalence if for every co-category C
and functor X : J — C, the colimit colim s X exists if and only if colim;cy X ;) exists, and in
this case the map
colim X ;) — colim X ;
O] eg

is an equivalence.! By Quillen’s Theorem A [Ker, Tag 02NY], this holds if and only if for all j € g,
the oco-category J Xy J;, is weakly contractible.

Now for the main result of this subsection:

2.9 Proposition. Let n € N and let S be a poset of dimension n. Then the functor ¢ : G,(S) = S
is a colim-equivalence.

2.10 Warning. The functor ¢ : G,,(S) — S is almost never an equivalence. For example, if S
has a unique maximal element s, then G,,(S) ~ {s} is the terminal poset.

Proof of Proposition 2.9. By Quillen’s Theorem A, we need to check that for each o € S, the co-
category G,(S) Xs S>. is weakly contractible. Note that the inclusion Sy, < S is a left fibration
(see [9, Lemma A.2.6]), in particular, an exponentiable fibration. Hence the functor (=) Xg S,
preserves colimits. Thus G,(S) Xgs S>. is the pushout of the span

(2.11) I & —— JI 5<snSs0) —— Shicn-10 S50
S€Sht=n S€Sht=n
s>0 s>0

We separate the proof that B(G,(S) Xs Ss.) is contractible into two cases.

Case 1: ht(o) = n. Equivalently, o is a maximal element. In this case, the middle and right
terms in the span (2.11) are empty, and the left term is {o}. Since B: Cat,, — An preserves
colimits, we see that

B(G(S) X5 S»¢) ~ B{o} = .

Case 2: ht(o) < n — 1. We first claim that the left-hand map in (2.11) is a weak homotopy
equivalence. In fact, for each s € Sy, with s > o, the poset S_; N S5, is weakly contractible.

Such functors are also commonly called final or cofinal, depending on the author.
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This is because Sy N S», has an initial object, namely o. To conclude the proof, note that since
B preserves colimits and Sy;<,,—1 NS> also has initial object o, we deduce that

B(G,(S) X5 S5¢) =~ B(Sht<p—1 N Sxg) = *. O

2.12 Recollection. Let C be an co-category, let 7, : A — Cat,, be a diagram of co-categories,
and let F: colimy.s J, — C be a diagram in € indexed by the colimit of 7,. Then, provided all
of the relevant limits exist, the limit
lim Fi
iecolimyep )
is equivalent to the iterated limit limye lim;eg, F;.

2.13 Corollary. Letn € N, let S be a (finite) poset of dimension n, and let C be an co-category with
(finite) limits. Let X : S°? — C be a diagram. Then the natural square

lim X, —— lim X,
seS°P teS°P

| |
11 xs — ] limx,

op op
SESht:n seSht:n

is a pullback square in C.

Proof. By Proposition 2.9, the functor ¢°P : G,(S)°? — S°P is a lim-equivalence. The claim now
follows from the definition of G,,(S) as a pushout and Recollection 2.12. O

2.2 Stability properties for limits over posets

We now prove the following closure property of reasonable classes of maps, which is the key
technical result of this note.

2.14 Proposition. Let C be an co-category with finite limits and let P be a reasonable class of
maps in C. Let S be a finite poset and let f : Y — X be a map in Fun(S°P, C) such that for each
s € S, the induced map

(2.15) Y, - X, x limY,

limX; t<s
t<s

is in P. Then the induced map on limits limgegop Yy — limgegop X is in P.

2.16 Remark. Note thatif s € S is a minimal element, then the condition that the map (2.15)
be in 2 says that the map f;: Y, — X;isin 2.

2.17 Remark. In the special case where the poset Sis 1 « 0 — 2, Proposition 2.14 recovers
Lemma 1.13-(3).

2.18 Remark. If the oo-category € admits small limits and 2 is closed under small products,
our proof shows that Proposition 2.14 is true under the weaker assumption that the poset S is
finite dimensional.

11



Proof of Proposition 2.14. We prove the claim by induction on the dimension of S. In the base
case dim(S) = 0, the poset S is just a set. The claim then follows from the fact that 2 is closed
under finite products (Corollary 1.18).

For the induction step, let n > 1, assume that dim(S) = » and that the claim has been proven
for all finite posets of dimension < n — 1. Consider the commutative diagram

I] v« —— ][] limY, —— lim Y,

op op <n—
SeS SeSL i, ht<n—1

| |

| I XS _— | | lith — lggn X[
I<s teS.
0p 0p -
seSht:n ssSht:n ht<n-1

where the vertical maps are induced by the natural transformation f : Y — X. Since we have
dim(Sp<,—1) = 1 — 1, by the inductive hypothesis, the right-hand vertical map is in P. Note that
since limits commute, the induced map from HSE qop Y to the pullback of the left-hand cospan
is the product of the induced maps hu=n

Y, > X, x limYj.

limX; t<s
t<s

By assumption, each of these maps is in P. Since 2 is closed under finite products (Corollary 1.18),

we deduce that the induced map from HSESop Y to the pullback of the left-hand cospan is also
ht=n

in . By Lemma 1.13 and the description of limits over posets of finite dimension (Corollary 2.13),
we conclude that the induced map

lim Yy —» lim X
seSOoP 5€SOP

is also in . O

We conclude this subsection with an application of Corollary 2.13 and Proposition 2.14 to
simplicial objects in a regular co-category (in the sense of Example 1.3). Since geometric real-
izations of simplicial objects do not generally commute with finite limits, this application is not
obvious from the definitions.

2.19 Proposition. Let XX be a regular co-category, let S be a finite poset, and let
Y : S°? —» Fun(A°,X)

be a diagram of simplicial objects. Assume that for each s € S, the induced map Yy — lim, Y, is
a Kan fibration. Then:

(1) The limit limggop Y satisfies the Kan condition.

(2) If X is a hypercomplete co-topos, then natural map | limgegop Y| — limgegop | Y| is an equiva-
lence.

12



Proof. We first prove (1). Recall from Example 1.4 that the class of Kan fibrations is reasonable.
Let X denote the terminal object of Fun(A°P, XX'), i.e., the constant diagram with value the termi-
nal object of X. Let f : Y — X denote the unique map. Since the limit of the constant diagram
with value the terminal object is still the terminal object, our assumption on Y is equivalent to
the condition that for each s € S, the induced map

Y, —> X, x limY,

limX; t<s
t<s
is a Kan fibration. Hence applying Proposition 2.14 to f : Y — X, we see that the map

sleig)%’ Y, - sleig}p Xg =~ 1Fun(A°P,JC)
isaKan fibration. Since the target is the terminal object, this is equivalent to saying that limegop Y
satisfies the Kan condition.
We prove (2) by induction on the dimension of S. In the base case dim(S) = 0, the poset S is
just a finite set. In this case, since AP is sifted and S is finite, we deduce that the natural map

v~ T

seSopP seSoP

is an equivalence.
For the induction step, let n > 1, assume that dim(S) = n and that we have proven the claim
for all finite posets of dimension < n — 1. By Corollary 2.13, the natural square

limY, —— lim Y,
0] s 0op t
seSOP teS
ht<n—-1

(2.20) l 1
I vv» — ] limy,

seSﬁLn seSﬁi):n <8

is a pullback. Since XX is a hypercomplete co-topos, geometric realization commutes with pull-
backs along Kan fibrations [SAG, Theorem A.5.4.1]. Thus, again applying Corollary 2.13, it
suffices to show that the bottom horizontal map in (2.20) is a Kan fibration and that geometric
realization commutes with each of the limits in the three non-initial vertices of the square (2.20).

First, note that that the bottom horizontal map in (2.20) is a finite product of the natural
maps Y, — lim,, Y,. By assumption, each of these maps is a Kan fibration. The closure of Kan
fibrations under finite products implies that the bottom horizontal map is a Kan fibration.

Now we show that that geometric realization commutes with each of the limits in the three
non-initial vertices of the square (2.20). For the lower left-hand corner, this follows from the fact
that A° is sifted. For the upper right-hand corner, note that since dim(Sy¢<,—1) = n — 1, by the
inductive hypothesis, the natural map

lim Y, - lggn |Y|

op
teShtSn—l te ht<n-—-1

is an equivalence. For the lower right-hand corner, note that since AP is sifted, geometric real-
ization commutes with the product appearing in that corner. Thus it suffices to show that for
each s € Sp;—,, the natural map
| lim Yt) — lim|Y;|
t<s t<s
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is an equivalence. Since the poset S has dimension at most n — 1, this again follows from the
inductive hypothesis. O

2.3 Application: covering pro-objects
In order to state the main result of this subsection, we fix some notation.

2.21 Recollection. Let € be an oo-category and ? C Fun([1], C) a class of maps in €. Since the
walking arrow [1] is a finite poset, the inclusion Fun([1], €) & Fun([1], Pro(€)) extends to an
equivalence of co-categories

Pro(Fun([1], €)) = Fun([1], Pro(C)).

See [HTT, Proposition 5.3.5.15]. We abuse notation and write Pro(?) C Fun([1], Pro(C)) for the
image of Pro(%?) C Pro(Fun([1], ©)) under this equivalence. Equivalently, a map f in Pro(C) is
in Pro(P) if and only if f can be represented as a natural transformation of cofiltered diagrams
f.: Y, > X, whereeach f;: Y; - X isin 2.

Our goal is to prove the following:

2.22 Proposition. Let C be an oo-category with finite limits, let P be a reasonable class of maps
in C, and let B C C be a full subcategory with the property that for each X € C, there exists a map
Y - X inPwithY € B. Then for each X € Pro(C), there existsa map f : Y — X in Pro(P) with
Y € Pro(B).

To prove Proposition 2.22, we’ll use the fact that a pro-object can always be chosen to be
indexed on the opposite of a filtered poset satisfying the following additional property:

2.23 Definition. A poset S is down-finite if for each s € S, the poset S, is finite.

2.24 Lemma [SAG, Lemma E.1.6.4]. Let S’ be a filtered poset. Then there exists a down-finite
filtered poset S and a colim-equivalence ¢ : S — S'.

Proof. Let S be the collection of all finite subsets of S’ that contain a largest element, partially
ordered by inclusion. Let ¢ : S — S’ be the function that sends such a subset to its largest
element. By Quillen’s Theorem A, we need to show that for each s € S, the poset S Xg S s
is weakly contractible. Notice that S Xg S_, , 1s the full subposet of S consisting of those finite
subsets of S’ whose largest element is > s. Note that the element {s} is initial in S Xg S > hence
S Xg SL is weakly contractible B O

Thus Proposition 2.22 follows from the more refined statement that we can always cover a
diagram in € indexed by the opposite of a down-finite poset by a diagram in B. To prove this, we
use the following observation.

2.25 Observation. Let S be a down-finite poset. Then the height of every element of S is finite.
Hence the assignment s — ht(s) defines a map of posets ht: S — N. In this case, the height
is determined by the following requirement: for each s € S, the number ht(s) is the smallest
natural number not equal to ht(¢) for ¢ < s.

2.26 Proposition. Let C be an oo-category with finite limits, let P be a reasonable class of maps
in C, and let B C C be a full subcategory with the property that for each X € C, there exists a map
Y->XinPwithY € B.

Let S be a down-finite poset. Then for every diagram X : S°° — G, there exists a diagram
Y : S°° — B and a natural transformation f : Y — X with the following properties:

14
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(1) Foreachs e S,themap f;: Y, > X isin P.

(2) Foreachs € S, theinduced map Yy —» X, X lim,Yisin P.
lim X,
t<s

Proof. Note that since S is down-finite,

S = U Shi<n -

neN

For each n € N, denote the restriction of X to S op

ht<n DY X () We proceed by constructing Y as an
amalgam of diagrams Y : Shf <« — Bby 1nduct10n onn € N. For the base case n = 0, note that
Shi=o is the set of minimal elements of S (there are no nontrivial inequalities). For each s € Sy—o,
choose amap f,: Y, — X, in P with Y, € B. Then Y : Sht_0 — B is given by sending s to Y
and the natural transformation Y(© — X(© is determined by the maps (f),. s -

For the induction step, let n > 1 and assume that a diagram
(n-1
y(-1 . Sht <1 B

and a natural transformation =1 : y(»=1 _ x(=1) gatisfying (1) and (2) have been con-
structed. Let s € Sp—,,. To define the value of Y on s, first consider the pullback

Y, —— limy™™
t<s

|

X, — limX,,
t<s

.

where the right-hand vertical map is induced by f**~1. By Proposition 2.14 and part (2) of the
inductive hypothesis, the right-hand vertical map is in . Since 2 is stable under pullback, the
left-hand vertical map is in 2. By assumption, we can choose a map

es: Yy — Y,
in P with Y € B. Let f be the composite

Y, —5 v — X,

N
and note that since 2 is closed under composition, fseP.
Now extend Y"~1 to a functor Y : S°° - B defined on objects by sending s € Sy, to
Y. Using the specified maps

ht<n

€ . Yt(n_l) i

Y, —— Y/ — lim
t<s

to define the functoriality of Y, we see that Y™ actually defines a diagram S — B extend-
ing Y~V 2 Moreover, the maps (f) ses allow us to extend =V to a natural transformatlon
fm Y(") — X, By construction, the" properties (1) and (2) are satisfied. O

2See [10, Theorem 5.12] for a detailed explanation of why this is enough to extend the diagram.
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2.27 Remark. Essentially the only nontrivial point in the proof of Proposition 2.26 is an appli-
cation of Proposition 2.14. Thus, in light of Remark 2.18, if C admits small limits and 2 is closed
under small products, one can relax the assumption that S be down-finite to the assumption
that for each s € S, the height ht(s) = dim(S;) is finite.

Proof of Proposition 2.22. First note that X can be represented by a diagram X : S°°? — ©, where
S is a filtered poset. Moreover, by Lemma 2.24, we can without loss of generality assume that S
is down-finite. The claim now follows from Proposition 2.26. O

We conclude with a few applications of Proposition 2.22 to regular co-categories. To do so,
we begin with some remarks about effective epimorphisms of pro-objects.

2.28 Definition. Let C be a regular co-category and write eff for the class of effective epimor-
pisms in C. We say that a map f in Pro(C) is a levelwise effective epimorphism if f is in Pro(eft).

In many examples that arise in practice, every object of C is truncated. In this case, the levelwise
effective epimorphisms admit a better description:

2.29 Remark. Let C be a regular co-category in which every object is truncated. Then by [11,
Proposition 5.2.2], Pro(€) is a regular co-category and the class of effective epimorphisms in
Pro(C) coincides with the class of levelwise effective epimorphisms.

2.30 Corollary. Let C be a regular co-category, and let B C C be a full subcategory with the
property that for each X € C, there exists an effective epimorphismY — X with'Y € B. Then for
each X € Pro(C), there exists a levelwise effective epimorphism f . Y — X with Y e Pro(B).

Proof. In a regular co-category, the class of effective epimorphisms is reasonable. So this is a
special case of Proposition 2.22 O

Corollary 2.30 applies to regular co-categories that are determined by their full subcategories
of n-truncated objects.

2.31 Recollection [11, Definition 2.3.8]. Let C be a regular co-category and let n > —2 be an
integer. We say that C is n-complicial if for every object X € C, there exists an n-truncated object
Y € G, and an effective epimorphism ¥ -» X.

There are many examples of regular co-categories with this property. The first source is
algebra:

2.32 Example. If A is a Grothendieck abelain category, then the connective part D(A)s of the
derived oco-category of A is 0-complicial [SAG, Proposition C.5.3.2]. Similarly, if A is an E;-ring
that is connective and n-truncated, then the co-category Mod, of A-modules is n-complicial
[SAG, Example C.5.3.5].

The second source of examples is topos theory:

2.33 Example (n-localic coherent co-topoi). Let n > 1 be an integer and let X' be an n-localic
coherent co-topos. Write X! ¢ & for the full subcategory spanned by the truncated coherent

<0

objects (see [SAG, §A.2; 4, §§3.3 & 3.8] for the relevant definitions and background). Then X' 2‘2};
is a bounded oco-pretopos and X is naturally equivalent to the co-topos Sheg(X fﬂg) of sheaves
oh

on XY for the effective epimorphism topology. Write X' coh c 2%h for the full subcategory

<n—1 S
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spanned by the (n — 1)-truncated coherent objects. Since X is n-localic, restriction along the
inclusion defines an equivalence of co-topoi
X = Sheg(XR) = Sheg(XD ).

Asaconsequence, foreachX € X 2‘;};

That is, the regular co-category X is (n — 1)-complicial.

there exists an effective epimorphismY » X withY € X' i‘;lh_l.

Now for the key consequence of Corollary 2.30:
2.34 Corollary. Let n > —2 be an integer and let C be an n-complicial regular co-category. Then:

(1) For every object X € Pro(C), there exists an n-truncated object Y € Pro(C<,) and a levelwise
effective epimorphismY - X.

(2) Ifevery object of C is truncated, then Pro(C) is n-complicial.

Proof. Item (1)is a special case of Corollary 2.30, where B = C., is the full subcategory spanned
by the n-truncated objects. Item (2) follows from item (1) and Remark 2.29. O

2.35 Example. If X is an n-localic coherent co-topos, then for every object X € Pro(XX'S C"h) there
exists an object Y € Pro(X_), coh 1) and an effective epimorphism Y - X. Moreover, the regular
oo-category Pro(XX C"h) is (n - 1) -complicial.

Give Pro(X COh) and Pro(Xg), coh 1) the effective epimorphism topologies, where covers are gen-
erated by finite jointly effectlvely eplmorphlc families of maps. Then [3, Corollary A.8] implies
that restriction along the inclusion Pro(x coh ') C Pro(Xg COh) defines an equivalence

ShUP(Pro(r<oh)) = Sh3P(Pro(x< )

<n-—1
of co-categories of hypersheaves for effective epimorphism topology.

2.36 Example. TakingX = Anandn = 1in Example 2.35, we see that for every profinite anima
X € Pro(An,), there exists a profinite set Y and an effective epimorphism Y - X. Moreover,
restriction along the inclusion defines an equivalence

Shzzfp(Pro(Ann)) = Shzzfp(Pro(Setﬁn)) .

Here, up to set-theoretic conventions, Sh:gfp(Pro(Setﬁn)) is the definition of the co-category of
condensed anima.
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