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Abstract

We study a condensed version of the étale homotopy type of a scheme, which re�nes both
the usual étale homotopy type of Friedlander–Artin–Mazur and the proétale fundamental
group of Bhatt–Scholze. In the �rst part of this paper, we prove that this condensed homotopy
type satis�es descent along integral morphisms and that the expected �ber sequences hold.
We also provide explicit computations, for example, for rings of continuous functions. A key
ingredient in many of our arguments is a description of the condensed homotopy type using
the Galois category of a scheme introduced by Barwick–Glasman–Haine.

In the second part, we focus on the fundamental group of the condensed homotopy type in
more detail. We show that, unexpectedly, the fundamental group of the condensed homotopy
type of the a�ne line A1C over the complex numbers is nontrivial. Nonetheless, its Noohi
completion recovers the proétale fundamental group of Bhatt–Scholze. Moreover, we show
that a mild correction—passing to the quasiseparated quotient—�xes most of this group’s
quirks. Surprisingly, this quotient is often a topological group.
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1 Introduction

1.1 Motivation and overview
LetX be a locally topologically noetherian scheme. In their work on the proétale topology [BS15,
§7], Bhatt and Scholze de�ned a re�nement of the étale fundamental group called the proétale
fundamental group πproét1 (X). Its pro�nite completion recovers the usual étale fundamental
group; moreover, the proétale and étale fundamental groups coincide for normal schemes.While
the étale fundamental group classi�es local systems with values in pro�nite rings such as Zl, it
generally does not classifyQl-local systems. The proétale fundamental group �xes this, as it has
the better feature that it classi�es local systems in a more general class of topological rings.

The (SGA 3) étale fundamental group is the fundamental group of the étale homotopy type, a
proanima introduced by Artin–Mazur [AM69, §9] and Friedlander [Fri82, §4]. The étale homo-
topy type classi�es derived Zl-local systems, and has a number of important applications. For
example, Friedlander’s [Fri73a] and Sullivan’s [Sul74] proofs of the Adams Conjecture, Feng’s
proof [Fen20] of Tate’s 1966 conjecture on the Artin–Tate pairing [Tat95], and applications to
anabelian geometry [HSS14; SS16].

Motivated by the utility of the proétale fundamental group and the étale homotopy type,
one desires a common re�nement of the two to a ‘homotopy type’ that classi�es derived Ql-
local systems and re�nes the key properties of the étale homotopy type. The main goal of this
article is to use the theory of condensed mathematics introduced by Clausen–Scholze [Sch19b]
to investigate such a re�nement.

This article is not the �rst to introduce a condensed re�nement of the étale homotopy type;
one de�nition has been given by Barwick–Glasman–Haine via exodromy [BGH20, 13.8.10], and
another one, following a suggestion by Bhatt–Scholze [BS15, Remark 4.2.9], was given by Hemo–
Richarz–Scholbach [HRS23, Appendix A]. But beyond a few basic properties, little more was
known about these re�nements. Hence, the primary aim of this article is to undertake a thorough
investigation of them.

The de�nition given in [HRS23] proceeds as follows. For a qcqs scheme X, pick a proétale
hypercover X∙ → X by w-contractible schemes. Then for every n ∊ N, the set of connected
components π0(Xn) is naturally a pro�nite set. De�ne the condensed homotopy type of X to be
the colimit Πcond∞ (X) ≔ colim�op π0(X∙) ∊ Cond(Ani) ,
computed in the∞-category Cond(Ani) of condensed anima. The idea is that the condensed
homotopy type should be ‘trivial’ (meaning having no higher homotopy groups) on w-contracti-
ble a�nes, and on general schemes, de�ned via proétale hyperdescent. More formally, Πcond∞ is
the unique hypercomplete proétale cosheaf whose value on w-contractible a�nes is π0.

This de�nition is convenient for some formal manipulations but often too inexplicit to di-
rectly compute in concrete examples. To remedy this, one of the main tools that we use relies on
the work of Barwick–Glasman–Haine [BGH20]. They introduced an explicit pro�nite categoryGal(X) whose underlying category is the category of points of the étale topos of X; the pro�nite
structure globalizes the topologies on the absolute Galois groups of the residue �elds of X.

The pro-category Gal(X) can be regarded as a condensed category; the aforementioned con-
densed re�nement of the étale homotopy type proposed by Barwick–Glasman–Haine [BGH20,
13.8.10] is the condensed classifying anima of Gal(X), obtained by inverting all morphisms in
this condensed category. Wolf showed that the whole hypercomplete proétale∞-topos can be
recovered from the condensed category Gal(X) [Wol22]. Using Wolf’s theorem, we prove in
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Proposition 3.38 that this proposed de�nition agrees with the other proposal mentioned above:Πcond∞ (X) ≃ BcondGal(X) .
Before explaining ourmain results in detail, we now turn to brie�y summarizing the contents

of this article. This article consists of two parts. In the �rst part, we show that, in many respects,
the condensed homotopy type behaves as one would expect from a re�nement of the étale
homotopy type. Among other results, we show that an analogue of the fundamental �ber sequence
holds and that the condensed homotopy type satis�es integral descent; see Theorems 1.1 and 1.3
below. We also provide explicit computations of the condensed homotopy type, for example for
rings of continuous functions C(T, C), where T is a compact Hausdor� space (see Theorem 1.4).

In the second part of this article, we focus on the condensed fundamental group. Every geo-
metric point x̄ → X de�nes a point of the condensed anima Πcond∞ (X), giving rise to condensed
groups πcondn (X, x̄) ≔ πn(Πcond∞ (X), x̄) .
Computing these groups is generally di�cult, and the results can be wild and unexpected. For
instance, we prove in Corollary 7.8 that the fundamental group of the a�ne line over the complex
numbers is nontrivial: πcond1 (A1C, x̄) ≠ 1 .
While this departs from the classical situation, we show that the Noohi completion of πcond1 (X, x̄)
recovers the proétale fundamental group of Bhatt–Scholze; see Theorem 8.17. In fact, we prove
that already the quasiseparated quotient πcond,qs1 (X, x̄), a milder completion similar to the Haus-
dor� quotient of topological groups, behaves computationally as expected. Also, surprisingly,
in many situations the quasiseparated quotient turns out to be a topological group. See Theo-
rem 1.10, the van Kampen formula (Theorem 1.12), and the Künneth formula (Theorem 1.13).
Studying πcond,qs1 is another major theme of the second part of this article.

1.2 Results about the condensed homotopy type
We now turn to explaining the results that we prove in the �rst part of this paper in detail. The
�rst is a condensed version of the ‘fundamental exact sequence’ for the étale fundamental group.

1.1Theorem (fundamental �ber sequence, Corollary 5.6). Letf∶ X → S be amorphismbetween
qcqs schemes, and let s̄ → S be a geometric point ofS. Ifdim(S) = 0, then the naturally null sequence

Πcond∞ (Xs̄) Πcond∞ (X) Πcond∞ (S)
is a �ber sequence in the∞-category Cond(Ani).

Second, using a pro�nite version of Quillen’s Theorem B, we prove the following analogue
of a result of Friedlander [Fri73b, Theorem 3.7].

1.2 Theorem (Theorem 5.12). Let f∶ X → S be a smooth and proper morphism between qcqs
schemes and let s̄ → S be a geometric point. Let Σ be a nonempty set of primes invertible on S. Then
the induced map Πcond∞ (Xs̄) → �bs̄(Πcond∞ (X) → Πcond∞ (S))
becomes an equivalence after completion at Σ.

4



Third, we show that the hypercomplete proétale∞-topos and the condensed homotopy type
have descent along hypercovers by integral surjections:
1.3 Theorem (integral hyperdescent, Corollary 6.16). The functor X ↦ Xhypproét sending a qcqs
scheme X to its hypercomplete proétale∞-topos satis�es integral hyperdescent. As a consequence,
if X∙ ↠ X is an integral hypercover, then the natural map of condensed animacolim�op Πcond∞ (X∙) → Πcond∞ (X)
is an equivalence.

The description ofΠcond∞ (X) via exodromy is a crucial ingredient in our proof of Theorem 1.3;
it follows rather quickly from the fact that, for an integral morphism of schemes f∶ X → Y, the
functor Gal(f) is a right �bration of condensed∞-categories. See Proposition 6.9.

Finally, we give a complete computation of the condensed and étale homotopy types of rings
of continuous functions to the complex numbers:
1.4 Theorem (Corollary 4.35). Let T be a compact Hausdor� space and consider the ring C(T, C)
of continuous functions to the complex numbers. Then there is a natural equivalence of condensed
anima Πcond∞ (Spec(C(T, C))) ≃ T .
(Here, the right-hand side denotes the condensed set represented by T.)

As a consequence, up to protruncation, the étale homotopy type of Spec(C(T, C)) is equiva-
lent to the shape of the topological space T. In particular, if T admits a CW structure, then, up to
protruncation, the étale homotopy type of Spec(C(T, C)) recovers the underlying anima of T.
1.5 Remark. The computation of the protruncated étale homotopy type of rings of continuous
functions seems new. We also do not know of a direct computation that does not pass through
the condensed homotopy type.

1.3 Results about the condensed fundamental group
We now turn to our results about the condensed fundamental group. But �rst, let us remark that
we also obtain a reasonably explicit description of the condensed set of connected components
of Πcond∞ (X).
1.6 Theorem (Theorem4.18 andCorollary 4.19). LetX be a qcqs scheme. Then, for any extremally
disconnected pro�nite set S, we haveπcond0 (X)(S) = Mapqc(S, |X|)∕∼ ,

where ∼ is the equivalence relation generated by pointwise specializations.
In particular, if X has �nitely many irreducible components, then πcond0 (X) coincides with the

usual pro�nite set π0(X) of connected components of X.
1.7 Remark (see Example 4.24). Let R be a ring with the property that |Spec(R)| is homeomor-
phic to the underlying spectral space of Huber’s adic unit disk over Qp. Then the condensed setπcond0 (Spec(R)) coincides with the separated quotient of the space |Spec(R)|. This is a compact
Hausdor� space, and moreover, it coincides with the Berkovich unit disk, i.e.,πcond0 (Spec(R)) ≃ |D1,BerkQp | .
While this example feels rather contrived in the realm of schemes, in a follow-up article we plan
to study a similarly de�ned condensed homotopy type for rigid spaces.

5



We now turn to our results about the condensed fundamental group. As stated earlier, the
condensed fundamental group of A1C is nontrivial:

1.8 Theorem (Corollary 7.8). Let x̄ → A1C be a geometric point. Then the abelianization of the
underlying group πcond1 (A1C, x̄)(∗) is nontrivial. As a consequence, πcond1 (A1C, x̄) ≠ 1.
Oneway to remedy this lies in the relationship between the condensed and proétale fundamental
groups. The proétale fundamental group has the property that it is a Noohi group in the sense
of [BS15, §7.1]. A consequence of Theorem 1.8 is that the condensed fundamental group is not
generally a Noohi group. The process of Noohi completion G ↦ GNoohi extends from topological
groups to condensed groups, and we prove:

1.9 Theorem (Theorem 8.17). Let X be be a qcqs scheme with �nitely many irreducible compo-
nents and x̄ → X a geometric point. Then there is a natural isomorphismπcond1 (X, x̄)Noohi ⥲ πproét1 (X, x̄) .

In the case of A1C, we prove that an operation much milder than Noohi completion forcesπcond1 (A1C) to become trivial. Speci�cally, Clausen and Scholze introduced a localizationA ↦ Aqs
of the category of condensed sets called the quasiseparated quotient [Sch19a, Lecture VI], and
we show:

1.10Theorem (Theorem7.27). LetX be a qcqs geometrically unibranch schemewith �nitelymany
irreducible components, and let x̄ → X be a geometric point. Then there is a natural isomorphismπcond,qs1 (X, x̄) ⥲ πét1 (X, x̄) .

As a consequence of Theorems 1.1 and 1.6, we deduce a fundamental exact sequence for the
quasiseparated quotient of the condensed fundamental group:

1.11 Theorem (fundamental exact sequence, Corollary 7.26). Let k be a �eld with separable
closure k̄, letX be a qcqs k-scheme, and �x a geometric point x̄ → Xk̄ . IfX is geometrically connected
and Xk̄ has �nitely many irreducible components, then the sequence1 πcond,qs1 (Xk̄, x̄) πcond,qs1 (X, x̄) Galk 1
is exact.

Theorem 1.10 can be used, together with integral descent (Theorem 1.3), to show that for
many non-normal schemes, the quasiseparated quotient of the condensed fundamental group
still admits a description in terms of the étale fundamental group. Moreover, surprisingly, it is a
(Hausdor�) topological group rather than some more complicated condensed group.

1.12 Theorem (van Kampen formula for πcond,qs1 , special case of Theorem 7.51). Let X be a
Nagata qcqs scheme and let X� = ∐i X�i be the decomposition of its normalization into connected
components. After choosing base points and étale paths, one has thatπcond,qs1 (X, x̄) ≃ ( ∗topi πét1 (X�i , x̄i) ∗top Z∗r)∕H′ .
Here, Z∗r is a free (discrete) group of �nite rank, ∗top denotes the free topological product andH′ is
an explicit closed normal subgroup.
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Using the van Kampen and the Künneth formulas for the étale fundamental group, we prove:

1.13 Theorem (Künneth formula for πcond,qs1 , Corollary 7.53). Let k be a separably closed �eld
and let X and Y be schemes of �nite type over k. If Y is proper or char(k) = 0, then the natural
homomorphism of condensed groupsπcond,qs1 (X ×k Y, (x̄, ȳ)) → πcond,qs1 (X, x̄) × πcond,qs1 (Y, ȳ)
is an isomorphism.

In some ways, the group πcond,qs1 is even better-behaved than πproét1 (see, e.g., Remark 7.56).

1.4 Related work
As mentioned earlier, the �rst de�nitions of the condensed homotopy type were given via exo-
dromy by Barwick–Glasman–Haine [BGH20, 13.8.10], by Bhatt–Scholze [BS15, Remark 4.2.9]
and by Hemo–Richarz–Scholbach [HRS23, Appendix A]. Another approach to the condensed
homotopy type that mostly uses (simplicial) topological spaces rather than condensed mathe-
matics (along the lines of Artin and Mazur’s work) was studied by Me�e [Mef25].

Some results and de�nitions in this article constitute a part of doctoral theses of the forth
[Mai25] and sixth [Wol25] named authors.

1.5 Linear overview
In §2, we recall some preliminaries on condensed anima, pro-objects, condensed∞-categories,
and proétale sheaves.

Part I is dedicated to proving fundamental results about the condensed homotopy type. In §3,
we give three de�nitions of the condensed homotopy type, and prove that they are equivalent.
We also compute the condensed homotopy type of henselian local rings (Corollary 3.48). In
§4, we prove Theorem 1.6, giving an explicit description of the connected components of the
condensed homotopy type. As an application of this explicit description, we also we compute
the condensed homotopy type of rings of continuous functions (Theorem 1.4).

Section 5 is dedicated to producing �ber sequences for the condensed homotopy type. Specif-
ically, we prove the fundamental �ber sequence (Theorem 1.1) as well as an analogue of a result
of Friedlander relating the condensed homotopy type of the geometric �ber of a smooth proper
morphism to the �ber of the induced map on condensed homotopy types (Theorem 1.2). In §6,
we prove that the condensed homotopy type satis�es integral hyperdescent (Theorem 1.3).

In Part II, we turn our attention to the condensed fundamental group. In §7, we start by
showing that πcond1 (A1C) is nontrivial (Theorem 1.8). We then study the quasiseparated quotient
of the condensed fundamental group. In particular, we prove Theorems 1.10 to 1.13. In §8, we
prove that the Noohi completion of the condensed fundamental group recovers the proétale
fundamental group (Theorem 1.9).

We have three appendices. Appendix A, by Bogdan Zavyalov, is on the structure of rings of
continuous functions and the relationship between these rings andČech–Stone compacti�cation.
Weneed these results for the computation of the condensed homotopy type of rings of continuous
functions, however were not able to �nd any sources that contained all of the results we needed.

In Appendix B, we prove an analogue of Quillen’s Theorem B for pro�nite completions of
classifying anima of condensed∞-categories. Together with the description of the condensed
homotopy type via exodromy, this is the key tool we use to prove Theorem 1.2.
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It is well-known that there is an isomorphism between the absolute Galois group of the
function�eldC(t) and the free pro�nite group on the setC. See, for example [Dou64;HJ00; Jar95].
It seems to be folklore that this isomorphism can be chosen to be compatible with decomposition
groups; this is crucial for our proof that πcond1 (A1C) ≠ 1. Since we could not �nd this proven in
the literature, and there are some subtleties involved, we have included a proof in Appendix C.

1.6 Conventions
Set theory

As usual when working with condensed mathematics, there are some set-theoretic issues one
needs to deal with. We give detailed explanations on how we handle these in Remarks 2.4, 2.36,
and 3.18.

Notational conventions

We use the following standard notation.

(1) We write Cat∞ for the large∞-category of small∞-categories, and write Ani ⊂ Cat∞ for
the full subcategory spanned by the anima (also called∞-groupoids or spaces).

(2) Given a small ∞-category C, we write PSh(C) ≔ Fun(Cop,Ani) for the ∞-category of
presheaves of anima on C.

(3) Given an∞-toposX, we writeXhyp ⊂ X for the full subcategory spanned by the hypercom-
plete objects. The inclusion is accessible and admits a left exact accessible left adjoint, so
that Xhyp is also an∞-topos, called the hypercompletion of X.

(4) Given an∞-site (C, �), wewrite Sh�(C) for the∞-topos of sheaves of anima onCwith respect
to �. We write Shhyp� (C) ≔ Sh�(C)hyp. The∞-topos Shhyp� (C) can also be identi�ed as the full
subcategory of Sh�(C) spanned by those sheaves that also satisfy descent for hypercovers. If
the topology � is clear from the context, we may omit it from the notation.

(5) Given a scheme X, we write ÉtX and ProÉtX for its étale and proétale site, respectively. More-
over, we write Xét ≔ Sh(ÉtX) and Xproét ≔ Sh(ProÉtX) for the∞-topoi of étale and proétale
sheaves of anima on X, respectively.

(6) For an integer n ≥ 0, we write [n] for the poset {0 < ⋯ < n}.
(7) For each integer n ≥ 0, we write �≤n ⊂ � for the full subcategory spanned by [0], . . . , [n].
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2 Preliminaries
For later use and the convenience of the reader, in this section we record a few de�nitions and
observations on condensed anima (§2.1), pro-anima and their relation to condensed anima (§2.2),
condensed∞-categories (§2.3), shape theory (§2.4), and proétale sheaves and w-contractible
objects (§2.5).

2.1 Recollection on condensed anima
All of the material contained in this subsection is gathered from [BH19] and [Sch19b].

2.1 Notation. We write Top for the category of topological spaces, and Comp ⊂ Top for the
full subcategory spanned by the compact Hausdor� spaces. We write β∶ Top → Comp for
the Čech–Stone compacti�cation functor, i.e., the left adjoint to the inclusion. By Stone duality,
the category Pro(Set�n) of pro�nite sets embeds fully faithfully into Comp with image the full
subcategory spanned by the totally disconnected compact Hausdor� spaces. We write

Extr ⊂ Pro(Set�n)
for the full subcategory spanned by the extremally disconnected pro�nite sets. By a theorem of
Gleason [Gle58], the projective objects of the category Comp are exactly the extremally discon-
nected pro�nite sets. Moreover, a pro�nite set is extremally disconnected if and only if it is a
retract of the Čech–Stone compacti�cation of a set equipped with the discrete topology.

2.2 Recollection (condensed anima). Give the category Comp of compact Hausdor� spaces
the Grothendieck topology where the covering families are generated by �nite jointly surjective
families. For each compactHausdor� spaceT, letTδ denote the underlying set ofT equippedwith
the discrete topology. By the universal property of Čech–Stone compacti�cation the ‘identity’
map Tδ → T extends to a surjection β(Tδ) ↠ T. In particular, every compact Hausdor� space
admits a surjection from an extremally disconnected pro�nite set. Hence the subcategories

Extr ⊂ Pro(Set�n) ⊂ Comp
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are bases for the topology of �nite jointly surjective families. By [Aok23, Corollary A.7], the
restriction functors de�ne equivalences of hypercomplete∞-topoi

(2.3) Shhyp(Comp) ⥲ Shhyp(Pro(Set�n)) ⥲ Shhyp(Extr) .
The∞-topos Cond(Ani) of condensed anima is any of the equivalent∞-topoi (2.3).

Since every surjection T′ ↠ T of pro�nite sets with T extremally disconnected admits a
section, a presheaf F on Extr is a hypersheaf if and only if F carries �nite disjoint unions to
�nite products. That is, Shhyp(Extr) ≃ Fun×(Extrop,Ani) .
From this description it follows that sifted colimits in Cond(Ani) can be computed in the
presheaf category Fun(Extrop,Ani).
2.4 Remark. Since the category Comp of compact Hausdor� spaces is not a small category,
there are some set-theoretic issues in the above discussion. We explain how to deal with these
issues in Remark 2.36.

Given the �nal description of condensed anima, we make the following convenient general
de�nition.

2.5 De�nition (condensed objects). Let C be an∞-category with �nite products. The∞-cate-
gory of condensed objects of C is the∞-categoryCond(C) ≔ Fun×(Extrop, C)
of �nite product-preserving presheaves Extrop → C. If D is another ∞-category with �nite
products and F∶ C → D is a �nite product-preserving functor, we writeFcond ∶ Cond(C) → Cond(D)
for the functor given by post-composition with F.
2.6. Observe that if F∶ C → D admits a right adjoint G, then Gcond is right adjoint to Fcond.
2.7 Recollection (homotopy groups of condensed anima). The functor π0 ∶ Ani → Set pre-
serves �nite products. Moreover, for each integer n ≥ 1, the functor πn ∶ Ani∗ → Grp preserves
�nite products. There is a canonical identi�cationCond(Ani)∗ = Cond(Ani∗)
between pointed objects of condensed anima and condensed objects of pointed anima.We simply
write π0 ∶ Cond(Ani) → Cond(Set) for πcond0 and πn ∶ Cond(Ani)∗ → Cond(Grp) for

Cond(Ani)∗ = Cond(Ani∗) Cond(Grp) .πcondn
Explicitly, given a condensed anima A, the condensed set π0(A)∶ Extrop → Set is given byπ0(A)(S) ≔ π0(A(S)) .
Similarly, given a global section a∶ ∗ → A, the condensed group πn(A, a) is given byπn(A, a)(S) ≔ πn(A(S), a) .
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2.8 Recollection [BH19, Construction 2.2.12]. Writeev∗ ∶ Cond(Ani) → Ani

for the global sections functor, given byA ↦ A(∗). The functor ev∗ admits a left adjoint, that we
denote by (−)disc ∶ Ani→ Cond(Ani)
Furthermore (−)disc is fully faithful. We call the image of (−)disc the discrete condensed anima.

2.9 Recollection (the restricted Yoneda embedding). The restricted Yoneda embedding de�nes
a functor

Top→ Cond(Ani) , T ↦ T
given by T ↦ [S ↦ MapTop(S, T)] .
Note that this functor factors through Cond(Set) ⊂ Cond(Ani).1 Also recall that this functor is
fully faithful when restricted to the full subcategory of Top spanned by the compactly generated
topological spaces [Sch19b, Proposition 1.7]. Since it rarely leads to confusion, we often omit the
underline and simply write T for T.
2.2 Pro-objects and completions
We now turn to some recollections about proanima and their relation to condensed anima.

2.10 Recollection (π-�nite and truncated anima). Let A be an anima.

(1) We say that A is truncated if there exists an integer n ≥ 0 such that for all a ∊ A and k ≥ n,
we have πk(A, a) = 0.

(2) We say that A is π-�nite if A is truncated, π0(A) is �nite, and for all a ∊ A and k > 0, the
group πk(A, a) is �nite.

(3) We write Aniπ ⊂ Ani<∞ ⊂ Ani for the full subcategories of Ani spanned by the π-�nite
and truncated anima, respectively.

2.11 Recollection (on various completions).

(1) Since Cond(Ani) admits co�ltered limits, the inclusions

Aniπ ⊂ Ani<∞ ⊂ Cond(Ani)
extend to co�ltered-limit-preserving functorsPro(Aniπ) ↪ Pro(Ani<∞) → Cond(Ani) .
Here, the functor Pro(Ani<∞) → Cond(Ani) is not fully faithful. However, by [BH19, Ex-
ample 3.3.10; Hai25, Proposition 0.1], its restriction to Pro(Aniπ) is fully faithful.

1However, note that if T is not T1, then the the sheaf MapTop(−, T) is not generally accessible [Sch19b, Warning
2.14 & Proposition 2.15]. So, depending on which way you deal with set-theoretic issues, it is not a condensed set, cf.
Remark 2.36. However, in this paper, we only apply this functor to T1 topological spaces anyways.
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(2) The above chain of functors Pro(Aniπ) ↪ Pro(Ani<∞) → Cond(Ani) admits left adjoints

Cond(Ani) Pro(Ani<∞) Pro(Aniπ)(−)∧disc
(−)∧π

(−)∧π
that we call the prodiscretization, resp., pro�nite completion functors.

(3) Similarly, the inclusions Set�n ⊂ Cond(Set) and Grp�n ⊂ Cond(Grp) induce inclusionsPro(Set�n) ⊂ Cond(Set) and Pro(Grp�n) ⊂ Cond(Grp) that admit left adjointsCond(Set) → Pro(Set�n) and (−)∧ ∶ Cond(Grp) → Pro(Grp�n)
that we refer to as pro�nite completion functors.
We now explain the e�ect of pro�ntie completion of condensed anima on π0 and π1.

2.12 Lemma (completions & π0∕π1). Let A be a condensed anima and a∶ ∗ → A a point.

(1) The map π0(A) → π0(A∧π) induced by the unit map A → A∧π exhibits π0(A∧π) as the pro�nite
completion of π0(A).

(2) If π0(A) ∊ Cond(Set) is discrete, then the unit map A → A∧π induces an isomorphism of
pro�nite groups π1(A, a)∧ ⥲ π1(A∧π , a) .

Proof. For (1), note that since the square of inclusionsPro(Set�n) Cond(Set)
Pro(Aniπ) Cond(Ani)

commutes, so does the induced squareCond(Ani) Pro(Aniπ)
Cond(Set) Pro(Set�n)

(−)∧π
π0 π0

of left adjoints.
For (2), since π0(A) is a set, we may assume that π0(A) = ∗. It su�ces to show that, for any

�nite group G, precomposition induces a bijectionMapCond(Grp)(π1(A, a), G) ⥲ MapCond(Grp)(π1(A∧π , a), G) = MapPro(Grp�n)(π1(A∧π , a), G) .
To see this, note that we have a commutative squareπ0MapPro(Aniπ)∗(A∧π , BG) MapPro(Grp�n)(π1(A∧π , a), G)

π0MapCond(Ani)∗(A, BG) MapCond(Grp)(π1(A, a), G),
π1∼
π1∼
12



where the vertical maps are those induced by the unit transformation A → A∧π . Since π0(A) = ∗,
by the equivalence of 1-truncated, pointed connected objects and group objects [HTT, Theorem
7.2.2.12], the horizontal maps are bijections. It thus su�ces to see that the mapMapCond(Ani)∗(A∧π , BG) → MapCond(Ani)∗(A, BG)
induces a bijection on π0. But since G is �nite and Pro(Aniπ)∗ ↪ Cond(Ani)∗ is fully faithful,
by adjunction it is even an equivalence.

2.13Remark. One cannot drop the assumption thatπ0(A) is discrete in Lemma 2.12 (2). Indeed,
let A be the condensed set represented by the topological circle S1. Then for any x ∊ S1, we haveπ1(A, x) = ∗ but π1(A∧π , x) = Ẑ .

2.3 Condensed∞-categories
Wenow recall some background on internal higher category theory and condensed∞-categories.
The main point is that it is often useful to use the fact that the∞-category of condensed∞-cate-
gories is equivalent to the∞-category of categories internal to condensed anima. We refer the
reader to [Mar21, §3; MW24, §2] for more background about internal higher category theory.

2.14De�nition. Letℬ be an∞-categorywith �nite limits. A category internal toℬ is a simplicial
object F∶ �op → ℬ satisfying the following conditions.

(1) Segal condition: For each integer n ≥ 2, the natural mapF([n]) → F({0 < 1}) ×F({1})F({1 < 2}) ×F({2})⋯ ×F({n−1})F({n − 1 < n})
is an equivalence in ℬ.

(2) Univalence axiom: The natural squareF([0]) F([0]) × F([0])
F([3]) F({0 < 2}) × F({1 < 3})

∆

is a pullback square inℬ. Here, the left vertical map is given by restriction along the unique
map [3] → [0], the right vertical map is the product of the maps given by restriction along
the uniquemaps {0 < 2} → [0] and {1 < 3} → [0], and the bottom horizontal map is induced
by restriction along the inclusions {0 < 2} ↪ [3] and {1 < 3} ↪ [3].

We write Cat(ℬ) ⊂ Fun(�op, ℬ)
for the full subcategory spanned by the categories internal to ℬ.
2.15 Remark. Elsewhere in the literature, internal categories are also called complete Segal
objects.
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2.16. Joyal and Tierney [JT07] showed that the nerve construction de�nes an equivalenceN∶ Cat∞ ⥲ Cat(Ani)C ↦ [[n] ↦ MapCat∞([n], C)]
from the ∞-category of ∞-categories to the ∞-category of categories internal to anima. See
[HS25] for a modern, model-independent proof of this fact.

2.17. Themain example thatwe care about in this paper is the casewhereℬ = Cond(Ani). Since
the Segal conditions and the sheaf condition are both limit conditions, the canonical equivalenceFun(Extrop, Fun(�op,Ani)) ≃ Fun(�op, Fun(Extrop,Ani))
restricts to an equivalence Cond(Cat∞) ≃ Cat(Cond(Ani)) .
Therefore, we often implicitly identify Cond(Cat∞) with Cat(Cond(Ani)).

We now turn to some speci�c features of Cond(Cat∞).
2.18 De�nition (continuous functors). The∞-category of condensed∞-categories is cartesian
closed, see [Mar21, Proposition 3.2.11]. For condensed ∞-categories C and D, we denote the
internal Hom by Funcond(C,D) .
Similarly, we write Functs(C,D) ≔ Funcond(C,D)(∗)
for the∞-category of continuous functors C → D.

2.19. Observe that the functor (C,D) ↦ Functs(C,D) is characterized by the existence of natural
equivalences MapCat∞(A, Functs(C,D)) ≃ MapCond(Cat∞)(A × C,D)
for each∞-category A.
2.20. Explicitly, Functs(C,D) is given by the end

Functs(C,D) ≃ ∫S∊Extrop Fun(C(S),D(S)) ,
see, for example, [Gla16, Proposition 2.3]. In particular, the objects in this∞-category are pre-
cisely natural transformations C(−) → D(−) of functors Extrop → Cat∞.

Many of the condensed∞-categories we are interested come from pro-objects:

2.21 Observation. By taking internal categories on each side, the right adjoint fully faithful
embedding Pro(Aniπ) → Cond(Ani) of Recollection 2.11 induces a fully faithful right adjoint
functor � ∶ Cat(Pro(Aniπ)) → Cond(Cat∞) .
Many of the examples of condensed∞-categories that we care about are in the image of this
embedding.
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For condensed∞-categories in the image of �, we can describe their value at Čech–Stone com-
pactifations explicitly:

2.22 Proposition. Consider C ∊ Cat(Pro(Aniπ)) as a condensed∞-category via � and letM be a
set. Then the functor Functs(β(M), C) → ∏m∊M C({m})
induced by the inclusions {m} ↪ β(M) is an equivalence of∞-categories.

Proof. It su�ces to check that this functor becomes an equivalence after applying the functorMapCat∞([n], −) for every n. Since we have a natural chain of equivalencesMapCat∞([n], Functs(β(M), C)) ≃ MapCond(Cat∞)(β(M) × [n], C)≃ MapCond(Cat∞)(β(M), ev[n](C)),
it su�ces to show that the natural mapMapCond(Cat∞)(β(M), ev[n](C)) → ∏m∊M ev[n](C)({m})
is an equivalence. Since ev[n](C) is a pro�nite anima by assumption and both sides are clearly
compatible with limits, we may assume that ev[n](C) = A is a π-�nite anima.

By [SAG, Lemma E.1.6.5], there exists a Kan complex A∙ with values in �nite sets such that|A∙| ≃ A. Since β(M) is a compact projective object in Cond(Ani), it follows that the natural
map |MapCond(Ani)(β(M), A∙)| → MapCond(Ani)(β(M), |A∙|)
is an equivalence. Since every An is �nite, it follows thatMapCond(Ani)(β(M), A∙) ≃ ∏M A∙ is
an in�nite product of Kan complexes. Since geometric realizations of Kan complexes commute
with arbitrary products,2 the natural mapMapCond(Ani)(β(M), A) ≃ |MapCond(Ani)(β(M), A∙)|⟶∏M |A∙| ≃ ∏M A
is an equivalence.

2.4 Recollection on shape theory
In this subsection, we recall a bit about shape theory for∞-topoi.We do not explicitly need shape
theory for most of this paper, but, instead, we work with a relative version of shape theory over
the base∞-topos of condensed anima. So this subsection serves as motivation for the theory we
develop; we also use it to recall some background on shapes of topological spaces and the étale
homotopy type.

2.23 Recollection (protruncation). The inclusion Pro(Ani<∞) ⊂ Pro(Ani) admits a left adjointτ<∞ ∶ Pro(Ani) → Pro(Ani<∞)
de�ned as follows. The functor τ<∞ is the unique co�ltered-limit-preserving extension of the
fully faithful functor Ani↪ Pro(Ani<∞) that sends an anima A to the co�ltered diagram given
by its Postnikov tower {τ≤n(A)}n≥0. We refer to τ<∞ as the protruncation functor.

2This follows from the fact that the homotopy groups of the geometric realization of a Kan complex are computed as
its simplicial homotopy groups, and these commute with in�nite products.
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2.24 Recollection. Let X be an ∞-topos. We write Γ∗ ≔ MapX(1X , −)∶ X → Ani for the
global sections functor. The functor Γ∗ admits a left exact left adjoint Γ∗ ∶ Ani→ X referred to
as the constant sheaf functor. The∞-topos of anima is the terminal object of RTop∞, so Γ∗ is
the unique geometric morphism X → Ani.

While Γ∗ need not preserve limits in general, the unique co�ltered limit-preserving extensionPro(Ani) → X of Γ∗ preserves all limits and admits a left adjointΓ♯ ∶ X → Pro(Ani) .
2.25 Recollection. Let X be an∞-topos. The shape of X is the proanimaΠ∞(X) ≔ Γ♯(1X) .
The assignment X ↦ Π∞(X) naturally re�nes to a functorΠ∞ ∶ RTop∞ → Pro(Ani)
that is left adjoint to the unique co�ltered limit-preserving extension of the functor

Ani→ RTop∞A ↦ Fun(A,Ani) ≃ Ani∕A
with functoriality given by right Kan extension.

The protruncated shape functor is the composite

Π<∞ ∶ RTop∞ Pro(Ani) Pro(Ani<∞) .Π∞ τ<∞
Similarly, the pro�nite shape is de�ned by composing further with the pro�nite completion
functor Π̂∞ ∶ RTop∞ Pro(Ani<∞) Pro(Aniπ) .Π<∞ (−)∧π
2.26 Observation. The prodiscritization functor (−)∧disc ∶ Cond(Ani) → Pro(Ani<∞) is the
composite of Γ♯ ∶ Cond(Ani) → Pro(Ani) with the protruncation functor τ<∞.

We now give a useful, alternative description of the shape.

2.27 Recollection. Let C be an accessible∞-category with �nite limits (e.g., C = Ani). Then
by [SAG, De�nition A.8.1.1 & Proposition A.8.1.6], there is a natural identi�cationPro(C) ≃ Funlex,acc(C,Ani)op
with the opposite of the ∞-category of left exact accessible functors C → Ani. Under these
identi�cations, the protruncation functor τ<∞ ∶ Pro(Ani) → Pro(Ani<∞) is identi�ed with the
functor Funlex,acc(Ani,Ani)op → Funlex,acc(Ani<∞,Ani)op
given by precomposition with the inclusion Ani<∞ ↪ Ani.

Given an∞-toposX, under this identi�cation of Pro(Ani), the shapeΠ∞(X) is the left exact
accessible functor Ani→ Ani given by the compositeΓX,∗Γ∗X ∶ Ani→ Ani .
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That is, for each animaA, the value ofΠ∞(X) onA is the global sections of the constant object ofX with value A. Moreover, given a geometric morphism f∗ ∶ X → Y with unit u∶ idY → f∗f∗,
the induced morphism of proanima Π∞(X) → Π∞(Y) corresponds to the morphismΓY,∗uΓ∗Y ∶ ΓY,∗Γ∗Y ⟶ΓY,∗f∗f∗Γ∗Y ≃ ΓX,∗Γ∗X
in Pro(Ani)op ⊂ Fun(Ani,Ani). We refer the reader to [HTT, §7.1.6; Hoy18, §2] for more details.

We now explain how the shape of the∞-topos of sheaves on a locally compact Hausdor�
space T relates to the prodiscretization of the condensed set represented by T in the sense of
Recollection 2.11. To do this, we �rst need the following lemma.

2.28 Lemma. Let f∗ ∶ X → Y be a geometric morphism of∞-topoi. If f∗ is fully faithful when
restricted to truncated objects, thenΠ<∞(f∗)∶ Π<∞(X) → Π<∞(Y) is an equivalence.

Proof. Note that since f∗ and f∗ are left exact, they preserve truncated objects [HTT, Proposition
5.5.6.16]. Hence the adjunction f∗ ⫞ f∗ restricts to an adjunction at the level of truncated
objects. Thus our assumption is that the unit u∶ idY → f∗f∗ is an equivalence when restricted
to truncated objects. Under the description of the protruncated shape given in Recollection 2.27,
we see that we need to show that for each truncated anima A, the map induced by the unitΓY,∗Γ∗Y(A)⟶ ΓY,∗f∗f∗Γ∗Y(A)
is an equivalence; this follows from our assumption.

2.29 Example. Let X be an∞-topos. There are natural geometric morphismsXpost → Xhyp ↪ X .

Here, Xpost is the Postnikov completion of X in the sense of [SAG, De�nition A.7.2.5]. By [SAG,
TheoremA.7.2.4] and [HTT, Lemma 6.5.2.9], these geometricmorphisms restrict to equivalences
on truncated objects. Hence they induce equivalences on protruncated shapes.

Now we deal with sheaves on locally compact Hausdor� spaces.

2.30 Notation. For a topological space T, we write Π∞(T) ∊ Pro(Ani) for the shape of the∞-topos Sh(T) of sheaves of anima on T. We write Π<∞(T) for the protruncation of Π∞(T). We
write LCH ⊂ Top for the full subcategory spanned by the locally compact Hausdor� spaces.

2.31 Example. If T is a topological space that admits a CW structure, then Π∞(T) coincides
with the underlying anima of T. See [HA, §A.4; HPT23, §3.2].

2.32 Lemma. The triangle

LCH

Cond(Ani) Pro(Ani<∞)
Π<∞

(−)∧disc
canonically commutes.
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Proof. Let T be a locally compact Hausdor� space. By [Hai22, Corollary 4.9], there is a natural
fully faithful left exact left adjoint Shpost(T) ↪ Cond(Ani)∕T
from the Postnikov completion of the∞-topos of sheaves on T to condensed anima sliced overT. By Lemma 2.28 and Example 2.29, we deduce that this algebraic morphism induces an equiv-
alence on protruncated shapesΠ<∞(Cond(Ani)∕T) ⥲ Π<∞(Shpost(T)) ≃ Π<∞(T) .

Note that for any∞-toposX and objectU ∊ X, the forgetful functorX∕U → X is left adjoint
to the pullback functor U × (−)∶ X → X∕U . Hence the shape of X∕U coincides with the image
of U under Γ♯ ∶ X → Pro(Ani). Thus by Observation 2.26, the protruncated shape of the sliceCond(Ani)∕T coincides with prodiscretization of the condensed set T.
2.33 Remark. Lemma 2.32 was also (essentially) observed in [Aok24, Theorem 4.12].

2.5 Recollection on proétale sheaves
We now turn to recalling some background about the proétale topology and proétale sheaves.
The following de�nition is from [BS15]:

2.34 De�nition. Let f∶ X → Y be a morphism of schemes.

(1) We call f∶ X → Y weakly étale if both f and its diagonal ∆f are �at.
(2) We write ProÉtX for the proétale site of X, i.e., the site of weakly étale X-schemes equipped

with the fpqc topology.

(3) We furthermore write Xproét ≔ Sh(ProÉtX) for the proétale∞-topos of X.
2.35. We almost exclusively work with the hypercomplete proétale∞-topos Xhypproét.
2.36 Remark (size issues). Since the category of weakly étale X-schemes is not small, De�-
nition 2.34 introduces some set-theoretic issues. In the end, one can always circumvent these
issues and they do not have any serious e�ect on our results. For the more cautious reader, we
suggest one of the following two ways of reading this paper:

(1) Fix once and for all two strongly inaccessible cardinals � < ". All schemes, spectral spaces, etc.
are then assumed to be �-small and all categorical constructions, such as taking sheaves on a
site, are taken with respect to the larger universe determined by ". In particularXhypproét always
means hypersheaves of "-small anima on �-small weakly étale X-schemes, and similarly for
the∞-category of condensed anima Cond(Ani).

(2) If the reader does not want to work with universes, they may proceed as follows. For a
scheme X, choose a strong limit cardinal � such that X is �-small. Write ProÉtX,� for the
category of �-small weakly étale X-schemes. We then de�neXhypproét,� ≔ Shhyp(ProÉtX,�) .
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The assumption that � is a strong limit cardinal guarantees that there are enough w-con-
tractibles in ProÉtX,�, see De�nition 2.42. We then de�neXhypproét ≔ colim� Xhypproét,�
and similarly for the category of condensed anima. This is also the approach taken byClausen
and Scholze [Sch19b].
However, then some statements about Xhypproét and Cond(Ani), such as Proposition 2.51, are
no longer true on the nose. In such a case, to correct the result, one must make an implicit
choice of strong limit cuto� cardinal �, and Xhypproét should be understood as Xhypproét,�. In the
end, a choice of such a � is harmless and does not a�ect our results, see Remark 3.18.

The same discussion applies to the non-hypercomplete proétale∞-topos Xproét.
We now prove a generalization of [BS15, Lemma 5.1.2 & Corollary 5.1.6].

2.37 Notation. For a schemeX, we denote the inclusion ÉtX → ProÉtX of the the étale site into
the proétale site by �.
2.38 Proposition. Let X be a qcqs scheme. Then the pullback functor �∗ ∶ Xhypét → Xhypproét is fully
faithful when restricted to truncated objects.

2.39 Notation. Let X be a scheme. Write ProÉta�X ⊂ ProÉtX for the full subcategory spanned by
the a�ne schemes. Note that ProÉta�X is a basis for the proétale topology on ProÉtX . Hence by
[Aok23, Corollary A.7], restriction along the inclusion de�nes an equivalence of∞-categoriesXhypproét = Shhyp(ProÉtX) ⥲ Shhyp(ProÉta�X ) .
Proof of Proposition 2.38. First observe that since the left exact pullback functor �∗ preserves n-
truncated objects [HTT, Proposition 5.5.6.16], the truncated pullback functors are well-de�ned.
We equivalently need to show that the composite

Xhypét Xhypproét Shhyp(ProÉta�X )�∗ ∼
is fully faithful when restricted to truncated objects. To simplify notation, we also denote this
composite by �∗.

First observe that a presheaf of n-truncated anima F∶ (ProÉta�X )op → Ani≤n is a sheaf if and
only if the following conditions hold:

(1) The presheaf F sends �nite disjoint unions of a�ne schemes proétale over X to �nite prod-
ucts.

(2) For every surjection f∶ U ↠ X of a�ne schemes proétale over X with associated Čech
nerve U∙ → X, the canonical mapF(X) → lim[i]∊�≤n+1 F(Ui)
is an isomorphism.
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This is just the n-truncation of the sheaf condition as formulated in [SAG, Proposition A.3.3.1],3
using the fact that totalizations in an (n + 1)-category can be calculated as limits over �≤n+1
[HP25, Proposition A.1].

Since the problem is local onX, we immediate reduce to the case whereX is a�ne. Then, the
category ProÉta�X is exactly given by thoseU ∊ ProÉtX which can be written as a small co�ltered
limit U = limi∊I Ui of a�ne schemes Ui ∊ ÉtX . Now let n ≥ 0 be an integer and, let F be an
object of Xét,≤n. The presheaf pullback of F to the proétale site of X is given by the formulaU ↦ colimi∊Iop F(Ui) on all U ∊ ProÉta�X . We wish to show, that this is already a sheaf. For this,
we can just copy the proof of [Lur18, Proposition 7.1.3(2)]. The argument there works not only
for equalizers, but for all �nite limits as they appear in our n-truncated sheaf condition. As �∗F
restricts toF on a�ne étale schemes Éta�X , it is clear that we have �∗�∗F = F for allF ∊ Xét,≤n, i.e.,
the pullback �∗ is fully faithful when restricted to n-truncated objects. See [Mai25, Proposition
A.5.33] for more details.

Nowwe deduce some consequences for the étale homotopy type. For this, recall our notation
regarding shape theory from Recollection 2.25.

2.40 Notation. Let X be a scheme. We writeΠét<∞(X) ≔ Π<∞(Xhypét ) and Π̂ét∞(X) ≔ Π̂∞(Xhypét )
for the protruncated étale homotopy type and the pro�nite étale homotopy type of X, respectively.
2.41 Corollary. Let X be a scheme. Then the mapΠ<∞(�∗)∶ Π<∞(Xhypproét) → Πét<∞(X)
is an equivalence.

Proof. Immediate from Lemma 2.28 and Proposition 2.38.

Basis of weakly contractible objects

Recall that an object Y of a site C is weakly contractible if every coveringU ↠ Y admits a section.
In the proétale site, weakly contractible qcqs objects are given by w-contractible schemes.

2.42 De�nition. A qcqs scheme X is w-contractible if every weakly étale surjection U ↠ X
admits a section.

For the subsequent characterization of w-contractibles, recall the following fact on connected
components of qcqs schemes.

2.43Lemma [STK, Tag 0900]. LetX be a qcqs scheme. Then the setπ0(X) of connected components
of |X|, endowed with the quotient topology induced by |X|, is a pro�nite set.
2.44 De�nition. Let X be a qcqs scheme. We say that X is w-local if the subspace Xcl ⊂ |X| of
closed points is closed and every connected component of X has a unique closed point. We say
that X is w-strictly local if X is w-local and every étale surjection U ↠ X admits a section.

2.45 Remark. As observed in [Art71, Proposition 3.1], since a w-strictly local scheme is a retract
of an a�ne scheme, every w-strictly local scheme is a�ne.

3One easily checks that the category ProÉta�X ⊂ ProÉtX satis�es the conditions stated there.
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2.46 Remark. By [BS15, Lemma 2.2.9], a qcqs scheme X is w-strictly local if X is w-local and
the local rings at all closed points are strictly henselian.

2.47 Example. Let k̄ be a separably closed �eld. Then any qcqs weakly étale k̄-scheme X is
w-strictly local. Indeed, such a scheme is zero dimensional and thus, by Serre’s cohomological
characterization of a�neness, a�ne. By [STK, Tag 092Q], it is therefore a co�ltered limit of �nite
disjoint unions of Spec(k̄) and hence w-strictly local.

2.48 Recollection [STK, Tag 0982]. A scheme X is w-contractible if and only if it is w-strictly
local and π0(X) ∊ Pro(Set�n) is extremally disconnected. In particular, w-contractible schemes
are a�ne.

2.49 Notation. For a scheme X, we write ProÉtwcX ⊂ ProÉtX for the full subcategory spanned
by the w-contractible schemes.

2.50 Recollection [STK, Tag 0990]. The subcategory ProÉtwcX ⊂ ProÉtX is a basis for the proé-
tale topology. But beware that ProÉtwcX is not closed under �ber products in ProÉtX .
2.51 Proposition. Let X be a scheme. Restriction along the inclusion of sites ProÉtwcX ⊂ ProÉtX
de�nes an equivalence of hypercomplete∞-topoiXhypproét = Shhyp(ProÉtX) ⥲ Shhyp(ProÉtwcX ) .
Moreover, this∞-topos can be identi�ed with the∞-topos of �nite product-preserving presheavesFun×((ProÉtwcX )op,Ani) .
Proof. This follows from Recollection 2.50 and [Aok23, Corollary A.7] combined with the de�n-
ing property of w-contractible schemes. Details are given in [Mai25, Proposition 2.2.12].
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Part I

The condensed homotopy type
3 Three perspectives on the condensed homotopy type
In this section, we introduce the condensed homotopy type of a scheme X. As explained in
the introduction, we give three de�nitions, and prove that they are equivalent. The �rst, given
in §3.1, is the relative shape of the hypercomplete proétale ∞-topos Xhypproét over the ∞-toposCond(Ani) of condensed anima. The second, given in § 3.2, is as the unique hypercomplete
proétale cosheaf whose value on a w-contractible a�neU is the pro�nite set π0(U) of connected
components of U. The last, given in §3.3, is as the condensed classifying anima of the Galois
category Gal(X) introduced by Barwick–Glasman–Haine [BGH20]. In §3.4, we conclude the
section with a sample computation: given a henselian local ring R with residue �eld �, we show
inclusion of the closed point induces an equivalenceBGal� ≃ Πcond∞ (Spec(�)) ⥲ Πcond∞ (Spec(R)) .
3.1 De�nition via the relative shape
For an∞-toposX, the idea of shape theory relies on the existence of a canonical colimit preserv-
ing functor Γ♯ ∶ X → Pro(Ani). We de�ne the condensed homotopy type of a qcqs scheme in the
tradition of shape theory but relative to the base Cond(Ani). To do this, we use the identi�cationXhypproét ≃ Fun× ((ProÉtwcX )op,Ani)
of the hypercomplete proétale∞-topos as the∞-topos of �nite-product preserving presheaves
on the site of w-contractible weakly étale X-schemes (Proposition 2.51).

3.1 De�nition. Let X be a scheme. Write�♯ ∶ PSh(ProÉtwcX ) → Cond(Ani)
for the colimit-preserving extension ofπ0 ∶ ProÉtwcX → Extr↪ Cond(Ani)
along the Yoneda embedding.

3.2 Observation. The functor �♯ admits a right adjoint�∗ ∶ Cond(Ani) → PSh(ProÉtwcX )
given by the assignment A ↦ [W ↦ A(π0(W))] .
Note that since the functor π0 ∶ ProÉtwcX → Cond(Ani) preserves �nite disjoint unions, the right
adjoint to �♯ factors throughFun× ((ProÉtwcX )op,Ani) ⊂ PSh(ProÉtwcX ) .
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3.3 Notation. Given a scheme X, we also write �♯ for the compositeXhypproét Fun× ((ProÉtwcX )op,Ani) Cond(Ani) ,∼ �♯
where the left-hand functor is the equivalence of∞-topoi from Proposition 2.51.

Next, we need a generalization of [BS15, Lemma 4.2.13].
3.4 Proposition. Let X be a scheme. Then:

(1) The functor �♯ ∶ Xhypproét → Cond(Ani) is left adjoint to �∗ ∶ Cond(Ani) → Xhypproét.
(2) For each condensed anima A and w-contractible a�neW ∊ ProÉtX , there is a natural equiva-

lence �∗(A)(W) ≃ A(π0(W)) .
Proof. As explained in Observation 3.2, the functor�∗ ∶ Cond(Ani) → PSh(ProÉtwcX )
factors through Xhypproét. Hence �∗ remains right adjoint to the restriction of �♯. In particular, we
have �∗(A)(U) ≃ A(π0(U)).
3.5 Remark. The right adjoint �∗ is part of a geometric morphism of∞-topoi

(3.6) Cond(Ani) Xhypproét ,�∗�∗
which is induced by the morphism of sites�∶ Pro(Set�n)⟶ ProÉtXS = limi∊I Si ⟼S⊗X ≔ limi∊I ∐s∊Si X .

For details, see [Mai25, Theorem 2.2.13].
Now we are ready for the de�nition of the condensed homotopy type.

3.7 De�nition. Let X be a scheme.
(1) The condensed homotopy type of X is the condensed animaΠcond∞ (X) ≔ �♯(1) ∊ Cond(Ani) .
(2) The condensed set of connected components of X is the condensed setπcond0 (X) ≔ π0(Πcond∞ (X)) ∊ Cond(Set) .
3.8. The �rst part of De�nition 3.7 says that the condensed homotopy type is the relative shape
of the∞-topos Xhypproét over the∞-topos Cond(Ani), see [CE18, §4.1] for background on relative
shapes. Since sending a scheme X to �∗ ∶ Xhypproét → Cond(Ani) de�nes a functor

Sch→ (RTop∞)∕Cond(Ani) ,
composition with the relative shape over Cond(Ani), therefore de�nes a functorΠcond∞ ∶ Sch→ Cond(Ani) , X ↦ Πcond∞ (X) .(3.9)
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3.10 Warning. A consequence of the statement of [BS15, Lemma 4.2.13], is that that for any
condensed setA, the formula�∗(A)(U) ≃ A(π0(U)) in Proposition 3.4 holds for all qcqs schemesU of the proétale site of X. However, this is not correct; indeed, if this stronger claim were true,
it would follow that for all qcqs schemes X one hasMapCond(Set)(π0(X), A) ≃ A(π0(X)) ≃ �∗(A)(X)≃ MapXhypproét(X, �∗(A))≃ MapCond(Ani)(Πcond∞ (X), A)≃ MapCond(Set)(πcond0 (X), A) .
This would then imply that the condensed set of connected components matches the usual one,
i.e., πcond0 (X) = π0(X) in Cond(Set). As we show in Example 4.26, this is not generally the case.
However, this is true if X has �nitely many irreducible components, see Corollary 4.19. The
problem here is that the proof of [BS15, Lemma 4.2.13] only works for w-contractible schemes.

The de�nition tells us the value of the condensed homotopy type on w-contractible schemes:
3.11 Example. LetW be a w-contractible scheme. Then, by de�nition,Πcond∞ (W) = �♯(1) = π0(W) .
In particular, ifW is the spectrum of a separably closed �eld, then Πcond∞ (W) = ∗.
3.12. One consequence of Example 3.11 is that every geometric point x̄ → X de�nes a point∗ = Πcond∞ (x̄) → Πcond∞ (X)
of the condensed homotopy type. Thus we can take homotopy groups at geometric points:
3.13 De�nition. Let X be a scheme, let x̄ → X be a geometric point, and let n ≥ 1. The n-th
condensed homotopy group of X at x̄ is the condensed group (abelian if n ≥ 2)πcondn (X, x̄) ≔ πn(Πcond∞ (X), x̄) .

From the de�nition, it is easy to see that the condensed homotopy type re�nes the protrun-
cated and pro�nite étale homotopy types. For this result, recall our notation on shapes and étale
homotopy types from §2.4 and Notation 2.40.
3.14 Lemma. Let X be a scheme. Then there are natural equivalencesΠcond∞ (X)∧disc ≃ Πét<∞(X) and Πcond∞ (X)∧π ≃ Π̂ét∞(X) .
Proof. By Corollary 2.41, the protruncated shapes of the (hypercomplete) étale and proétale∞-
topoi agree. This remains true after pro�nite completion. Thus the claims follow from the claim
that the triangle of left adjoints Xhypproét

Cond(Ani) Pro(Ani<∞)
�♯ Πét<∞

(−)∧disc
commutes. To see this, note that the corresponding diagram of right adjoints commutes by the
uniqueness property of the pro-extension Pro(Ani) → Xhypproét of the constant sheaf functor.
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3.15. The unit of the adjunction (−)∧disc ∶ Cond(Ani) ⇄ Pro(Ani<∞) induces canonical com-
parison maps Πcond∞ (X) → Πét<∞(X) and Πcond∞ (X) → Π̂ét∞(X)
in Cond(Ani). In particular, there are canonical comparison homomorphismsπcondn (X) → πétn (X)
of the condensed homotopy groups to the (pro�nite) étale homotopy groups for all n ≥ 0.
3.2 Characterization as a hypercomplete proétale cosheaf
The goal of this subsection is to prove the following characterization of the condensed homotopy
type and derive some consequences for the étale homotopy type.

3.16 Notation. We write A� wc ⊂ Sch for the full subcategory spanned by the w-contractible
schemes. (Recall from Recollection 2.48 that w-contractible schemes are a�ne.)

3.17 Proposition. The condensed homotopy typeΠcond∞ ∶ Sch→ Cond(Ani)
is the unique hypercomplete proétale cosheaf whose restriction to w-contractible schemes is given
by the functor π0 ∶ A�wc → Extr ⊂ Cond(Ani) .
Proof. First notice that since �♯ preserves colimits, by de�nition Πcond∞ carries proétale hyper-
coverings to colimit diagrams. Moreover, by construction Πcond∞ agrees with π0 when restricted
to w-contractible schemes (see Example 3.11). Thus it su�ces to show that every scheme admits
a proétale hypercover by w-contractible schemes. Since every scheme admits a Zariski cover by
qcqs schemes, we can reduce to the qcqs case. In this case, the claim is the content of [STK, Tag
09A1].

3.18 Remark (on set theory). Let X be a scheme and � a strong limit cardinal such that X is�-small. Then there exists a hypercover by w-contractiblesW∙ → X such thatWn is �-small for
all n. Hence the formula Πcond∞ (X) ≃ colim�op π0(W∙)
shows that for � < �′ an implicit choice of cuto� cardinal in De�nition 3.7 does not a�ect the
outcome. More precisely, under the embedding Cond(Ani)� ↪ Cond(Ani)�′ one gets carried
to the other. Equivalently, if one takes the approach to dealing with set theory explained in
Remark 2.36 (2), then for all choices of suitable cuto� cardinals the images of the condensed ho-
motopy type in the colimit Cond(Ani) = colim� Cond(Ani)� agree. Therefore we can continue
to leave choices of cuto� cardinals implicit without getting into trouble.

If one would try to set up the theory in the setting of light condensed anima, one would get a
di�erent result in general. See also Remark 3.44.

3.19 Corollary.

(1) The protruncated étale homotopy typeΠét<∞ ∶ Sch→ Pro(Ani<∞) is the unique hypercomplete
proétale cosheaf valued inPro(Ani<∞)whose restriction tow-contractible a�nes coincideswithπ0 ∶ A�wc → Extr↪ Pro(Ani<∞) .
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(2) The pro�nite étale homotopy type Π̂ét∞ ∶ Sch → Pro(Aniπ) is the unique hypercomplete proé-
tale cosheaf valued in Pro(Aniπ) whose restriction to w-contractible a�nes coincides withπ0 ∶ A�wc → Extr↪ Pro(Aniπ) .

Proof. Since both (−)∧disc and (−)∧π are left adjoints, the composites

Sch Cond(Ani) Pro(Ani<∞)Πcond∞ (−)∧disc
and

Sch Cond(Ani) Pro(Aniπ)Πcond∞ (−)∧π
are still hypercomplete proétale cosheaves. Moreover, on w-contractible a�nes they both are
given by U ↦ π0(U) ∊ Extr. In Lemma 3.14, we have seen that these functors recover the
protruncated and pro�nite étale homotopy types, respectively.

3.20 Remark. It follows immediately from Proposition 3.17 that the ‘condensed shape’ de�ned
in [HRS23, Appendix A] agrees with our notions.

In [HRS23], Hemo–Richarz–Scholbach prove that Πcond∞ (X) classi�es local systems on X
with coe�cients in any condensed ring. We recall the precise statement here; for this, we need
the following de�nition from [HRS23]. In order to state it, recall that we write �∗ for the natural
pullback functor Cond(Ani) → Xhypproét of Observation 3.2.

3.21 De�nition. Let Λ be a condensed ring.

(1) We de�ne the condensed∞-category PerfΛ of perfect complexes overΛ, to be the condensed∞-category de�ned by

Extrop → Cat∞ , S ↦ PerfΛ(S) .
Here, PerfΛ(S) is the usual∞-category of perfect complexes over the ordinary ring Λ(S).

(2) Let X be a qcqs scheme. Write D(Xproét; Λ) for the derived∞-category of �∗Λ-modules onX. We de�ne the∞-category of lisse Λ-modules Dlis(Xproét; Λ) to be the full subcategory ofD(Xproét; Λ) spanned by the dualizable objects.

3.22 Proposition [HRS23, Proposition A.1]. There is a natural equivalence of∞-categoriesFuncts(Πcond∞ (X),PerfΛ) ≃ Dlis(Xproét; Λ) .
3.23 Remark. Proposition 3.22 is one of themainmotivations to study the condensed homotopy
type. Indeed, the analogous statement for the ususal étale homotopy type Πét∞(X) is not even
true in for Λ = Ql. See [BS15, Example 7.4.9] for a concrete counterexample.

3.3 De�nition via exodromy
In this subsection, we explain why the pyknotic étale homotopy type de�ned in [BGH20, Remark
13.8.10] agrees with Πcond∞ (X). For this, we recall the following de�nition from [BGH20] in the
general setting of coherent∞-topoi, but we are most interested in the case of the étale∞-topos
of a scheme. In order to understand the general de�nition, the reader may wish to review the
theory of coherent∞-topoi from [SAG, Appendix A] or [BGH20, Chapter 3].

26

http://www.math.ias.edu/~lurie/papers/SAG-rootfile.pdf#appendix.A


3.24 De�nition. Let X be a coherent∞-topos. The Galois∞-category of X is the condensed∞-category Gal(X) de�ned by the functorPro(Set�n)op → Cat∞S ↦ Fun∗,coh(X, Sh(S)) .
Here, Fun∗,coh(X, Sh(S)) is the∞-category of coherent algebraic morphisms s∗ ∶ X → Sh(S) of∞-topoi, i.e., those left exact left adjoints that send truncated coherent objects of X to locally
constant constructible sheaves of anima on the topological space S.

The assignment X ↦ Gal(X) de�nes a functor from the∞-category of coherent∞-topoi
and coherent geometric morphisms to Cond(Cat∞).

Now we explain what this de�nition means more concretely in the two examples we are
interested in.

3.25 Recollection. Let X be a qcqs scheme. Then the∞-topos Xét is coherent and by [BGH20,
Lemma 9.5.3 & Proposition 9.5.4], the truncated coherent objects of Xét are the constructible
étale sheaves of anima on X.
3.26 Notation. Let X be a qcqs scheme. We write Gal(X) ≔ Gal(Xét).
3.27 Recollection. Let X be a qcqs scheme. Since the∞-topos Xét is 1-localic, for a pro�nite
set S, the value Gal(X)(S) is equivalent to the 1-category of algebraic morphisms of 1-topois∗ ∶ Xét,≤0 → Sh(S)≤0
that send constructible étale sheaves of sets to locally constant constructible sheaves of sets onS. In particular, the global sections Gal(X)(∗) recovers the category of points Pt(Xét) of the étale
topos of X.
3.28 Recollection. Let T be a spectral space (e.g., the underlying space of a qcqs scheme). Then
the∞-topos Sh(T) is coherent and by [BGH20, Lemma 9.5.3 & Proposition 9.5.4], the truncated
coherent objects of Sh(T) are the constructible sheaves of anima on T.
3.29 Notation. For a spectral space T, we write Gal(Tzar) ≔ Gal(Sh(T)).
3.30 Recollection. Let T be a spectral space. Since spectral spaces are sober, by [BGH20, Exam-
ple 3.7.1] and [HTT, Remark 6.4.5.3], for a pro�nite set S, the value Gal(Tzar)(S) is equivalent to
the poset of quasicompact maps f∶ S → T ordered by pointwise specialization: f ≤ g if and only
if for all s ∊ S, we have f(s) ∊ {g(s)}. In particular, Gal(Tzar)(∗) recovers the specialization poset
of T.
3.31 Remark. Note that the condensed set underlying the condensed poset Gal(Tzar) is indeed
a condensed set, i.e., is �-accessible for some �. In contrast, the condensed set represented by
the topological space T is typically not �-accessible, see [Sch19b, Warning 2.14]. The di�erence
between the two is thatGal(Tzar)(S) is given by the set of quasicompactmaps S → T, as opposed
to all continuous maps.

3.32 Recollection. For a qcqs schemeX, the condensed∞-categoriesGal(X) andGal(Xzar) are
in the image of the fully faithful functor� ∶ Cat(Pro(Aniπ)) → Cond(Cat∞)
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of Observation 2.21. In fact, if we denote by Layπ the full subcategory of Cat∞ spanned by π-�-
nite layered categories in the sense of [BGH20, De�nition 2.3.7], then Gal(X) and Gal(Xzar) are
even in the image of the fully faithful functor Pro(Layπ) → Cond(Cat∞). See [BGH20, §13.5]
for more details.

Now we �x some notation regarding condensed∞-categories and classifying anima.

3.33 De�nition. We de�ne condensed∞-categories Cond(Ani) and Cond(Set) by the assign-
ments S ↦ Cond(Ani)∕S and S ↦ Cond(Set)∕S ,
respectively.

3.34 Notation. We denote the left adjoint to the inclusion Ani ↪ Cat∞ by B∶ Cat∞ → Ani.
Given an∞-category C, we call BC the classifying anima of C.
3.35. The functor B preserves �nite products. Hence post-composition with B induces a functorBcond ∶ Cond(Cat∞) → Cond(Ani)
that is left adjoint to the inclusion Cond(Ani) ↪ Cond(Cat∞).
3.36De�nition. Given a condensed∞-categoryC, we callBcond(C) ∊ Cond(Ani) the condensed
classifying anima of C.

To see the desired comparison, the idea is that, by [Wol22, Corollary 1.2], we have a natural
equivalence Functs(Gal(X),Cond(Ani)) ≃ Xhypproét .
In other words, in the condensed world, Xhypproét is a presheaf∞-category on Gal(X)op. But the
shape of a presheaf∞-topos is given by taking the classifying anima of the∞-category that it is
presheaves on; the same holds in the condensed world.

3.37Remark. An independent andmore direct proof of [Wol22, Corollary 1.2] is going to appear
in [vDW25].

3.38 Proposition. LetX be a qcqs scheme. Then there is a natural equivalence of condensed animaΠcond∞ (X) ≃ BcondGal(X) .
Proof. This follows immediately from combining [Wol22, Theorem 1.2] and [MW24, Proposi-
tion 4.4.1]. For the reader not so familiar with the theory developed in [MW24], we spell out a
more hands-on proof. Recall that for∞-categories C andD, the functorFun(BC,D) → Fun(C,D)
induced by precomposition along C → BC is fully faithful (since BC ≃ C[C−1] is the localization
ofC obtained by inverting allmaps, this follows from the universal property of localization). Since
limits of fully faithful functors are fully faithful [HRS25, Proposition 2.1; Mai25, Proposition
A.1.3], it follows that precomposition with b∶ Gal(X) → BcondGal(X) de�nes a fully faithful
functor Functs(BcondGal(X),Cond(Ani)) Functs(Gal(X),Cond(Ani)) .b∗
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Furthermore, by [Wol22, Lemma 4.3] this functor admits a left adjoint b♯.
By [Wol22, Corollary 1.2]we have a natural equivalenceXhypproét ≃ Functs(Gal(X),Cond(Ani)).

Under this equivalence the functor�∗ ∶ Cond(Ani) → Xhypproét
agrees with the functor given by precomposing with the unique morphism Gal(X) → ∗. We
write a∶ BcondGal(X) → ∗ for the unique morphism, and obtain a commutative triangleFuncts(BcondGal(X),Cond(Ani)) Xhypproét

Cond(Ani) .

b∗
a∗ �∗

But now since b∗ is fully faithful and b∗(1) = 1, it follows that b♯(1) = 1, Thus,�♯(1) = a♯b♯(1) = a♯(1) .
Finally, by [Wol22, Corollary 3.20] we haveFuncts(BcondGal(X),Cond(Ani)) ≃ Cond(Ani)∕BcondGal(X)
and the functor a♯ identi�es with the forgetful functor. In particular a♯(1) ≃ BcondGal(X).
3.39 Remark. In particular, Proposition 3.38 shows that if X is a qcqs scheme with �nitely
many irreducible components, then the underlying groupπcond1 (X, x̄)(∗) coincides withGabber’s
version of the proétale fundamental group, see [BS15, Remark 7.4.12].

3.40 Corollary. Let X be a qcqs scheme. If dim(X) = 0, then Πcond∞ (X) = Gal(X) and this con-
densed anima is a 1-truncated pro�nite anima.

Proof. This is immediate from [HHW24b, Observation 1.25] and Recollection 3.32.

3.41 Example (Πcond∞ of a �eld). Let k be a �eld and choose a separable closure k̄ of k. WriteGalk for the absolute Galois group of k with respect to k̄. Then the choice of separable closure
induces an equivalence Πcond∞ (Spec(k)) = Gal(Spec(k)) ≃ BGalk .

The left-hand identi�cation follows fromCorollary 3.40, and the right-hand identi�cation follows
from [BGH20, Examples 11.2.1 and 12.2.1].

We do not use the next corollary in the remainder of this article, but we include it for com-
pleteness:

3.42 Corollary. Let X be a qcqs scheme. If dim(X) = 0, then Πcond∞ (X) = ∗ if and only if the
reduced scheme Xred is Spec(k) for k a separably closed �eld.
Proof. As the étale∞-topos is invariant under universal homeomorphisms, the same holds forGal and therefore Πcond∞ . As X → Xred is a universal homeomorphism, the if direction follows
by the Example 3.41. For the reverse direction, note that Gal(X)(∗) = Pt(Xét) of a 0-dimensional
a�ne scheme is contractible only if X = Spec(R) for R a local ring with separably closed residue
�eld k. For such a scheme, it is Xred = Spec(k).
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3.4 Computation: Πcond∞ of henselian local rings
We conclude this section by explaining how to use the de�nitions to show that the condensed
homotopy type of a w-strictly local scheme X (in the sense of De�nition 2.44) agrees with the
pro�nite set π0(X) of connected components of X. This allows for a direct computation of the
condensed homotopy type of a henselian local ring.

3.43 Proposition. Let X be a w-strictly local scheme. ThenΠcond∞ (X) ≃ π0(X).
3.44 Remark. LetX be a qcqs scheme that locally can be written as the spectrum of a countable
colimit of �nite typeZ-algebras. Then one can show that there is a hypercoverW∙ → X consisting
of w-strictly local X-schemes with the property that π0(X) is a light condensed set. Hence it
follows from Proposition 3.43 that in this case Πcond∞ (X) is a light condensed anima in the sense
that it is in the image of the fully faithful functorSh(Pro(Set�n)ℵ1) ↪ Cond(Ani) .
For a general scheme X, the condensed homotopy type Πcond∞ (X) need not be light.

Recall that the proétale site is “tensored” over pro�nite sets (cf. [BS15, Example 4.1.9]).

3.45 Recollection. Let X be an a�ne scheme and f0 ∶ S → π0(X) a map from a pro�nite set.
Recall that the pullback of topological spaces |X|×π0(X) S naturally has the structure of an a�ne
scheme that we denote by X ⊗π0(X) S. This a�ne scheme comes equipped with a proétale mapf∶ X ⊗π0(X) S → X satisfying π0(f) = f0. Moreover, this construction is functorial in both X
and S. See [BS15, Lemma 2.2.8] for details.

3.46 Lemma. Let X be an a�ne scheme and f0 ∶ S → π0(X) a map from a pro�nite set. If X is
w-strictly local, then so is X ⊗π0(X) S.
Proof. Write X′ ≔ X ⊗π0(X) S. We can split the construction of X′ into two steps: �rst considerX′′ = X⊗S coming from “tensoring” by S. It satis�es π0(X′′) = π0(X) × S. Then realize X′ as a
closed subscheme of X′′ that is moreover an intersection of clopen subschemes, by looking atS ⊂ π0(X) × S = π0(X′′) and writing S as an intersection of clopen subsets in this larger set.

Let us �rst check it for X′′. By de�nition and [BS15, Lemma 2.2.9], an a�ne scheme is w-
strictly local if it is w-local and all of its connected components are spectra of strictly henselian
rings. Here, we are using the following observation: the connected components of aw-local a�ne
scheme are spectra of local rings. Indeed, they are a�ne (being closed subschemes of an a�ne
scheme) and have a single closed point (by de�nition of w-locality). Thus, Zariski localizations
at closed points of a w-local a�ne scheme match the corresponding connected components.

One checks that both of these conditions are satis�ed for X′′ = X ⊗ S by checking the
following facts:

(1) We have π0(X ⊗ S) = π0(X) × S.
(2) Every connected component of X ⊗ S is isomorphic (as a scheme) to some connected com-

ponent of X.
(3) We have (X ⊗ S)cl ≃ Xcl ⊗ S.
Note that if S = limi∊I Si for �nite sets Si , then X ⊗ S is de�ned as an inverse limit of the formlimi∊I XSi = limi∊I(X ⊔⋯⊔X)where the transition maps restricted to each copy of X appearing
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there are just identities onto another copy ofX. As a result, each of the above points is reasonably
easy to check.

The second step of passing from X′′ to X′ by intersecting an inverse system of clopen sub-
schemes follows similarly.

Proof of Proposition 3.43. By Proposition 3.17, this statement holds when X is w-contractible. In
general, pick a hypercover of the pro�nite set π0(X) by extremally disconnected pro�nite sets.
By [BS15, Lemma 2.2.8], Recollection 2.48, and Lemma 3.46, we obtain a proétale hypercoverX∙ → X by w-contractible a�ne schemes4 that recovers the original hypercover of π0(X) after
applying π0. We compute Πcond∞ (X) ≃ colim[n]∊�opΠcond∞ (Xn)≃ colim[n]∊�op π0(Xn) ≃ π0(X) ,
as desired.

We now move on to the promised applications.

3.47 Corollary. Let S be a pro�nite set and X a w-strictly local scheme. ThenΠcond∞ (X ⊗ S) ≃ π0(X) × S .
Proof. This follows from Proposition 3.43 and Lemma 3.46 with f0 = pr1 ∶ �0(X) × S → �0(X)
together with the equality π0(X ⊗ S) = π0(X) × S.
3.48 Corollary. Let R be a henselian local ring with residue �eld �. Then the inclusion of the closed
point Spec(�) ↪ Spec(R) induces an equivalenceΠcond∞ (Spec(�)) ⥲ Πcond∞ (Spec(R))
and both are equivalent to BGal� .
Proof. Write X = Spec(R) and x = Spec(�). Fix a separable closure � of � and let Rsh be the
corresponding strict henselization. Writing � as an increasing union of �nite separable exten-
sions (and using that FÉtx ≃ FÉtX) provides a presentation of X′ = Spec(Rsh) as a pro-(�nite
étale) cover of X, see [STK, Tag 0BSL]. Let X∙ be the Čech nerve of this cover X′ → X. As the
equivalence FÉtx ≃ FÉtX extends to the categories of pro-objects, we compute that X∙ writes as⋯ X′ ⊗Gal� × Gal� X′ ⊗Gal� X′
compatiblywith the analogous presentation of the Čech nerve x∙ of x̄ = Spec(�)) → Spec(�) = x.
Applying Πcond∞ to the corresponding “ladder” diagram (coming from the map x∙ → X∙) and
using that, for everym ∊ N,Galm� ≃ Πcond∞ (x̄ ⊗ Galm� ) → Πcond∞ (X′ ⊗Galm� ) ≃ Galm�
is an isomorphism (where we are using Corollary 3.47 and the fact that both x̄ and X′ are
connected w-contractible schemes), we conclude.

4Here we have used that the functor in loc. cit. commutes with limits and respects covers.
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4 Connected components of the condensed homotopy type
Let X be a qcqs scheme. In this section, we give an explicit description of the condensed set of
connected components πcond0 (X) of the condensed homotopy type Πcond∞ (X). To do so, we make
use of the Galois category Gal(Xzar) of the Zariski∞-topos in the sense of De�nition 3.24. In
§4.1, we show that the condensed connected components of BcondGal(Xzar) agree with πcond0 (X).
In §4.2, we use this description to show that ifX has �nitely many irreducible components, thenπcond0 (X) agrees with the pro�nite set π0(X) of connected components (Corollary 4.19). We also
give examples of connected schemes whose πcond0 (X) is nontrivial and show that πcond0 (X) can
be quite exotic in general. Finally, in §4.3, we use our explicit description of πcond0 (X) to compute
the condensed and étale homotopy types of the ring of continuous functions from a compact
Hausdor� space to C, see Corollary 4.35.
4.1 Prozariski sheaves
Recall that for a scheme X, we will write Xzar for the∞-topos of Zariski sheaves on X. In this
subsection, we study a pro-version of the Zariski∞-topos.

4.1De�nition. LetX be a qcqs scheme. Let uswriteXconszar ⊂ X for the full subcategory of Zariski
sheaves, that is spanned by the constructible sheaves on X, i.e., those sheaves that are locally
constant with π-�nite stalks on a �nite constructible strati�cation of X. We give Pro(Xconszar ) the
e�ective epimorphism topologywhere covers are generated by �nite jointly e�ectively epimorphic
families of maps. We call the∞-toposXhypprozar ≔ Shhype� (Pro(Xconszar ))
of hypersheaves for the e�ective epimorphism topology on Pro(Xconszar ), the hypercomplete pro-
zariski topos of X. Since pullbacks along qcqs morphisms of schemes preserve constructible
sheaves, Xhypprozar is functorial in X.
4.2 Remark. This construction makes sense more generally for any bounded coherent∞-topos
(in the sense of [SAG, Appendix A]) and was called solidi�cation in [BH19] and pyknoti�cation
in [Wol22].

4.3. Let X be a qcqs scheme. The pullback functor Xzar → Xét preserves constructible sheaves
and thus de�nes a functor Xconszar → Xconsét .

Extending to pro-objects we obtain a morphism of sites �∗ ∶ Pro(Xconszar ) → Pro(Xconsét ) and thus
an algebraic morphism of∞-topoiXhypprozar → Shhype� (Pro(Xconsét )) .
Finally, [Lur18, Example 7.1.7] provides an equivalence Xhypproét ≃ Shhype� (Pro(Xconsét )) so that we
obtain an algebraic morphism �∗ ∶ Xhypprozar → Xhypproét .

Recall that amapY → X is a Zariski localization ifY is isomorphic (overX) to a �nite disjoint
union of open subschemes of X.
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4.4. Let X be a�ne scheme. We write Zara�X ⊂ Sch∕X for the full subcategory spanned by the
a�ne Zariski localizations of X. Since open immersions between qcqs schemes are of �nite
presentation it follows from [STK, Tag 01ZC] that the canonical functorPro(Zara�X ) → Sch∕X
is fully faithful. Thus we may equip Pro(Zara�X ) with the fpqc topology. Since the sheaf repre-
sented by a Zariski localization is constructible, we obtain a morphism of sites�∶ Pro(Zara�X ) → Pro(Xconszar ) .
4.5 Lemma. Let X be an a�ne scheme. Then the algebraic morphism of∞-topoi�∗ ∶ Shhypfpqc(Pro(Zara�X )) → Xhypprozar
is an equivalence.

Proof. The proof is exactly the same as in [Lur18, Example 7.1.7].

4.6 Remark. Let X be an a�ne scheme. Then under the equivalence of Lemma 4.5, the functor�∗ is induced by the morphism of sitesPro(Zara�X ) → Pro(Éta�X ) ,
that comes from the inclusion Zara�X ↪ Éta�X . Here Éta�X denotes the category of a�ne étaleX-schemes.

4.7 Recollection. For a qcqs schemeX, we writeGal(Xzar) for the Galois category of the Zariski∞-topos in the sense of De�nition 3.24. Note that Xzar is the∞-topos of sheaves on the spectral
topological space |X|. Hence by Recollection 3.30, for a pro�nite set S, the category of sectionsGal(Xzar)(S) is the poset of continuous quasicompact maps f∶ S → |X| ordered by pointwise
specialization: f ≤ g if and only if for all s ∊ S, we have f(s) ∊ {g(s)}. In particular, Gal(Xzar)(∗)
is the specialization poset of |X|. To simplify notation, we denote the specialization poset of |X|
by X≤zar.
4.8 Lemma. Let X be a qcqs scheme. Then there is a natural equivalence of∞-topoiXhypprozar ⥲ Functs(Gal(Xzar),Cond(Ani)) .
Proof. SinceXzar is a spectral∞-topos in the sense of [BGH20, De�nition 9.2.1] and the pro�nite
strati�ed shape of Xzar is given by Gal(Xzar), this follows from [Wol22, Theorem 1.1].

We are interested in Lemma 4.8 because it allows us to compute π0 of the relative shape of
prozariski∞-topos over Cond(Ani) via the condensed classifying anima of Gal(Xzar). The latter
turns out to be a quotient of the condensed set underlying Gal(Xzar) by an explicit equivalence
relation. Furthermore, the next proposition readily implies that this actually computes πcond0 (X):
4.9 Proposition. The functor �∗ ∶ Xprozar,≤0 → Xproét,≤0 is fully faithful.

In order to prove Proposition 4.9, we make use of the following construction:
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4.10 Construction. Let X be an a�ne scheme. Since the inclusion Zara�X ↪ Éta�X preserves
�nite limits, it admits a pro-left adjointHenszarX ∶ Pro(Éta�X ) → Pro(Zara�X ) .
4.11 De�nition (Zariski henselization). Let X be an a�ne scheme and Y ∊ Pro(Éta�X ). We callHenszarX (Y) the Zariski henselization of Y in X.
4.12 Lemma. Let X be an a�ne scheme and V ∊ Pro(Éta�X ). If V is w-contractible, the unit mor-
phism V → HenszarX (V) is surjective.
Proof. Since V is w-contractible, we can use the universal property of HenszarX (V) to show that
any pro-Zariski cover ofHenszarX (V) admits a section. This in particular shows thatHenszarX (V) is
w-local, see [BS15, Lemma 2.4.2]. SinceV → HenszarX (V) is �at and the image of a �at morphism
is closed under generization [GW20, Lemma 14.9], it su�ces to show that all closed points are
in the image.

We now assume, for the sake of contradiction, that im(V) ⊂ HenszarX (V) does not contain a
closed point x. Since im(V) is quasicompact, there is some quasicompact openH ⊂ HenszarX (V)
containing im(V) such that x ∉ H. SinceH is quasicompact, there exists a covering (Ui)i∊I ofH
by �nitely many a�ne opens. Since im(V) ⊂ H, it follows that the induced map∐i∊I Ui ×HenszarX (V) V → V
is surjective and thus admits a section �∶ V → ∐i∊I Ui ×HenszarX (V) V. By the universal property
of Zariski henselization, the compositionV ∐i∊I Ui ×HenszarX (V) V ∐i∊I Ui�
factors uniquely through some �̃ ∶ HenszarX (V) → ∐i∊I Ui . Since the composite

V ∐i∊I Ui ×HenszarX (V) V ∐i∊I Ui HenszarX (V)�
recovers the unit V → HenszarX (V), it follows by uniqueness that the compositeHenszarX (V) ∐i∊I Ui HenszarX (V)�̃
is the identity. In particular the Ui cover HenszarX (V) and thusH = HenszarX (V); this contradicts
that x ∉ H.

4.13 Lemma. Let X be an a�ne scheme, and F ∊ Xhypprozar. Then �∗(F) ∊ Xhypproét is the hypershea�-
�cation of the presheaf Pro(Éta�X )op → Ani , W ↦ F(HenszarX (W)) .
Moreover, ifW is w-contractible, then �∗(F)(W) = F(HenszarX (W)).
Proof. The functor �∗ is given by the hypershea��cation of the left Kan extension along the
functor � ∶ Pro(Zara�X )op ↪ Pro(Éta�X )op .
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Explicitly, for F ∊ Xhypprozar the image is given by

(4.14) �∗(F) = (W ↦ colimW→�(V)F(V))† ,

where V ∊ Pro(Zara�X ),W ∊ Pro(Éta�X ), and (−)† denotes hypershea��cation. By the universal
property of Zariski henselization, every mapW → �(V) factors uniquely overHenszarX (W), hence
the colimit in (4.14) reduces to colimW→�(V)F(V) = F(HenszarX (W)) .

It remains to argue why hypershea��cation does not change the value on a w-contractible
scheme W. On the basis of w-contractible schemes weakly étale over X, the sheaf condition
simpli�es to sending �nite coproducts to �nite products. Moreover, every sheaf is a hypersheaf.
Since HenszarX , being a left adjoint, preserves �nite coproducts and F carries �nite coproducts to
�nite products, the claim follows.

Proof of Proposition 4.9. We can immediately reduce to the case where X is a�ne. We want to
show that for any F ∊ Xprozar,≤0 and any U ∊ Pro(Zara�X ) the unit evaluated at UF(U) → �∗(F)(U)
is an isomorphism. For this, pick a w-contractible weakly étale X-schemeW with a surjectionW ↠ U and a further w-contractible V with a surjection V ↠ W ×U W. Using Lemma 4.13, it
su�ces to show that the natural mapF(U) → lim (F(HenszarX (W)) ⇉ F(HenszarX (V)))
is an isomorphism. This is clear if we show thatHenszarX (V) ⇉ HenszarX (W) → U
is the beginning of an augmented pro-Zariski hypercover.

For this, �rst observe that since the surjectionW ↠ U factors through the canonical mapHenszarX (W) → U, the rightmost morphism above is surjective. Note that we have a commutative
diagram V W ×U W

HenszarX (V) HenszarX (W) ×U HenszarX (W) .
Here, the top horizontal morphism is surjective by de�nition and the right vertical morphism is
surjective by Lemma 4.12. Thus the bottom horizontal morphism is also surjective, as desired.

4.15 Warning. Proposition 4.9 is only true on the level of 0-truncated sheaves, i.e., sheaves
of sets. Full faithfulness on the level of sheaves of anima would imply an equivalence of the
condensed homotopy type with the relative shape of the the prozariski∞-topos over Cond(Ani).
Therefore, it would also imply that the étale homotopy type of X agrees with the shape of the
underlying topological space of X, which is generally false.

Note that if X is an everywhere strictly local scheme, by [Sch17, Corollary 2.5] one hasXét = Xzar. So, in this case �∗ is fully faithful for all sheaves of anima.
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4.2 An explicit description of πcond0
In this subsection, we give an explicit description of πcond0 (X). To do this, we �rst observe that
together the results from §4.1 show:
4.16 Proposition. Let X be a qcqs scheme. Then there is a natural isomorphism of condensed setsπcond0 (X) ⥲ π0(BcondGal(Xzar)) .
Proof. Consider the morphism of sites �̃ ∶ Pro(Set�n) → Pro(Xconszar ) given by S ↦ S × X. We
have a commutative triangle Cond(Ani)

Xhypprozar Xhypproét
�̃∗ �∗

�∗
Combining Lemma 4.8 and [Wol22, Lemma 4.3], it follows that �̃∗ has a left adjoint, that we
denote �̃♯. By Proposition 4.9, it follows that πcond0 (X) ≃ π0(�̃♯(1)). By Lemma 4.8, the same
argument as in Proposition 3.38 shows that �̃♯(1) ≃ BcondGal(Xzar). Henceπcond0 (X) ≃ π0(�̃♯(1)) ≃ π0(BcondGal(Xzar)) ,
as desired.

Proposition 4.16 lets us explicitly describe πcond0 (X).
4.17 Remark. Let S be a pro�nite set and let T be a spectral space. The next theorem involves
sets of continuous quasicompact mapsMapqc(S, T). Note that these are those maps such that
the preimage of a quasicompact open is clopen. It follows that these are precisely continuous
maps in the constuctible topology, i.e.,Mapqc(S, T) = Map(S, Tcons) .
Said di�erently, the inclusion of the full subcategory of pro�nite sets into the category of spectral
spaces and quasicompact maps admits a right adjoint, given by sending a spectral space T to the
underlying set of T equipped with the constructible topology.
4.18 Theorem. Let X be a qcqs scheme. Then for every extremally disconnected pro�nite set S, we
have πcond0 (X)(S) ≃ Mapqc(S, |X|)∕∼ ,
where f ∼ g if and only if there is some n ∊ N and quasicompact maps s1, t1, … , sn, tn ∶ S → |X|
such that f ≥ s1 ≤ t1 ≥ s2 ≤ t2 ≥ ⋯ ≥ sn ≤ tn ≥ g .
Here, a ≤ b if and only if for all s ∊ S, we have a(s) ∊ {b(s)}.

Moreover, if S = β(M), restriction along the canonicalmapM → β(M) induces an isomorphism(Mapqc(S, |X|)∕∼) ⥲ π0((X≤zar)M) .
Here, π0((X≤zar)M) is the quotient of (X≤zar)M identifying two points (xm)m∊M and (ym)m∊M if and
only if they can be connected by a �nite zigzag of pointwise specializations.
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Proof. By Proposition 4.16, the �rst statement reduces to showing that for every extremally
disconnected pro�nite set S, we haveπ0(BcondGal(Xzar))(S) = Mapqc(S, |X|)∕∼ .

This follows by the description ofGal(Xzar) inRecollection 4.7 noticing thatmapsf, g in the posetMapqc(S, |X|) are connected if and only if there exists a �nite zig-zag of pointwise specializations
as indicated in the statement.

For the second statement, by Proposition 2.22, we have a chain of canonical equivalences of
partially ordered sets Mapqc(β(M), |X|) ≃ Gal(Xzar)(β(M))≃ ∏M Gal(Xzar)(∗) = ∏M X≤zar ,
where the second equivalence is induced by M → β(M). Under this identi�cation, the equiv-
alence relation generated by pointwise specialization corresponds to the equivalence relation
de�ning π0((X≤zar)M) explained in the �nal statement. This concludes the proof of the second
claim.

Theorem 4.18 shows that πcond0 (X) gives the expected answer in many cases of interest:

4.19 Corollary. Let X be a qcqs scheme with �nitely many irreducible components. Then the
canonical map of condensed sets πcond0 (X) → π0(X)
of (3.15) is an isomorphism.

Proof. It su�ces to check that the map is an isomorphism after evaluating at β(M) for any
discrete setM. By Theorem 4.18, we need to see that the canonical mapπ0((X≤zar)M) → π0(X)M
that sends a function M → |X| to the composite with |X| → π0(X) is an isomorphism (note
that this is not immediate, since in general π0 does not commute with in�nite products). It is
surjective by surjectivity of |X| → π0(X). For injectivity, suppose that we have maps f, g∶ M →|X| that agree after composing with π0. If the number of irreducible components of X is n, it
follows that we may connect any two points x, y ∊ X in the same connected component with a
zig-zag of specializations involving at most 2n+1 other points. Thus we may also connect f andg with a zig-zag involving 2n + 1 other maps and thus [f] = [g] in π0((X≤zar)M), as desired.
4.20 Remark. For an alternative proof of Corollary 4.19, see [Mai25, Proposition 2.2.25].

4.21 Observation. Let X be a qcqs scheme and let x̄ → X and x̄′ → X be geometric points. If X
is connected and has �nitelymany irreducible components, then by Corollary 4.19, πcond0 (X) = ∗.
Hence, for each n ≥ 1, there exists an isomorphism πcondn (X, x̄) ≃ πcondn (X, x̄′).

In the remainder of this subsection, we provide some examples illustrating that πcond0 (X) can
substantially di�er from π0(X) in general. By Proposition 4.16, πcond0 (X) only depends on the
spectral space |X|; so we formulate the following result only in terms of spectral spaces.
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4.22 Recollection [FK18, Chapter 0, §2.3]. A spectral space T is valuative if, for each t ∊ T,
the set of generizations of t is totally ordered under the generization relation. Every point t of a
valuative space T has a unique maximal generization, denoted tmax .

The separated quotient of a valuative spectral space T is the quotient Tsep ≔ T∕∼ by the
relation s ∼ t if smax ∼ tmax . By [FK18, Chapter 0, Corollary 2.3.18], Tsep is a compact Hausdor�
space.

For the next result, recall the Galois category of a spectral space from Notation 3.29 and Rec-
ollection 3.30.

4.23 Corollary. Let T be a valuative spectral space. Then the natural mapπ0(Gal(Tzar)) → Tsep
is an isomorphism of condensed sets.

Proof. It again su�ces to check this after evaluating at the Čech–Stone β(M) of any setM. So let�∶ β(M) → Tsep be any continuous map. Since the quotient map �∶ T → Tsep is surjective, we
may pick amap a∶ M → T lifting �|M . Using Proposition 2.22 as in Theorem 4.18, a extends to a
quasicompact continuousmap ā ∶ β(M) → T and by constructionwe have�◦ā|M = �|M . By the
universal property of Čech–Stone compacti�cation, we thus get �◦ā = �, proving surjectivity.
For injectivity, suppose that we are given maps f, g∶ M → T such that the composites with �
agree. By the valuative property, it follows that for anym ∊ M, f(m) and g(m) specialize to the
same maximal element ℎ(m). Thus we get a zig-zagf ≤ ℎ ≥ g
so that [f] = [g] in π0(Gal(Tzar))(β(M)), proving injectivity.
4.24 Example. Corollary 4.23 shows that even if X is a connected scheme, πcond0 (X) can be a
nontrivial condensed set. Concretely, we may take T to be the underlying topological space of
the adic unit disk. Then T is a connected spectral topological space, so there exists a ring R and
a homeomorphism T ≃ |Spec(R)|. Thus Spec(R) is connected but πcond0 (Spec(R)) = Tsep is a
nontrivial compact Hausdor� space. In fact, this space is homeomorphic to the underlying space
of the corresponding Berkovich disk (cf. [Hub96, Remark 8.3.2]).

4.25 Remark. Let X be a qcqs scheme. Note that πcond0 (X) is qs. Indeed, this is clearly true
for w-contractible qcqs X and in general it follows by proétale covering by w-contractibles and
using the following observation: let X′ → X be a proétale surjection. Then the induced map of
condensed setsπcond0 (X′) → πcond0 (X) is surjective. Indeed, using Recollection 2.7, this eventually
boils down to the statement that for a map of simplicial sets that is surjective on vertices, the
induced map on �0 is surjective.

Theorem 4.18 can also be used to show that for a general qcqs scheme X, the condensed setπcond0 (X) can be quite exotic (in particular, πcond0 (X) is not generally quasiseparated in the sense
of Recollection 7.17). This is achieved in the following example.

4.26 Example (schematic Warsaw circle). Let X be a qcqs scheme with the property that any
two points may be connected by a zig-zag of specializations but such that the minimal length of
such a chain is not bounded by any natural number. Then we haveπcond0 (X)(∗) ≃ ∗ .
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However, for any function f∶ N → |X| such that the minimal length of a zig-zag connectingf(n) and f(0) is at least n, the function f and the constant function at f(0) yield di�erent
elements in πcond0 (X)(β(N)). Thus, πcond0 (X) is a nontrivial condensed set whose underlying set
is the point and therefore not quasiseparated. Indeed, if it were quasiseparated it would be qcqs
and thus representable by a compact Hausdor� space.

Let us give a concrete example of a scheme satisfying these properties. Fix an algebraically
closed �eld k and write ∗ = Spec(k). Let X ∊ ∗proét be a scheme such that π0(X) = N ∪ {∞}, i.e.,
the converging sequence of points together with its limit. Each connected component of X is
just a copy of ∗. Take two copies X+1 = X+2 = A1k ×∗ X of a scheme that, intuitively, is a sequence
of a�ne lines converging to another a�ne line. Fix two points, say 0, 1, on each copy of A1k and
glue X+1 and X+2 to obtain a zigzag of A1k’s intersecting at 0’s and 1’s and converging to a copy ofA1k, as displayed in Figure 1. Let us denote this scheme simply by X+. To formalize this gluing

+
+1

+2
Figure 1. Constructing the scheme X+.

procedure, one notes that we are gluing a�ne schemes along closed subschemes, so by [Sch05,
Theorem 3.4] the pushout exists and is also a�ne.

Now, this scheme satis�es the condition of having specialization-distances between points
growing arbitrarily but it still needs a small correction: the points on the limitA1k are not joinable
by a specialization sequence with the points on the zigzag. To amend it, add a further copy ofA1k joining an arbitrarily chosen pair of k-points of the the leftmost line of the zigzag with the
limit line of X+. Let us denote by X++ this schematic ‘Warsaw circle’. One can check that X++
satis�es the desired properties.

4.3 Computation: Πcond∞ of rings of continuous functions
Let T be a compact Hausdor� space.We conclude this section by using Theorem 4.18 to compute
the condensed homotopy type of the ring of continuous functions C(T, C); we show that it is 0-
truncated, and coincideswith the condensed set represented byT.We accomplish this by proving
a more general result. To state it, recall that the ring C(T, C) has the property that every prime
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ideal is contained in a unique maximal ideal (see Theorem A.24). Moreover, [Ray70, Chapitre
VII, Proposition 4] shows that the local rings of C(T, C) at maximal ideals are strictly henselian.
We are able to compute the condensed homotopy types of rings satisfying these two properties.

To state our results, we �rst introduce some terminology.

4.27 Notation. Given a ring R, we writeMSpec(R) ⊂ |Spec(R)| for the subset of maximal ideals,
endowed with the subspace topology.

4.28 Recollection (see Appendix A). A ring R is a pm-ring if every prime ideal of R is contained
in a unique maximal ideal. In this case, the spaceMSpec(R) is compact Hausdor�.

First, we identify πcond0 of an arbitrary pm-ring.

4.29 Proposition. Let R be a pm-ring. Then there is a natural isomorphism of condensed setsπcond0 (Spec(R)) ⥲ MSpec(R) .
This isomorphism is constructed in the course of the proof.

Proof. By TheoremA.9, themap of topological spaces |Spec(R)| → MSpec(R) that sends a prime
ideal p to the unique maximal ideal containing p is a continuous retraction of the inclusion.
This retraction is also continuous for the constructible topology and therefore de�nes a map of
condensed sets MapTop(−, |Spec(R)|cons) → MSpec(R) .
Furthermore it clearly respects the equivalence relation described in Theorem 4.18 and therefore
induces a map πcond0 (Spec(R)) → MSpec(R) .
To check that this map is an isomorphism, it su�ces to check this after evaluating at β(M) for
any setM. Using the explicit description given in Theorem 4.18 and the fact thatMSpec(R) is
compact Hausdor� (Corollary A.10), this is immediate.

Under stronger hypotheses, we compute the whole condensed homotopy type:

4.30 Theorem. Let R be a pm-ring with the property that all local rings at maximal ideals are
strictly henselian. Then Πcond∞ (Spec(R)) is 0-truncated; hence there is a natural equivalence of
condensed anima Πcond∞ (Spec(R)) ⥲ MSpec(R) .
To show that Πcond∞ (Spec(R)) is 0-truncated, we use the description of the condensed homotopy
type via exodromy. We �rst prove some preparatory results about classifying anima of in�nite
products.

4.31 Lemma. Let I be a set and let (Ci)i∊I be∞-categories. Assume that for each i ∊ I, there exists
a left adjoint functor �i ∶ Ai → Ci where Ai is an anima. Then all of the maps in the commutative
square B(∏i∊I Ai) ∏i∊I BAi

B(∏i∊I Ci) ∏i∊I BCi .
B(∏i∊I �i) ∏i∊I B�i

are equivalences of anima.
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Proof. First observe that since each �i is a left adjoint, the induced functor on products∏i∊I �i ∶ ∏i∊I Ai → ∏i∊I Ci
is also a left adjoint. Since each Ai is an anima, the top horizontal map is an equivalence. Since∏i∊I �i and each �i is a left adjoint and the functor B∶ Cat∞ → Ani sends left adjoints to
equivalences [CJ24, Corollary 2.11], the vertical maps are also equivalences. Thus, by the 2-of-3
property, the bottom horizontal map is an equivalence, as desired.

4.32 Example. Let I be a set and let (Ci)i∊I be∞-categories. Assume that for each i ∊ I, each
connected component of the ∞-category Ci admits an initial object. Then the hypotheses of
Lemma 4.31 are satis�ed where each Ai is the set of initial objects of connected components ofCi and �i is the inclusion. In particular,B(∏i∊I Ci) ≃ ∏i∊I BCi
is 0-truncated.

We also need the following criterion for detecting when a condensed anima is 0-truncated:
4.33 Lemma. Let n ≥ 0 be an integer. Then a condensed animaA is n-truncated if and only if for
each setM, the anima A(β(M)) is n-truncated.
Proof. Since every extremally disconnected pro�nite set is a retract of the Čech–Stone com-
pacti�cation of a set, this follows from the fact that every retract of an n-truncated anima isn-truncated.
Proof of Theorem 4.30. Note that, in light of Proposition 4.29, the �nal statement follows from
the claim that Πcond∞ (Spec(R)) is 0-truncated; so we just show this. Let us write X = Spec(R).
By Lemma 4.33, it su�ces to show that for every setM, the classifying anima of the categoryGal(X)(β(M)) is 0-truncated. Together, Recollection 3.32 and Proposition 2.22 show thatGal(X)(β(M)) ≃ ∏m∊MGal(X)({m}) ≃ ∏m∊M Pt(Xét) .
So by Example 4.32, it su�ces to show that every connected component of Pt(Xét) has an initial
object. This last statement is immediate from the assumption that R is a pm-ring and all local
rings at maximal ideals are strictly henselian.

We now derive some consequences of Theorem 4.30. The �rst is a computation of the étale
homotopy type of these pm-rings, which appears to be new.
4.34 Corollary. Let R be a pm-ring with the property that all local rings at maximal ideals are
strictly henselian. Then there is a canonical equivalence of proanimaΠét<∞(Spec(R)) ⥲ Π<∞(MSpec(R)) .
Here, Π<∞(MSpec(R)) denotes the shape of the compact Hausdor� space MSpec(R). See Nota-
tion 2.30.

Proof. We apply the functor (−)∧disc ∶ Cond(Ani) → Pro(Ani<∞) to the equivalence in Theo-
rem 4.30. To conclude, note that by Lemma 3.14, we haveΠcond∞ (Spec(R))∧disc ≃ Πét<∞(Spec(R))
and by Lemma 2.32 we have MSpec(R)∧disc ≃ Π<∞(MSpec(R)) .
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Finally, we turn to the special case of rings of continuous functions.

4.35Corollary. LetT be a topological space and letCb(T, C) denote the ring of bounded continuous
functions to C. Then there are natural equivalencesΠcond∞ (Spec(Cb(T, C))) ⥲ β(T)
and Πét<∞(Spec(Cb(T, C))) ⥲ Π<∞(β(T)) .
4.36. Note that if T is compact Hausdor�, then β(T) = T and Cb(T, C) = C(T, C).
Proof. By the universal property of Čech–Stone compacti�cation, the natural map T → β(T)
induces an isomorphism of rings C(β(T), C) ⥲ Cb(T, C) .
By Theorem A.24, the ring C(β(T), C) is a pm-ring and by Theorem A.30 there is a natural
homeomorphism β(T) ⥲ MSpec(C(β(T), C)). Furthermore, [Ray70, Chapitre VII, Proposition
4] shows that the local rings of C(β(T), C) at maximal ideals are strictly henselian. Thus the
claim follows from Theorem 4.30 and Corollary 4.34 applied to R = C(β(T), C).
4.37 Remark. Let T be a compact Hausdor� space that admits a CW structure and t ∊ T. SinceT admits a CW structure, the shape Π∞(T) coincides with the underlying anima of T. Hence
Corollary 4.35 shows that, up to protruncation, the étale homotopy type of Spec(C(T, C)) co-
incides with the underlying anima of T. In particular, the SGA3 étale fundamental group ofSpec(C(T, C)) at the maximal ideal of functions vanishing at t coincides with the usual funda-
mental group π1(T, t).
5 Fiber sequences
Let k be a �eld with separable closure k̄ ⊃ k, and let X be a qcqs k-scheme. Write Xk̄ for the
basechange of X to k̄. Then the naturally null sequence of étale homotopy types

(5.1) Πét<∞(Xk̄) Πét<∞(X) BGalk
is a �ber sequence, see [HHW24b, Theorem 0.2]. The existence of this �ber sequence implies
the usual fundamental exact sequence for étale fundamental groups [STK, Tag 0BTX; SGA 1,
Exposé IX, Théorème 6.1].

The �rst goal of this section, accomplished in §5.1, is to prove the analogue of the funda-
mental �ber sequence (5.1) for the condensed homotopy type. The second goal of this section,
accomplished in §5.2, is to show that given a smooth proper morphism of schemes X → S, up
to suitable completion, the homotopy-theoretic �ber of the induced map Πcond∞ (X) → Πcond∞ (S)
agrees with the condensed homotopy type of the scheme-theoretic �ber. See Theorem 5.12.

5.1 The fundamental �ber sequence for the condensed homotopy type
Using the description of Πcond∞ (X) as the condensed classifying anima BcondGal(X), the same
methods as in [HHW24b] allow us to prove the fundamental �ber sequence for the condensed
homotopy type. The key observation is that even though Bcond does not preserve pullbacks, it
preserves pullbacks along morphisms between condensed anima. Let us now explain this point.
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5.2 Recollection. Let C be an∞-category with pullbacks and D ⊂ C a full subcategory such
that the inclusion admits a left adjoint L∶ C → D. We say that the localization L is locally
cartesian if for any cospan U → W ← V in C with U,W ∊ D, the natural mapL(U ×W V) → U ×W L(V)
is an equivalence. See [GK17, §1.2; Hoy17, §3.2].

5.3. Importantly, the localization B∶ Cat∞ → Ani is locally cartesian; see [HHW24b, Example
3.4].

5.4 Corollary. Let C be an∞-category with �nite limits and let L∶ C → D be a locally cartesian
localization that also perserves �nite products. Then the localization Lcond ∶ Cond(C) → Cond(D)
is locally cartesian.

Proof. By de�nition, the functorLcond ∶ Fun×(Extrop, C) → Fun×(Extrop, D)
is given by pointwise application of L∶ C → D. Since �nite limits in Cond(C) and Cond(D) are
computed pointwise, the claim follows from the assumption that the localization L is locally
cartesian.

5.5 Example. The localization Bcond ∶ Cond(Cat∞) → Cond(Ani) is locally cartesian.
5.6 Corollary. Let f∶ X → S be a morphism between qcqs schemes, and let s̄ → S be a geometric
point of S. If dim(S) = 0, then the naturally null sequenceΠcond∞ (Xs̄) Πcond∞ (X) Πcond∞ (S)
is a �ber sequence in the∞-categoryCond(Ani). As a consequence, given a geometric point x̄ → Xs̄,
the induced sequence of pointed condensed sets1 πcond1 (Xs̄, x̄) πcond1 (X, x̄) πcond1 (S, s̄) πcond0 (Xs̄) πcond0 (X) πcond0 (S)
is exact.

Proof. For the �rst claim, note that by [HHW24b, Corollary 2.4] and the fact that the functorPro(Cat∞) → Cond(Cat∞) preserves limits, the natural squareGal(Xs̄) Gal(X)
Gal(s̄) Gal(S)

is a pullback square in Cond(Cat∞). Moreover, since s̄ is a geometric point, Gal(s̄) ≃ ∗. Sincedim(S) = 0, by Corollary 3.40 the condensed ∞-category Gal(S) is a 1-truncated condensed
anima. The claim now follows from Proposition 3.38 and the fact that the localization Bcond is
locally cartesian.

To conclude, note that sinceΠcond∞ (S) ≃ Gal(S) is 1-truncated, the second claim follows from
the �rst by taking homotopy condensed sets.
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5.7 Corollary. Let k be a �eldwith separable closure k̄, letX be a qcqs k-scheme, and �x a geometric
point x̄ → Xk̄ . If πcond0 (Xk̄) = 1, then the sequence of condensed groups

1 πcond1 (Xk̄, x̄) πcond1 (X, x̄) Galk 1
is exact.

5.8 Remark. By Corollary 4.19, the hypotheses of Corollary 5.7 are satis�ed ifX is geometrically
connected and Xk̄ has �nitely many irreducible components.

As an application of the fundamental �ber sequence and Corollary 4.35, we compute of the
condensed homotopy type of rings of continuous functions to R:
5.9 Corollary. Let T be a compact Hausdor� space. Then there is a natural equivalence of con-
densed anima Πcond∞ (Spec(C(T,R))) ≃ T × BGalR .

Proof. As explained in Lemma A.25, the natural ring homomorphism C(T,R) ⊗R C → C(T, C)
is an isomorphism. Hence by the fundamental �ber sequenceΠcond∞ (Spec(C(T, C))) → Πcond∞ (Spec(C(T,R))) → BGalR
of Corollary 5.6, we just have to show that action of GalR on Πcond∞ (Spec(C(T, C))) is trivial. By
Theorem 4.30, we have natural identi�cationsΠcond∞ (Spec(C(T, C))) ≃ MSpec(C(T, C)) ≃ T .

Thus it su�ces to show that map on maximal spectraMSpec(C(T, C)) → MSpec(C(T, C))
induced by complex conjugation is the identity. To see this, note that by Theorem A.30, each
maximal ideal is given by all functions T → C that vanish at some �xed t ∊ T, and a function
vanishes at a point if and only if its conjugate does.

5.2 Geometric and homotopy-theoretic �bers
Let f∶ X → S be a smooth and proper morphism of schemes. The goal of this subsection is
is to show that, up to suitable completion, the homotopy-theoretic �ber of the induced mapΠcond∞ (f)∶ Πcond∞ (X) → Πcond∞ (S) agrees with the condensed homotopy type of the scheme-
theoretic �ber.

5.10 Notation. For a morphism of schemes f∶ X → S and a geometric point s̄ → S, we denote
by X(s̄) ≔ X ×S S(s̄)
theMilnor ball of f at s̄ . Here S(s̄) denotes the strict localization at s̄.
5.11 Recollection (Σ-completion). Let Σ be a nonempty set of prime numbers.

(1) We writeAniΣ ⊂ Aniπ for the full subcategory spanned by those π-�nite anima all of whose
homotopy groups are Σ-groups (i.e., their order is a product of elements of Σ).
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(2) The inclusion Pro(AniΣ) ↪ Pro(Aniπ) admits a left adjoint (−)∧Σ that we refer to as Σ-com-
pletion.

(3) We also write (−)∧Σ ∶ Cond(Ani) → Pro(AniΣ) for the left adjoint of the inclusionPro(AniΣ) ↪ Pro(Aniπ) ↪ Cond(Ani) .
As a consequence of the exodromy description of the condensed homotopy type, we can

apply a pro�nite version of Quillen’s Theorem B, see §B.2, to prove:
5.12 Theorem. Let f∶ X → S be a smooth and proper morphism between qcqs schemes and lets̄ → S be a geometric point. Let Σ be a nonempty set of primes invertible on S. Then the induced
map Πcond∞ (Xs̄) → �bs̄(Πcond∞ (f))
becomes an equivalence after completion with respect to Σ.
Proof. Wewant to apply Theorem B.7 to the functorGal(f)∶ Gal(X) → Gal(S) induced by f. To
verify that the assumptions of TheoremB.7 are satis�ed, we need to see that for any specialization�∶ t̄′ → t̄ in S, the induced map
(5.13) Bcond(Gal(X)t̄∕) → Bcond(Gal(X)t̄′∕)
becomes an equivalence after Σ-completion.

Recall that by [BGH20, Corollary 12.4.5], we have a natural equivalence of underlying∞-
categories
(5.14) Gal(S(t̄)) ⥲ Gal(S)t̄∕ .
Using Observation 6.5 below, one can show that this equivalence re�nes to an equivalence of con-
densed∞-categories, see [Wol25, Proposition 7.3.3.7] for more details. Furthermore, [HHW24b,
Proposition 2.4] implies, that the natural functorGal(X(t̄)) → Gal(X)t̄∕ ,
induced by the equivalence (5.14), is an equivalence of condensed∞-categories as well. Thus
by Lemma 3.14, the Σ-completion of the map (5.13) identi�es with the specialization mapΠ̂ét∞(X(t̄))∧Σ → Π̂ét∞(X(t̄′))∧Σ .
By [HHW24a, Proposition 2.49], this specialization map is an equivalence. Thus, Theorem B.7
implies that the natural map Πcond∞ (X(s̄)) → �bs̄(Πcond∞ (f)) becomes an equivalence after Σ-com-
pletion. Finally, note that by Lemma 3.14 and [HHW24a, Corollary 2.39], the natural mapΠcond∞ (Xs̄) → Πcond∞ (X(s̄))
becomes an equivalence after Σ-completion.

5.15 Remark. In the setting of Theorem 5.12, the canonical mapΠcond∞ (Xs̄) → �bs̄(Πcond∞ (f)) is
not generally an equivalence before Σ-completion. The reason why this fails is that the proper
and smooth basechange theorems do not hold for arbitrary proétale sheaves; they only hold for
constructible étale sheaves.
5.16 Remark. Theorem 5.12 is an analogue of Friedlander’s result [Fri73b, Theorem 3.7]. Since
we do not have to require that the base S be normal, at the cost of working with a more compli-
cated homotopy type, our result holds in a more general setup. However, since the Σ-completion
functor does not preserve �ber sequences, it is also not immediate how to recover Friedlander’s
result from ours.
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6 Integral Descent
The goal of this section is to prove that the condensed homotopy type satis�es integral hyperde-
scent. Let us start by formulating what we mean by this more precisely.

6.1 De�nition. Let X be a scheme and C an∞-category.

(1) We call an augmented simplical object X∙ → X an integral hypercover if for each n ≥ 0, the
morphism Xn → X is integral and X0 → X and Xn → (coskn−1(X∙))n are surjective.

(2) We call a functor F∶ Schqcqs → C a hypercomplete integral cosheaf if F sends integral hyper-
covers to colimit diagrams.

Themain goal of §6.1 is to show thatΠcond∞ (−) is a hypercomplete integral cosheaf, which we
achieve in Corollary 6.16. In fact, our methods will show that already Gal(−) is a hypercomplete
integral cosheaf of condensed categories. In § 6.2, we use some of the results in this section
to characterize those morphisms of schemes, for which the étale∞-topos is compatible with
basechange; this included integral morphisms.

6.1 Integral morphisms and right �brations
In this subsection, we show that for an integral morphism of schemes, the induced functor on
Galois categories is a right �bration of condensed categories. We begin by recalling the notion
of a right �bration of condensed∞-categories:

6.2 De�nition. We say that a functor of condensed∞-categories f∶ C → D is a right �bration
if and only if the commutative square

Funcond([1], C) Funcond([1],D)
C D

f◦−
ev1 ev1

f
is a cartesian square in Cond(Cat∞).
6.3 Remark. De�nition 6.2 is a special case of the notion of a right �bration of simplicial
objects in a general∞-toposℬ, as introduced in [Mar21, De�nition 4.1.1]. In particular it follows
from the discussion in loc. cit. that right �brations in Fun(�op, Cond(Ani)) are the right class
in an orthogonal factorization system. The left class consists of the �nalmaps, i.e., the smallest
saturated class which contains allmaps of the form {n}×S ↪ [n]×S for n ∊ N and S ∊ Pro(Set�n).
See [Mar21, Lemma 4.1.2].

6.4 Remark. A functor f∶ C → D of condensed∞-categories is a right �bration if and only
if for every pro�nite set S, the functor f(S)∶ C(S) → D(S) is a right �bration of∞-categories.
Indeed, the square in De�nition 6.2 is cartesian if and only if this is true after evaluation at
every pro�nite set S. Under the equivalence Funcond([1], C)(S) ≃ Fun([1], C(S)), the claim then
follows by the characterization of right �brations via a corresponding cartesian square, see [Cis19,
Proposition 3.4.5].

In the cases we care about, being a right �bration can often be detected on the level of
underlying∞-categories, which we deduce from the following observation.
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6.5 Observation. Recall from [SAG, Theorem E.3.1.6] that the functorlim∶ Pro(Aniπ) → Ani

is conservative. It follows that the functor lim∗ ∶ Cat(Pro(Aniπ)) → Cat∞ given by postcompo-
sition with lim is also conservative.

6.6 Lemma. Let f∶ C → D be a functor in Cat(Pro(Aniπ)) considered as a functor of condensed∞-categories. If the underlying functor of∞-categories is a right �bration, then f is a right �bration
of condensed∞-categories.

Proof. By de�nition, f is a right �bration if and only if the induced map

(6.7) Funcond([1], C) → Funcond([1],D) ×D C
is an equivalence of condensed∞-categories. Since C and D are in Cat(Pro(Aniπ)), it follows
that Funcond([1], C) and Funcond([1],D) are also in Cat(Pro(Aniπ)). Thus, by Observation 6.5,
the comparison map (6.7) is an equivalence if and only if it an equivalence on underlying∞-
categories. Since taking underlying ∞-categories commutes with pullbacks, this proves the
claim.

By Recollection 3.32, we immediately deduce the following.

6.8 Corollary. Let f∶ X → Y be a morphism of qcqs schemes. Then the induced functorGal(f)∶Gal(X) → Gal(Y)
is a right �bration of condensed categories if and only if this is true on the underlying categories.

6.9 Proposition. Let f∶ X → Y be an integral morphism of qcqs schemes. Then the induced
functor Gal(f)∶ Gal(X) → Gal(Y)
is a right �bration of condensed categories.

Proof. By Corollary 6.8, it su�ces to check this on underlying categories. The statement about
underlying categories appears in [BGH20, Proposition 14.1.6]; for the convenience of the reader,
we give a quick proof here.

Throughout the proof, we simply write Gal(−) for the underlying category as well. By [STK,
Tag 09YZ], any integral morphism f∶ X → Y withY qcqs can be written as f = limi fi for some
co�ltered system of �nitemorphisms fi ∶ Xi → Y. Since right �brations are stable under limits,
by the continuity of étale∞-topoi [SGA 4ii, Éxpose VII, Lemma 5.6; CM21, Proposition 3.10],
we may assume that f is �nite. Since Gal(X) and Gal(Y) are 1-categories, by [Ker, Tag 015H] it
su�ces to show that any lifting problem of the form{1} Gal(X)

[1] Gal(Y).Gal(f)
s

∃!?
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has a unique solution. Writing ȳ for the source of the map s, this diagram factors as{1} Gal(Y)ȳ∕ ×Gal(Y) Gal(X) Gal(X)
[1] Gal(Y)ȳ∕ Gal(Y) ,

⌟ Gal(f)∃!?
s

and it su�ces to show that this induced lifting problem has a unique solution.
By [BGH20, Corollary 12.4.5] and [HHW24b, Corollary 2.4], we can identifyGal(Y)ȳ∕ ≃ Gal(Y(ȳ)) and Gal(X) ×Gal(Y) Gal(Y(ȳ)) ≃ Gal(X ×Y Y(ȳ)) .

Moreover, since f∶ X → Y is �nite, by [STK, Tag 04GH] we have a coproduct decompositionX ×Y Y(ȳ) = ∐x̄i∊f−1(ȳ) X(x̄i). Now the map{1} → Gal(Y(ȳ)) ×Gal(Y) Gal(X) ≃ ∐i Gal(X(x̄i))
factors through Gal(X(x̄i0 )) for some i0. Hence, writing x̄ ≔ x̄i0 , we �nally arrive at a lifting
problem of the form {1} Gal(X(x̄)) Gal(X)

[1] Gal(Y(ȳ)) Gal(Y).Gal(f)
s

∃!?

Here, existence and uniqueness of a lift is clear. Let ȳ′ be the target of the map s, determined
by {1} → Gal(X(x̄)). Note that x̄ is the initial object of Gal(X(x̄)) ≃ Gal(X)x̄∕, and also the only
object lifting ȳ. So if there exists a lift, it has to be the unique map from x̄ → x̄′ for x̄′ the lift ofȳ′. Since ȳ is the initial object of Gal(Y(ȳ)) ≃ Gal(Y)ȳ∕, it is clear that x̄ → x̄′ actually lifts the
map s ∶ ȳ → ȳ′ we started with.

6.10 Corollary (Künneth formula for integral morphisms). Let X → Y be an integral morphism
of qcqs schemes. Then for any qcqs scheme Y′ and morphism Y′ → Y the natural functorGal(X ×Y Y′) → Gal(X) ×Gal(Y) Gal(Y′)
is an equivalence.

Proof. As integral morphisms and right �brations are stable under pullbacks, by Proposition 6.9
both functorsGal(pr1)∶ Gal(X ×Y Y′) → Gal(Y′) and pr1 ∶ Gal(X) ×Gal(Y) Gal(Y′) → Gal(Y′)
are right �brations. Therefore, by [Ker, Tag 01VE] it su�ces to see that the natural functorGal(X ×Y Y′) → Gal(X) ×Gal(Y) Gal(Y′)
becomes an equivalence after taking �bers over any ȳ′ ∊ Gal(Y′). This holds by [HHW24a,
Corollary 2.4].
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6.11 Lemma. Let f∶ C → D be a morphism in Cat(Pro(Aniπ)). Then f is surjective as a functor
of condensed∞-categories (i.e., for all S ∊ Extr, the functor C(S) → D(S) is surjective) if and only
if the induced functor on underlying∞-categories f(∗)∶ C(∗) → D(∗) is surjective.
6.12 Observation. The inclusion Cond(Ani) → Cond(Cat∞) also admits a right adjoint. We
denote this right adjoint by (−)≃.
Proof of Lemma 6.11. First, by de�nition, if f is a surjective functor of condensed∞-categories,
then f(∗)∶ C(∗) → D(∗) is surjective. Conversely, if f(∗)∶ C(∗) → D(∗) is surjective, then it fol-
lows from [SAG, Corollary E.4.6.3] that the induced map C≃ → D≃ is an e�ective epimorphism
in Pro(Aniπ) ⊂ Cond(Ani). Now let S ∊ Extr. Since any map S → D in Cond(Cat∞) factors
throughD≃ and S is projective in Cond(Ani) it follows that we can �nd a lift in the diagramC≃

S D≃f
which completes the proof.

6.13 Corollary. Let f∶ X → Y be a surjective morphism of qcqs schemes. Then the functor of
condensed categories Gal(f)∶ Gal(X) → Gal(Y) is surjective.
Proof of Corollary 6.13. By Lemma 6.11, we just need to see that the induced functor on cate-
gories of points Gal(X)(∗) → Gal(Y)(∗) is surjective. Since any point of Xét is represented by a
geometric point x̄ → X, it is clear.

Right �brations automatically satisfy descent in the following sense:

6.14 De�nition. An augmented simplicial∞-category C∙ → C is a hypercover if for each n ∊ N,
the induced functor Cn → (coskn−1(C∙))n is surjective.
6.15 Lemma. Let C∙ → C be a hypercover in Cat∞, and assume that for each n ∊ N, the induced
functor Cn → C is a right �bration. Then colim�op C∙ ⥲ C.
Proof. By straightening-unstraightening, our given hypercover translates to a hypercover of the
terminal object in the ∞-category RFib(C) ≃ PSh(C) of right �brations over C. Furthermore,
the inclusion RFib(C) ⊂ Cat∞,∕C preserves limits and colimits (the case of limits is clear as
right �brations are de�ned via a lifting property, for colimits see [Ram22, Corollary A.5]). SinceRFib(C) is a presheaf∞-topos and therefore hypercomplete, the claim follows.

We can now deduce the desired descent results.

6.16 Corollary.

(1) The functor Gal∶ Schqcqs → Cond(Cat∞) is a hypercomplete integral cosheaf.

(2) The functor (−)hypproét ∶ (Schqcqs)op → Cat∞ with functoriality given by pullbacks is an integral
hypersheaf.

(3) The functorΠcond∞ ∶ Schqcqs → Cond(Ani) is a hypercomplete integral cosheaf.
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Proof. By [Wol22, Theorem 1.2], we have a natural equivalenceXhypproét ≃ Functs(Gal(X),Cond(Ani)) ,
hence second assertion is an immediate consequence of the �rst. By Proposition 3.38, the third
assertion is also an immediate consequence of the �rst. Thus, we only need to prove the �rst
assertion.

Using Corollary 6.10, it follows that for any integral hypercover X∙ → X and n ∊ N, the
canonical map Gal(coskn−1(X∙)n) → coskn−1(Gal(X∙))n
is an equivalence. Thus, Proposition 6.9 and Corollary 6.13 imply that Gal(X∙) is a hypercover
of right �brations of condensed categories. Since sifted colimits are computed pointwise in the∞-category Cond(Cat∞) = Fun×(Extrop,Cat∞), the claim follows by combining Remark 6.4
and Lemma 6.15.

We can also recover the schematic description of the over categoryGal(X)∕x̄ given in [BGH20,
Corollary 12.4.5]:5

6.17 Corollary. Let X be a qcqs scheme, let x̄ → X be a geometric point, and let X(x̄) denote the
strict normalization of X at x̄ in the sense of [BGH20, Notation 12.4.2]. Then the natural integral
morphism f∶ X(x̄) → X induces an equivalence of condensed categoriesGal(X(x̄)) ⥲ Gal(X)∕x̄ .
Proof. Since the morphsism f is integral, by Proposition 6.9 the functor of condensed categoriesGal(f) is a right �bration. Hence for x̄ ∶ ∗ → Gal(X(x̄)) → Gal(X), the induced functorf∕x̄ ∶ Gal(X(x̄))∕x̄ → Gal(X)∕x̄
is an equivalence of condensed categories. The condensed category Gal(X(x̄)) already has a
terminal object induced by the generic point of X(x̄), which is given by x̄ → X(x̄), cf. [Mai25,
Theorem 2.4.21]. We conclude using thatGal(X(x̄)) ≃ Gal(X(x̄))∕x̄ ≃ Gal(X)∕x̄ .

Finally, using some of the machinery developed in [Mar21], we can also deduce integral
basechange for proétale hypersheaves. We do not need this in the rest of this article, but it might
be of independent interest.

6.18 Proposition. Let X′ X
Y′ Y

q
g f

p
5The description of the under categories of Gal(X) in terms of strict henselizations in loc. cit. is immediate from the

de�nition. The description of over categories in terms of strict normalizations is less obvious, so we decided to include
an argument here.
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be a cartesian square of qcqs schemes where f is integral. Then the induced square

(X′)hypproét Xhypproét
(Y′)hypproét Yhypproét

q∗
g∗ f∗

p∗
is horizontally left adjointable, i.e., the natural exchange transformation p∗f∗ → g∗q∗ is an equiv-
alence.

Proof. By [Wol22, Corollary 1.2], this square is identi�ed with the square

Functs(Gal(X′),Cond(Ani)) Functs(Gal(X),Cond(Ani))
Functs(Gal(Y′),Cond(Ani)) Functs(Gal(Y),Cond(Ani)) .

Gal(q)∗
Gal(g)∗ Gal(f)∗

Gal(p)∗
Since f is integral, Proposition 6.9 shows that Gal(f) is a right �bration, and Corollary 6.10
shows that the natural map Gal(X′) → Gal(X) ×Gal(Y) Gal(Y′) is an equivalence. Because right
�brations of condensed ∞-categories are proper functors [Mar21, Proposition 4.4.7], the the
above square is horizontally left adjointable.

6.2 Digression: strongly künnethable morphisms of schemes
We conclude this section by explaining at what level of generality the Künneth formula for étale∞-topoi (equivalently, Corollary 6.10) holds.

6.19 De�nition. We call a morphism of schemes X → Y strongly künnethable if for any mor-
phism Y′ → Y the induced map (X ×Y Y′)ét → Xét ×Yét Y ′́et
is an equivalence.

6.20 Remark. Since all∞-topoi involved in De�nition 6.19 are 1-localic, being strongly kün-
nethable is equivalent to the canonical geometric morphism(X ×Y Y′)ét,≤0 → Xét,≤0 ×Yét,≤0 Y ′́et,≤0
of 1-topoi being an equivalence.

6.21 Proposition. Let f∶ X → Y be a morphism of �nite presentation. Then f is strongly kün-
nethable if and only if it is quasi-�nite.

Proof. Let us �rst assume that f is quasi-�nite. Since open immersions are strongly künnethable
by [HTT, Remark 6.3.5.8], we may immediately reduce to the case where X, Y, and Y′ are a�ne.
Applying Zariski’s main theorem, we can factor f as an open immersion followed by a �nite
morphism. Thus we may assume that f is �nite.
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We have to check that the induced map

(6.22) (X ×Y Y′)ét,≤0 → Xét,≤0 ×Yét,≤0 Y ′́et,≤0
is an equivalence. By Corollary 6.10, it induces an equivalence of categories of points. Further-
more it follows from the site-theoretic description of the �ber product of topoi [ILO14, Exposé XI,
§3] that (6.22) is a coherent geometric morphism of coherent topoi. Thus, theMakkai–Reyes con-
ceptual completeness theorem [SAG, Theorem A.9.0.6] implies that this geometric morphism is
an equivalence.

For the converse, assume that f is not quasi-�nite. Then at least one geometric �ber of f is
not quasi-�nite. Since taking geometric �bers is compatible with taking étale∞-topoi [HHW24b,
Proposition 2.3], we may reduce to the case where Y = Spec(k) is the spectrum of a separably
closed �eld k. Furthermore, we may always modify X by quasi-�nite maps to reduce to the
case where X is integral of dimension at least 1. By Noether normalization, there exists a �nite
surjective map ℎ∶ X → Ank . Let X∙ → Ank denote the Čech nerve of ℎ. Now if f were strongly
künnethable, then since the mapsXm → Spec(k) are the composite of a �nite map d0 ∶ Xm → X
and f, it would follow that also all maps Xm → Spec(k) would be strongly künnethable as well.
Thus for every k-scheme Y′ and everym ≥ 0, the induced mapGal(Xm × Y′) → Gal(Xm) × Gal(Y′)
would be an equivalence. But by integral descent (Corollary 6.16), after passing to the colimit
over �op, this would imply that the canonical mapGal(Ank × Y′) → Gal(Ank) × Gal(Y′)
is an equivalence.

Thus we may assume that X = Ank and therefore even that X = A1k. Now let Z = A1k as well.
This would imply that the canonical mapGal(A2k) → Gal(A1k) × Gal(A1k)
is an equivalence. In particular, it would induce an equivalence on underlying posets and thus
an isomorphism of specialization posets(A2k)≤zar → (A1k)≤zar × (A1k)≤zar ,
which is a contradiction.
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Part II

The condensed fundamental group
The purpose of this part is to analyze the fundamental group of the condensed homotopy type
and its relationship to the étale and proétale fundamental groups. We start by showing that,
surprisingly, πcond1 (A1C) is nontrivial (see Corollary 7.8). This can be viewed as saying that there
exists a nontrivial proétale local system of condensed rings on A1C. See Example 7.10.

In § 7, we show that a mild quotient of the condensed fundamental group of A1C indeed
becomes trivial. Speci�cally, Clausen and Scholze introduced a localization A ↦ Aqs of the cat-
egory of condensed sets called the quasiseparated quotient [Sch19a, Lecture VI]. For topological
groups, this is analogous to the Hausdor� quotient. We show that if X is a topologically noethe-
rian scheme that is geometrically unibranch, then there is a natural isomorphism of condensed
groups πcond1 (X, x̄)qs ⥲ πét1 (X, x̄) .
See Theorem 7.27. Under mild hypotheses on the scheme (e.g., being Nagata), we also prove a
van Kampen formula for the quasiseparated quotient of the condensed fundamental group that
only involves topological free products, topological quotients, and the étale fundamental group
of the normalization, see Theorem 7.51.

In §8, we turn to the relationship between the condensed fundamental group and the proé-
tale fundamental group introduced by Bhatt and Scholze [BS15, §7]. One of the special features
of πproét1 (X) is that it is a Noohi group. We show that if X is topologically noetherian, the Noohi
completion (suitably extended to condensed groups) of πcond1 (X) recovers πproét1 (X), see Theo-
rem 8.17.

7 Thequasiseparatedquotient of the condensed fundamen-
tal group

In §7.1, we begin by using the Galois category description of the condensed homotopy type
to show that πcond1 (A1C) is nontrivial. The rest of the section is dedicated to studying the qua-
siseparated quotient of πcond1 (A1C). In §7.2, we recall the basics on quasiseparated quotients of
condensed sets and prove some fundamental results about the quasiseparated quotient. In §7.3,
we show that the quasiseparated quotient of πcond1 of a geometrically unibranch and topologically
noetherian scheme recovers πét1 . In §7.4, we prove a van Kampen formula for the quasiseparated
quotient of the condensed fundamental group, see Theorem 7.51.

7.1 πcond1 (A1C) is nontrivial
In this subsection, we show that πcond1 can behave wildly, even in geometrically very simple
situations. For simplicity, we work over the complex numbers C.
7.1 Notation. For a topological group G and an (abstract) subgroupH < G, letHnc denote the
group-theoretic normal closure ofH in G. LetHtnc ≔ Hnc
be the topological normal closure of H in G, i.e., the smallest closed normal subgroup of G con-
tainingH or, equivalently, the topological closure ofHnc in G.
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7.2 Proposition. Let S ⊂ C be a subset. Let us writeA1C ∖ S ≔ Spec(C[t][(t − a)−1 ∣ a ∊ S]) .
Let F̂rC be the free pro�nite group on the underlying set ofC. LetNS be the abstract normal subgroup
of F̂rC generated by Ẑ(a) for all a ∊ C∖S. Write � for the generic point ofA1C and �̄ for the geometric
generic point induced by choosing an algebraic closure of C(T). There is a short exact sequence of
(abstract) groups 1 NS F̂rC πcond1 (A1C ∖ S, �̄)(∗) 1 .

To prove Proposition 7.2, wemake use of an alternative description of BGal(X)(∗). To explain
this, we �rst recall that Gal(X)(∗) admits a conservative functor to a poset:

7.3 Example. Let X be a qcqs scheme. Note that there is a natural functors ∶ Gal(X)(∗) → X≤zar
from the category of points of the étale topos to the specialization poset of |X|. The functor s is
the unique functor that sends a geometric point x̄ → X to the underlying point x ∊ |X|. Since
the �ber of s over a point x ∊ X≤zar is equivalent to the classifying anima of the discrete groupGalκ(x), the functor s is conservative.
Our description thus relies on the following presentation of∞-categories with a conservative
functor to a poset:

7.4 Recollection (∞-categories with a conservative functor to a poset). Let P be a poset. Writesd(P) for the poset of nonempty linearly ordered �nite subsets of P, ordered by inclusion. The
poset sd(P) is referred to as the subdivision of P. WriteCatcons∞,∕P ⊂ Cat∞,∕P for the full subcategory
spanned by those∞-categories over P such that the structure morphism C → P is conservative.
Barwick–Glasman–Haine proved that the nerve functorNP ∶ Catcons∞,∕P⟶Fun(sd(P)op,Ani)[C → P]⟼ [{p0 < ⋯ < pn} ↦ MapCat∞,∕P ({p0 < ⋯ < pn}, C)]
is a fully faithful right adjoint. See [BGH20, Theorem 2.7.4].

The next result provides a convenient way of computing the classifying anima BC in terms
of the nerve NP(C).
7.5 Proposition. Let P be a poset and C → P a conservative functor. Then there is a natural
equivalence BC ≃ colimsd(P)opNP(C) .
Proof. First, observe that the functor P × (−)∶ Ani → Cat∞,∕P factors through Catcons∞,∕P and
is right adjoint to the functor B∶ Catcons∞,∕P → Ani sending C → P to the classifying anima BC.
Since the colimit functor Fun(sd(P)op,Ani) → Ani is left adjoint to the constant functor, in
light Recollection 7.4 and the diagram of adjunctions

Fun(sd(P)op,Ani) Catcons∞,∕P Ani ,NP BP×(−)
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it su�ces to show that the composite right adjoint Ani → Fun(sd(P)op,Ani) is equivalent to
the constant functor.

To prove this, �rst note that for nonempty linearly ordered �nite subset {p0 < ⋯ < pn} ⊂ P,
the classifying anima B{p0 < ⋯ < pn} is contractible. Hence, for any anima A and nonempty
linearly ordered �nite subset {p0 < ⋯ < pn} ⊂ P, we have natural equivalencesNP(P × A){p0 < ⋯ < pn} = MapCat∞,∕P ({p0 < ⋯ < pn}, P × A)≃ MapAni(B{p0 < ⋯ < pn}, A)≃ MapAni(∗, A)= A .

7.6 Example. In particular, if X is a qcqs scheme, then there is a natural equivalenceBGal(X)(∗) ≃ colimsd(X≤zar)opNX≤zar(Gal(X)(∗)) .
Proof of Proposition 7.2. To simplify notation, write X = A1C ∖ S, Gal(X) for Gal(X)(∗), andN(Gal(X)) for NX≤zar(Gal(X)). We compute BGal(X) using Example 7.6. Note that sd(X≤zar) con-
sists of elements of the form {a} , {�} , and {a < �}
for any a ∊ C ∖ S, and the ordering is given by {a} < {a < �} and {�} < {a < �}. Furthermore, the
functor N(Gal(X))∶ sd(X≤zar)op → Ani

can be explicitly described by applying Π̂ét∞ followed by lim∶ Pro(Aniπ) → Ani to the diagramsd(X≤zar)op → Sch that sends {a} < {a < �} > {�} to the span of schemes

(7.7) Spec(C[T]h(a)) Spec(C[T]h(a)) ∖ {a} Spec(C(T)) .
See [BGH20, Example 12.2.2].

For each a ∊ C ∖ S, we now choose a lift �̄a of �̄ �tting into a commutative triangleSpec(C[T]h(a)) ∖ {a}
Spec(C(T)) Spec(C(T)) .�̄

�̄a

In particular, we can lift the span (7.7) to a span of pointed schemes; therefore, N(Gal(X)) also
lifts to a diagram of pointed animaN(Gal(X))∗. Using that π1 is an equivalence between pointed,
connected, 1-truncated anima and the category of groups [HTT, Proposition 7.2.12], we may
thus compute π1(BGal(X), �̄) ≃ colimsd(X≤zar)op π1(N(Gal(X))∗) .

Now for any {a} < {a < �} > {�}, the corresponding span in groups is given by∗ πét1 (Spec(C[T]h(a)) ∖ {a}, �̄a) πét1 (Spec(C(T)), �̄) .
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Moreover, the colimit of the diagram π1(N(Gal(X))∗) over sd(X≤zar)op is given by taking the quo-
tient of πét1 (Spec(C(T)), �̄) = GalC(T) by the (abstract) normal closure of the subgroup generated
by the images of all the decomposition groupsDa ≔ πét1 (Spec(C[T]sh(a) ∖ {a}) .
By Theorem C.3, there is an isomorphismF̂rC ⥲ GalC(T) = πét1 (Spec(C(T)), �̄)
from the free pro�nite group on the set C, under which the preimage ofDa is, up to conjugation,
given by the pro�nite subgroup Ẑ(a) generated by a. It follows that π1(BGal(X), �̄) is isomorphic
to the quotient of F̂rC by the smallest (abstract) normal subgroup containing Ẑ(a) for all a ∊ C∖S,
as desired.

7.8 Corollary. Let x̄ → A1C be a geometric point. Then the abelianization of the underlying groupπcond1 (A1C, x̄)(∗) is nontrivial. As a consequence,πcond1 (A1C, x̄) ≠ 1 and πcond1 (A1C, x̄)ab ≠ 1 .
Proof. SinceA1C is irreducible, Observation 4.21 implies that the condensed fundamental groups
of A1C with respect to all basepoints are isomorphic. So it su�ces to treat the case where x̄ = �̄
is the geometric generic point.

Consider the canonical continuous homomorphism F̂rC → ∏a∊C Ẑ that carries a generatora to the unit vector at a. Note that since the image of this is homomomorphism dense, the source
is pro�nite, and the target is Hausdor�, this homomorphism is surjective. Also notice that that
the (abstract) normal subgroup N∅ lands in the subgroup

⨁a∊C Ẑ. Thus, by Proposition 7.2, we
obtain commutative diagram of abstract groups1 N∅ F̂rC πcond1 (A1C, �̄)(∗) 1

1 ⨁a∊C Ẑ ∏a∊C Ẑ Q 1 ,
where the rows are short exact sequences. Here, Q ≠ 1 denotes the abstract quotient. Since the
middle vertical map is surjective, the right vertical map is also surjective. Since Q is abelian, we
deduce that πcond1 (A1C, �̄)(∗)ab ≠ 1.
7.9 Example. The proof of Corollary 7.8 also shows that the abelianization of πcond1 (P1C, x̄)(∗) is
nontrivial. Indeed, the argument of the proof of Proposition 7.2 can be used to show that there
is a pushout square of groups Ẑ ≃ D∞ πcond1 (A1C, x̄)(∗)

1 πcond1 (P1C, x̄)(∗) .
By the proof of Corollary 7.8, πcond1 (A1C, x̄)(∗) surjects ontoQ = (∏a∊C Ẑ)∕(⨁a∊C Ẑ). It follows
that πcond1 (P1C, x̄)(∗) surjects onto Q∕ im(D∞) which has the same cardinality as Q and is thus
nontrivial.
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One can also use Corollary 7.8 to show that for some exotic condensed rings, there are non-
trivial lisse sheaves on A1C.
7.10 Example. The forgetful functor Cond(Ring) → Cond(Ab) admits a left adjoint given by
applying the group ring functor pointwise and then shea�fying. Writing A = πcond1 (A1C, x̄)ab,
we thus obtain a nontrivial condensed ring Z[A]. Furthermore, there is a canonical action of
the condensed group A on the free Z[A]-module of rank 1, given by multiplication. Using the
monodromy equivalence of Proposition 3.22, this yields a lisse Z[A]-module on A1C that is not
constant, i.e., not in the image of the basechange functorDlis(∗proét; Z[A]) → Dlis(A1C,proét; Z[A]) .

While they �t best in this subsection, the following remark and example use the notion
of a quasiseparated condensed set. We recall some background about quasiseparatedness and
quasiseparated quotients in §7.2 below; hence the reader might prefer to return to these points
after consulting §7.2.

7.11 Remark. The proof of Corollary 7.8 can be adapted to showmore generally that wheneverC ∖ S is in�nite, the condensed group πcond1 (A1C ∖ S, �̄) is not pro�nite and therefore, by Theo-
rem 7.27, also not quasiseparated. Indeed, if it were, it would follow from Proposition 7.2 thatNS ⊂ F̂rC is a closed subgroup. Thus, the image ofNS under the map F̂rC → ∏a∊C Ẑwould also
be closed in

∏a∊C Ẑ. But this image is exactly
⨁a∊C∖S Ẑ, which is not closed if C ∖ S is in�nite.

Even more generally, the above arguments show that for any Dedekind scheme X, if the abstract
normal closureN ⊂ GalC(X) of the subgroup generated by all decomposition groups is not closed,
then the condensed fundamental group of X is not quasiseparated.

The next example shows that whenever S ≠ ∅, even if C ∖ S is �nite, the condensed funda-
mental group onA1C∖S is not quasiseparated. For example, this covers the case of the localizationSpec(C[T](T−a)) for a ∊ C. To explain it, we need the following lemma about pro�nite groups.

7.12 Lemma. Let G = F̂r{a,b} be the free pro�nite group on two elements a and b, and letH ≔ Ẑ(b) ⊂ G
be the (necessarily free) pro�nite subgroup of G generated by b. ThenHnc ⊊ Htnc.
Proof. For each integer n ≥ 1, let gn ≔ ∏ni=1(ai!bi!a−i!). For each n, we have gn ∊ Hnc. Moreover,(gn)n≥1 is a Cauchy sequence in G. To prove that Hnc ≠ Htnc, we show that (gn)n≥1 converges
to an element outside ofHnc.

We �rst claim that since G is Raı̆kov-complete, the Cauchy sequence (gn)n≥1 converges to
some g ∊ G. Indeed, for a given n0 > 1 and n > n0, we have

g−1n0 gn = n∏i=n0+1(ai!bi!a−i!) .
Let N ⊲ G be a normal open subgroup. Then there exists n0 such that for anym ≥ n0, we haveam!, bm! ∊ N. This is because a and b are images of generators of Ẑ via (two di�erent) continuous
maps Ẑ → G, and the corresponding fact already holds in Ẑ. It now follows that for any n ≥ n0,
the element g−1n0 gn lies in N. By normality, gng−1n0 also lies in N. It follows that g ∊ Htnc.
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We want to show that g ∉ Hnc. Assume the contrary. Then there exist some r ∊ N, ci ∊ G,
and di ∊ H such that g = ∏ri=1 cidic−1i . Now consider the following system of �nite quotients ofG. For eachm ≥ 1, let Pm ≔ (Z∕m!)×m! denote them!-fold product of copies of Z∕m!, and writeQm ≔ Pm ⋊ Z∕m! ,
where the action of Z∕m! on Pm permutes the factors. De�ne a homomorphism G ↠ Qm byb ↦ (1, 0, 0, …) ∊ Pm = (Z∕m!)×m! and a ↦ 1̄ ∊ Z∕m! .
Note that this map sends g to Pm. Now, for m ≫ r, we get that, on the one hand, the image
of g in Pm has an increasing (with m) number of nonzero entries and, on the other hand, the
presentation g = ∏ri=0 cidic−1i implies that this number is bounded by r. This is a contradiction.
7.13 Example. Let S ⊂ C be a nonempty subset; we claim that πcond1 (A1 ∖ S, �̄) is not quasisep-
arated. With the same notation as Lemma 7.12, we have a diagram of short exact sequences

1 NS F̂rC πcond1 (A1C ∖ S, �̄)(∗) 1
1 Hnc F̂r{a,b} F̂r{a,b} ∕Hnc 1 ,

where themiddle vertical map sends z ∊ C to b if z ∊ S and to a otherwise. Then, by construction,Hnc is the image ofNS under thismap. Thus, if πcond1 (A1∖S, �̄)were quasiseparated,NS would be
a closed subgroup (see Proposition 7.20 below). Hence so wouldHnc, contradicting Lemma 7.12.

7.14 Remark (counterexample to “πcond1 -properness” of P1Q). In this remark, we show that

πcond1 (P1Q)(∗) ≄ πcond1 (P1C)(∗)
by showing that the cardinality of the former is smaller than that of the latter. This contrasts
with the more classical story of πét1 ; see [SGA 1, Exposé X, Théorème 2.6] and the discussion in
[Ked17, §4.1, esp. Lemma 4.1.16] and [SW20, §16].

We have seen in Example 7.9 that πcond1 (P1C)(∗) admits a quotient with the same cardinality
as Q = (∏a∊C Ẑ)∕(⨁a∊C Ẑ) ,
which will provide a lower bound for the cardinality. On the other hand, as P1Q is normal, we
have seen before that the Galois group of the generic point Galκ(�) surjects onto πcond1 (P1Q)(∗).By [Dou64, Theorem 2], Galκ(�) ≃ F̂rQ .

This will provide an upper bound for the cardinality.
We now need to compute the cardinalities of some rather concrete pro�nite groups. First,

note that |Ẑ| = |C| = 2ℵ0 . It follows that||||∏a∊C Ẑ |||| = (2ℵ0)2ℵ0 = 2ℵ0⋅2ℵ0 = 22ℵ0 .
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We also have ||||⨁a∊C Ẑ |||| = ||||||| colimF⊂C �nite

⨁a∊F Ẑ ||||||| ≤ |C| ⋅ |Ẑ| = 2ℵ0
Thus, |Q| = 22ℵ0 .

Now, we want to bound | F̂rM |, whereM is a countable set (in our caseM = Q). From the
universal property (or see [RZ10, Corollary 3.3.10]) it follows thatF̂rM ≃ limF⊂M �nite

F̂rF .

Now (again from the universal property and thanks to the �niteness of the F’s), each of the
groups F̂rF is just the pro�nite completion (FrF)∧ of the abstract free group FrF on F. In a
�nitely generated group, there are only �nitely many normal subgroups of a given index. This
implies that the pro�nite completion of FrF can be written as a countably-indexed inverse limit
of �nite groups, so | F̂rF | = 2ℵ0 . Thus, | F̂rM | ≤ (2ℵ0)ℵ0 = 2ℵ0 . Plugging in these bounds, we
obtain the desired result.
7.15 Remark (counterexample to proper base change for proétale sheaves). The results in this
subsection can also be used to show that proper base change does not hold for proétale sheaves,
even with torsion coe�cients prime to the characteristic. Concretely, we claim that proper base
change does not hold for the cartesian squareP1C P1Q

Spec(C) Spec(Q) .
q

g f
p

That is, we claim that the natural transformation
(7.16) p∗f∗ → g∗q∗
of functorsDproét(P1Q; Fp) → Dproét(Spec(C); Fp) is not an equivalence. By passing to left adjoints,
this is equivalent to the natural transformation q♯g∗ → f∗p♯ being an equivalence. Note that p♯
is an equivalence of∞-categories. After plugging in the unit and applying a further f♯, (7.16)
being an equivalence would thus imply that there is an equivalenceg♯(1) ⥲ f♯(1) .
Note that we may compute g♯(1) (and similarly f♯(1)) explicitly as the Fp-homology of the
condensed homotopy type Πcond∞ (P1C). The latter is computed by taking homology pointwise
and then shea�fying. In particular, on global sections g♯(1)(∗) is simply the Fp-homology of
the anima Πcond∞ (P1C)(∗). Since the anima Πcond∞ (P1C)(∗) is connected, the universal coe�cient
theorem implies that π1(g♯(1)(∗)) ≃ πcond1 (P1C, x̄)(∗)ab ⊗Fp .
As in Remark 7.14, the latter surjects onto a group with the same cardinality as(∏a∊C Fp)∕(⨁a∊C Fp) ,
which is 22ℵ0 .

On the other hand, we also see that π1(f♯(1)(∗)) is a quotient of F̂rQ an thus its cardinality
is at most 2ℵ0 by the computation in Remark 7.14. We conclude that g♯(1) and f♯(1) cannot be
isomorphic, as desired.
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7.2 Preliminaries on quasiseparated quotients
7.17 Recollection. A condensed set A is quasiseparated if for any maps B → A and B′ → A in
which B and B′ are quasicompact, the pullback B ×A B′ is quasicompact as well. We denote byCond(Set)qs ⊂ Cond(Set) the full subcategory that is spanned by the quasiseparated condensed
sets.

7.18 Lemma [Sch19a, Lemma 4.14]. The inclusion Cond(Set)qs ⊂ Cond(Set) admits a left
adjoint (−)qs that preserves �nite products.

Explicitly, ifA is a condensed set, its quasiseparated quotientAqs can be computed by choosing
a coverU = ∐i∊I Si ↠ A by pro�nite sets and by de�ning Aqs as the quotient ofU by the closure
of the equivalence relationU ×A U ⊂ U × U.

Since (−)qs preserves �nite products, it induces a functor Cond(Grp) → Cond(Grp)qs which
is left adjoint to the inclusion. Our next goal is to derive a more explicit description of the
quasiseparated quotient of a condensed group.

7.19 De�nition. An inclusion C ⊂ A of condensed sets is closed if for every pro�nite set S and
map S → A, the pullback C ×A S ⊂ S is a closed subspace.

7.20 Proposition. LetG be a condensed group, and let {1} ⊂ G denote the intersection of all closed
normal subgroups of G. Then there is a natural isomorphismGqs ⥲ G∕{1} .
For the proof, we need two auxiliary results.

7.21 Lemma. Let A be a condensed set and let R ⊂ A × A be a closed equivalence relation. Then
the quotient A∕R is quasiseparated.

Proof. First, let us choose a cover U = ∐i∊I Si ↠ A by pro�nite sets Si . SetRI ≔ R ×A×A(U × U)
and note that RI de�nes a closed equivalence relation on U with the property that the natural
map U∕RI → A∕R is an isomorphism. Let Λ be the �ltered poset of �nite subsets of I, and for
each J ∊ Λ, let UJ = ∐j∊J Sj . Then we can write U as the �ltered union of the UJ , and for eachJ ⊂ J′ the inclusionUJ ⊂ UJ′ is a closed immersion of compact Hausdor� spaces. Moreover, for
each J ∊ Λ, let us set RJ ≔ RI ×U×U(UJ × UJ) .
Then each RJ de�nes a closed equivalence relation on UJ , and, since Λ is �ltered, we haveR = colimJ∊Λ RJ . As a consequence, we may identify colimJ∊ΛUJ∕RJ ≃ A∕R. Now since eachRJ is a closed equivalence relation onUJ , the condensed setUJ∕RJ is a compact Hausdor� space.
Moreover, for every inclusion UJ ⊂ UJ′ , the induced map UJ∕RJ → UJ′∕RJ′ is injective by
construction of RJ and RJ′ and is therefore automatically a closed immersion. Hence the desired
result follows from [Sch19a, Proposition 1.2 (4)].

7.22 Lemma. Let '∶ G → H be a homomorphism of condensed groups. If H is quasiseparated,
then ker(') is a closed subgroup of G.
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Proof. Since ker(') is the inverse image of {1} ⊂ H, it su�ces to show that {1} is closed inH. For this, pick any map from a pro�nite set S → H. Since S and {1} are quasicompact andH is quasiseparated, the �ber product S ×H {1} ⊂ S is quasicompact. Since a subobject of a
quasiseparated condensed set is quasiseparated, S ×H {1} is also quasiseparated. It follows thatS ×H {1} is compact, and hence a closed subset of S, as desired.
Proof of Proposition 7.20. We begin by showing that the quotient G∕{1} is quasiseparated. To see
this, �rst note that the map

(7.23) (pr0, mult)∶ G × {1} → G × G
is a closed immersion since when composing this map with the isomorphism G × G → G × G
given by (g, ℎ) ↦ (g, g−1ℎ), the resulting map can be identi�ed with the product of the identity
with the inclusion. Observe that the map in (7.23) is precisely the equivalence relation de�ning
the quotient group G∕{1}. Hence the quasiseparatedness of G∕{1} follows from Lemma 7.21.

To complete the proof, we need to show that for every map '∶ G → H of condensed groups
in which H is quasiseparated, the kernel ker(') contains {1}. For this, it su�ces to check thatker(') is closed. This is Lemma 7.22.

In order to produce short exact sequences on the level of quasiseparated quotients, it is useful
to know the following analogue of being a locally cartesian localization for the quasiseparated
quotient.

7.24 Proposition. Let 1 N G H 1 be a short exact sequence of condensed groups. IfH is quasiseparated, the induced sequence 1 Nqs Gqs H 1 is again exact.

Proof. Since H = Hqs, we only need to show that Nqs → Gqs is injective. Again since H is
quasiseparated, Lemma 7.22 shows that N → G is closed. Therefore, {1}N = {1}G (as subgroups
of G), and thus Nqs = N∕{1}N ⟶G∕{1}G = Gqs
is injective.

We now obtain a fundamental exact sequence of the quasiseparated quotient of the con-
densed fundamental group.

7.25 Notation. Given a scheme X and geometric point x̄ → X, we writeπcond,qs1 (X, x̄) ≔ πcond1 (X, x̄)qs
for the quasiseparated quotient of the condensed fundamental group of X.
7.26 Corollary (fundamental exact sequence on quasiseparated quotients). Let k be a �eld with
separable closure k̄, letX be a qcqs k-scheme, and let x̄ → Xk̄ be a geometric point. IfX is geometri-
cally connected and Xk̄ has �nitely many irreducible components, then the sequence of condensed
groups 1 πcond,qs1 (Xk̄, x̄) πcond,qs1 (X, x̄) Galk 1
is exact.

Proof. Combine Corollary 5.7 and Remark 5.8 with Proposition 7.24.
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7.3 πcond,qs1 of geometrically unibranch schemes

It is a common theme in arithmetic geometry that various generalizations ofπét1 are all equal (and
pro�nite) for normal (more generally: geometrically unibranch) schemes. See [AM69, Theorem
11.1] and [BS15, Lemma 7.4.10] for instances of this phenomenon. As we saw before, this fails
for πcond1 and X = A1C. However, the expected behavior still holds for πcond,qs1 . Proving this fact
is the main goal of this subsection.

7.27 Theorem. Let X be a qcqs geometrically unibranch scheme with �nitely many irreducible
components, and let x̄ → X be a geometric point. Then the natural homomorphism πcond1 (X, x̄) →πét1 (X, x̄) induces an isomorphism πcond,qs1 (X, x̄) ⥲ πét1 (X, x̄) .
In particular, πcond,qs1 (X, x̄) is a pro�nite group.

For the proof, we need the following observation.

7.28 Proposition. Let X be a qcqs scheme such that πcond0 (X) is discrete. Then for any geometric
point x̄ → X, the natural comparison homomorphismπcond1 (X, x̄) → πét1 (X, x̄)
of (3.15) exhibits πét1 (X, x̄) as the pro�nite completion of πcond1 (X, x̄). The hypothesis on πcond0 (X)
is satis�ed, for example, when X has locally �nitely many irreducible components.

Proof. Combine Lemma 2.12, Lemma 3.14, and Corollary 4.19.

To prove themain result, we �rst want to show that this quasiseparated quotient is a compact
topological group. For this, we make use of the following simple consequence of the fact that
the fundamental group of a simplicial set coincides with the fundamental group of its geometric
realization:

7.29 Lemma. Let f∶ T∙ → S∙ be a map of simplicial sets that is bijective on vertices and surjective
on edges. Then, for any choice of basepoint t ∊ T0, the induced homomorphismf∗ ∶ π1(T∙, t) → π1(S∙, f(t))
is surjective.

7.30 Lemma. Let Y → X be a morphism of qcqs schemes. Assume that there exist proétale hyper-
covers X′∙ → X and Y′∙ → Y by w-strictly local schemes and a morphism Y′∙ → X′∙ that �t into a
commutative square Y′∙ X′∙

Y X
such that:

(1) The inducedmap of pro�nite setsπ0(Y′0) → π0(X′0) is a bijection (and thus, a homeomorphism).
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(2) The induced map of pro�nite sets π0(Y′1) → π0(X′1) is a surjection (and thus, a topological
quotient map).

Then, for any choice of geometric points ȳ ↦ x̄, the induced homomorphismπcond1 (Y, ȳ) → πcond1 (X, x̄)
is a surjection of condensed groups.

Proof. By Recollection 2.7 and Propositions 3.17 and 3.43, the fundamental group πcond1 (X, x̄)
can be computed as

Extrop ∍ S ↦ π1( colim[m]∊�opMapTop(S, π0(X′m)), x̄) .
In other words, for each extremally disconnected pro�nite set S, we have to compute the fun-
damental group of the simplicial set MapTop(S, π0(X′∙)) given by [m] ↦ MapTop(S, π0(X′m)).
Analogous statements hold for Y′∙ and Y.

The assumptions on the maps π0(Y′0) → π0(X′0) and π0(Y′1) → π0(X′1) imply that, for eachS ∊ Extr, the induced mapMapTop(S, π0(Y′∙ )) → MapTop(S, π0(X′∙))
of simplicial sets satis�es the assumptions of Lemma 7.29. It follows that, for each S, the mapπcond1 (Y, ȳ)(S) → πcond1 (X, x̄)(S)
is a surjection, as desired.

7.31 Lemma. Let X be a quasiseparated, geometrically unibranch, irreducible scheme and let� ∊ X be its generic point. Let X∙ be any proétale hypercover by w-contractible qcqs schemes of X.
Then there exists a proétale hypercoverY∙ of � satisfying the conditions of Lemma 7.30 (with respect
to X∙ and the map � → X).
Proof. LetX∙,� be the basechange ofX∙ to �. Note that by geometrical unibranchness and the fact
that each connected component of a w-contractible proétale X′ over X is the strict localization
at some geometric point of X (see, e.g., [Lar22, Lemma 3.15]), the map π0(X∙,�) → π0(X∙) is a
levelwise homeomorphism. In particular, the pro�nite sets π0(Xi,�) are still extremally discon-
nected. Being w-strictly local, however, will usually be lost after base-changing to �. We want to
de�ne a w-strictly local hypercover Y∙ of � with a map to X∙,� that still has the desired properties
on π0 in low degrees.

To do that, �x a geometric point �̄ lying over � and write X0,�̄ ≔ X0,� ×� �̄. The projection
induces a surjective map of pro�nite sets π0(X0,�̄) → π0(X0,�). As the target is extremally dis-
connected, this map admits a section. Let T ⊂ π0(X0,�̄) be the image of one such section. By
[BS15, Lemma 2.2.8], there exists a pro-(Zariski localization)W0 → X0,�̄ that realizes the mapT ⊂ π0(X0,�̄) on connected components. SuchW0 is, in particular, weakly étale over �̄; by Ex-
ample 2.47 we deduce thatW0 is w-strictly local. By construction, the map π0(W0) → π0(X0,�)
induced byW0 → X0,�̄ → X0,� is a homeomorphism.

We can extend this to a map of hypercoversY∙ ≔ cosk0(W0) ×cosk0(X∙,�)X∙,�⟶X∙,�
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that induces a bijection on 0-simplices. The map on 1-simplices is explicitly given by

(7.32) (W0 ×� W0) ×X0,�×�X0,� X1,�⟶X1,� .
SinceW0 → X0,� is surjective, we deduce that (7.32) is surjective. Furthermore, all terms of Y∙
are weakly étale over �̄, hence, by Example 2.47, they are w-strictly local. This completes the
proof.

7.33 Corollary. Let X be a quasiseparated, geometrically unibranch, irreducible scheme with
generic point � ∊ X. Choose a geometric point �̄ lying over �. Then the natural mapGalκ(�) = πcond1 (Spec(κ(�)), �̄)⟶ πcond1 (X, �̄)
is a surjection of condensed groups.

Proof. Combine Lemmas 7.30 and 7.31 and Example 3.41.

7.34 Lemma. LetG′ ↠ G be a surjection of condensed groups. Assume thatG′ is a pro�nite group.
Then the quasiseparated quotient Gqs is a pro�nite group.
Proof. Since the quotient of a quasicompact condensed set is quasicompact, the quotient Gqs is
qcqs. By [CS22, Proposition 2.8], its underlying condensed set is a compactHausdor� space. Since
the embedding of compact Hausdor� spaces into condensed sets is fully faithful and commutes
with products �nite products, it follows that Gqs is a compact Hausdor� group. Since Gqs also
admits a surjection from the pro�nite group G′, we deduce that the compact Hausdor� groupGqs is itself pro�nite.

Finally, we are ready to prove the main result of this subsection.

Proof of Theorem 7.27. Note that, since Pro(Grp�n) ⊂ Cond(Grp)qs ⊂ Cond(Grp), the pro�nite
completion G∧ of a condensed group G factors over the quasiseparated quotient Gqs of G. Our
assumptions guarantee that every connected component of X is irreducible. By the preceding
preparatory results Corollary 7.33 and Lemma 7.34, we thus have that πcond,qs1 (X, x̄) is already
pro�nite, hence agrees with the pro�nite completion πcond1 (X, x̄)∧. By Proposition 7.28, this latter
pro�nite completion recovers πét1 (X, x̄). This completes the proof.

7.35Warning. It seems like a natural idea to try to extend the notion of quasiseparatedness and
quasiseparated quotients to all condensed anima, and also extend Theorem 7.27 from fundamen-
tal groups to homotopy types. However, a su�ciently nicely behaved quasiseparated quotient
of condensed anima can not exist. More precisely, there is no full subcategory C ⊂ Cond(Ani)
with the following properties:

(1) The inclusion C ⊂ Cond(Ani) admits a left adjoint (−)qs.
(2) A condensed set is in C if and only if its is quasiseparated.

(3) For any quasiseparated condensed group G, the condensed anima BG is contained in C.
Indeed, both BZ and BẐ would be contained in C. Since Ẑ∕Z is the �ber of the canonical mapBZ → BẐ, the condensed set Ẑ∕Z would also be contained in C. But Ẑ∕Z is not quasiseparated.
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7.4 The van Kampen and Künneth formulas for πcond,qs1
The goal of this subsection is to prove a van Kampen formula for the quasiseparated quotient
of the condensed fundamental group (Theorem 7.51). We then use this to prove a Künneth
formula for this quasiseparated quotient (Corollary 7.53). To do this, we start by analyzing the
relationship between free topological groups and free condensed groups as well as free products
of topological groups and condensed groups.

7.36 Notation. The forgetful functor Cond(Grp) → Cond(Set) has a left adjointFrcond(−) ∶ Cond(Set) → Cond(Grp) .
For a condensed setM, the condensed group FrcondM is given more explicitly as the shea��cation
of the functor FrpreM ∶ Pro(Set�n)op → GrpS ↦ FrM(S) .
The free group onM comes with a canonical mapM → FrcondM in Cond(Set).
7.37. For a pro�nite set T, we want to compare FrcondT with FrtopT , i.e., the free topological group
on T (see [AT08, Chapter 7]). Note that, by the universal property of FrcondT , there is a canonical
homomorphism FrcondT → FrtopT
in Cond(Grp). To do this, we recall some important facts about free topological groups adn free
products of topological groups.

7.38 Recollection (on free topological groups and products). In this recollection, T always
denotes a topological space and Gi denote topogical groups.
(1) Markov showed that for every Tychono� (=completely regular) space T, the free topological

group FrtopT on T exists and the unit �∶ T → FrtopT is a topological embedding. In addition,
the image �(T) is a free algebraic basis for G. See [AT08, Theorems 7.1.2 & 7.1.5].

(2) When T is compact (more generally, kω), Graev–Mack–Morris–Ordman showed that FrtopT
is the topological colimit of subspaces(FrT)≤n = {words of reduced length ≤ n} .
See [AT08, Theorem 7.4.1].

(3) By [Gra48], the underlying set of ∗topi Gi is the abstract free product and if the groups are
Hausdor�, their free product is Hausdor� too.
Moreover, when eachGi is either compact or �nitely generated discrete (e.g.,Z∗r), by looking
at the surjection from a suitable free product (see Lemma 7.46 below) and using (1), it follows
that ∗topi Gi is a topological colimit of compact subsets of bounded words. Here, by bounded
words we in particular mean that all “letters” from one of the copies of Z sit inside of some
interval [−n, n]. See [Lar24, Remark 4.27].
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7.39 Recollection. In the context of (abstract) free groups on a setM (resp., free products of
groups G1, … , Gn) we say that gr1m1⋯grnmn (resp., g1⋯gn), where gmi is the generator correspond-
ing tomi ∊ M (resp., where gi is a nontrivial element of one of the groups Gj(i)) is a reduced word
if for 1 ≤ i < n, we havemi ≠ mi+1 (resp., j(i) ≠ j(i + 1)).

The following result is a nonabelian analogue of [Sch19a, Proposition 2.1]. The proof essen-
tially follows the one of loc. cit.

7.40 Proposition. Let T be a compact Hausdor� topological space. Then the natural map

(7.41) FrcondT → FrtopT
is an isomorphism.

7.42. In the proof, we use the following convention: for a pro�nite set S and t ∊ T(S), we denote
by gt ∊ FrcondT the element given by the composite

S T FrcondT ,t
where T → FrcondT is the unit map.

Proof. First, we want to check that the map (7.41) is injective. Note that this boils down to
checking that any section of FrpreT that maps to 1 ∊ FrtopT , trivializes after passing to a cover inPro(Set�n).

Observe that this is the case for the underlying groups. Indeed, it is enough to check that the
map FrT(∗) → FrtopT (∗) is injective.6 This follows directly from Recollection 7.38 (1).

We now treat the injectivity for a general S ∊ Pro(Set�n). Assume that 1 ≠ g ∊ FrT(S) maps
to 1 ∊ FrtopT (S). By the previous point, for any s ∊ S, the restriction g(s) ∊ FrT(∗) is trivial. Write g
as a reduced word g = gr1t1 gr2t2 ⋯grmtm , where now tj ∊ T(S). All gtj are nonzero and, ifm > 1, we
have gti ≠ gti+1 for 1 ≤ i ≤ m − 1.

If m = 1, then we plug in any s ∊ S to see that 1 = g(s) = gr1t1(s). But the right hand side
cannot be trivial being a generator in the free group raised to a nonzero power – a contradiction.

Assume now that m > 1. Let Sj denote the closed subset of S where tj = tj+1. First, note
that the Sj ’s (where 1 ≤ j < m) jointly cover S. Indeed, if that would not be the case, then any
point s in the complement would have the property that1 = g(s) = gr1t1(s)gr2t2(s)⋯grmtm(s)
is a nontrivial reduced word, a contradiction.

Thus, passing to a �nite closed cover of S, we can assume that tj = tj+1 for some j, e�ectively
decreasing the “m” in the shortest word that g can be written as. By induction, this implies thatg has to be trivial – a contradiction.

As the proof of injectivity is �nished, we now move on to surjectivity. Consider the map of
compact topological spaces Tn × {−1, 0, 1}n → (FrtopT )≤n

6We are using here that evaluating FrcondW on ∗ as a sheaf is the same as evaluating its de�ning presheaf.
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given by (t1, … , tn, "1, … , "n) ↦ g"1t1 ⋯g"ntn . Thismap is clearly surjective. It �ts into a commutative
square Tn × {−1, 0, 1}n (FrtopT )≤n

FrcondT ⋃m(FrtopT )≤m = FrtopT .

Evaluating at any S ∊ Extr, and using [BS15, Lemma 4.3.7], this shows the surjectivity of the
lower horizontal map (by varying n).
7.43Remark. Assume that S = limi Si is a pro�nite set with Si �nite. Essentially, the same proof
strategy (but without having to use the results of Recollection 7.38 (1)) shows further that FrcondS
and FrtopS are isomorphic to the group

⋃m limi ((FrSi )≤m)
. This is analogous to the presentation

in [Sch19a, Proposition 2.1].

Now we turn to analyzing free products of condensed and topological group.

7.44 Notation. We denote the the coproduct in the category of condensed groups by ∗cond. It
can be explicitly described as the shea��cation of the presheaf ∗prei Gi given byPro(Set�n)op → GrpS ↦∗i Gi(S) .
7.45. Free products of topological groups ∗top exist aswell. ForGi ∊ Grp(Top) there is a canonical
homomorphism ∗condi Gi → ∗topi Gi .

In order to compare condensed and topological free products, we �rst prove an auxiliary
lemma.

7.46 Lemma. Let G1, … , Gm be compact Hausdor� topological groups and r ∊ N. Denote byT = G1 ⊔⋯ ⊔ Gm ⊔ {1, … , r} the topological space that is the disjoint union of the the topological
groups G1, … , Gm and r singletons. Then the canonical homomorphismFrcondT → G1 ∗cond ⋯ ∗cond Gm ∗cond Z∗condr.
is surjective. An analogous fact holds for topological free products.

Proof. The universal properties of these groups give a homomorphism as above (here, we are
mapping each of the r points in T to 1 ∊ Z via one of the r canonical maps Z → Z∗condr). This
map already exists on the level of the de�ning presheaves and is surjective there, so the map of
sheaves is surjective as well.

We omit the details for the topological counterpart (it uses Recollection 7.38).

7.47 Proposition. Let G1, … , Gm be compact Hausdor� topological groups and r ∊ N. Then the
natural map G1 ∗cond ⋯ ∗cond Gm ∗cond Z∗condr⟶G1 ∗top ⋯ ∗top Gm ∗top Z∗topr
is an isomorphism in Cond(Grp).
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Proof. To see the surjectivity, one can either redo the argument in the proof of Proposition 7.40 or
use its statement together with Lemma 7.46 and the square (with T = G1 ⊔⋯⊔Gm⊔ ∗ ⊔⋯⊔ ∗)FrcondT ∗condi Gi

FrtopT ∗topi Gi .
Now, for the injectivity, the argument is very similar to the proof of Proposition 7.40. We can

work with ∗prei Gi . The homomorphism of underlying groups∗i Gi(∗) → ( ∗topi Gi)(∗)
is a bijection (see Recollection 7.38).

Now, �x S ∊ Pro(Set�n) and let g = g1g2⋯gn ∊∗i Gi(S) be mapping to 1 ∊ ( ∗topi Gi)(S).
Here, each gj is in some G�(j)(S) and we can assume this presentation of g is a reduced word
(we assumem > 1 as the case whenm = 1 is again easy). We know that g(s) ∊∗j Gj(∗) is trivial
for any s ∊ S.

Let Sj denote the closed subsets of S where gj vanishes. First, note that the Sj ’s (where1 ≤ j ≤ n) jointly cover S. Indeed, if that’s not the case, then any point s in the complementwould
have the property that g(s) = g1(s)g2(s)⋯gn(s) is a nontrivial reduced word – a contradiction.

But now, passing to the this cover, we have again reduced the length of the presentation of g
as a word. We are done by induction.

7.48 Lemma. Let T be a compactly generated topological space. Sending a closed subspace Z ⊂ T
to Z → T induces an order-preserving bijection between closed subspaces of T and closed condensed
subsets of T. The inverse is given by sending a closed condensed subset Z ⊂ T to Z(∗) ⊂ T(∗) = T
equipped with the subspace topology.

Proof. In order to avoid confusion during the proof, we will write S for the condensed set repre-
sented by a pro�nite set S. We at �rst check that the inverse de�ned above is well-de�ned, that
is, that Z(∗) is a closed subset of T. We may check this after pulling back along any continuous
map f∶ S → T for S a pro�nite set. Then the pullback S ×T Z(∗) ⊂ S is the subspace given by
those s ∊ S such that f(s) ∊ Z(∗). If we alternatively compute the pullback Z ×T S in Cond(Set),
then Z ×T S ⊂ S is a closed condensed subset by de�nition. In particular, (Z ×T S)(∗) is a closed
subset of S. But (Z ×T S)(∗) = Z(∗) ×T S, as subsets of S, and thus Z(∗) is closed.

Furthermore, for a closed subspace Z ⊂ T, we have Z = Z(∗). So, conversely, let us start
with a closed condensed subset Z ⊂ T. Then for any S ∊ Pro(Set�n) we claim that the subsetZ(S) ⊆ T(S) is given by those f∶ S → T such that for all s ∊ S, f(s) ∊ Z(∗). Indeed, since Z is a
subobject, f is in Z(S), if and only if the monomorphism j ∶ Z ×T S → S is an isomorphism. But
since j is a closed immersion, it follows that j is an isomorphism if and only if j(∗) is. But this
is the case if and only f(s) ∊ Z(∗) for all s ∊ S, as claimed. Since the same description applies
to the condensed subset represented by the subspace Z(∗) equipped with the closed subspace
structure, the claim follows.

7.49 Corollary. Let G be a topological group andH ⊲ G a normal condensed subgroup. Assume
that Gqs is represented by a compactly generated topological group G0. LetH0 ≔ im(H → G → Gqs ≃ G0) .

68



Then the canonical homomorphism of condensed groups(G∕H)qs → G0/H0(∗)
is an isomorphism. Here,H0(∗) denotes the topological closure in G.
Proof. Comparing universal properties, we see that the natural map (G∕H)qs → (Gqs∕H0)qs is
an isomorphism. By Proposition 7.20, it follows further that the natural map(Gqs∕H0)qs → Gqs∕H0
is an isomorphism. Now since Gqs ≃ G0, Lemma 7.48 shows that H0 ≃ H0(∗), completing the
proof.

We now turn to the van Kampen formula. To do so, we �x some notation.

7.50 Notation. Let X be a scheme.

(1) Assume X is connected and has �nitely many irreducible components. Write �∶ X� → X
for the normalization and writeX2� ≔ X� ×X X� and X3� ≔ X� ×X X� ×X X� .
Assume that X2� and X3� also have �nitely many irreducible components (this is true, for
example, if X is Nagata). Decompose X� = ∐i X�i into connected components. Write Γ for
the “dual graph” with vertices V = π0(X�) and edges E = π0(X2�), and �x a maximal tree T
of Γ.

(2) We write Πcond1 (X) ≔ τ≤1Πcond∞ (X) and Π̂ét1 (X) ≔ τ≤1Π̂ét∞(X)
for the condensed fundamental groupoid of X and pro�nite étale fundamental groupoid of X,
respectively. Here, τ≤1 denotes 1-truncation of condensed (resp., pro�nite) anima.

7.51 Theorem (van Kampen formula for the quasiseparated fundamental group). In the nota-
tion of Notation 7.50, after making choices of geometric base points and étale paths (as in [Sti06,
Corollary 5.3]), there is a natural isomorphismπcond,qs1 (X, x̄) ≃ ( ∗topi πét1 (X�i , x̄i) ∗top π1(Γ, T))∕Htnc ,
whereH is the subgroup generated by the following relations:

(1) For all e ∊ E and g ∊ πét1 (e, x̄(e)) we have πét1 ()1)(g)e⃗ = e⃗πét1 ()0)(g).
(2) For all f ∊ π0(X3�), we have⃖⃖⃖⃗()2f)�(f)102(�(f)120)−1 ⃖⃖⃖⃗()0f)�(f)210(�(f)201)−1( ⃖⃖⃖⃗()1f))−1�(f)021(�(f)012)−1 = 1 .
Here, each �(f)ijk is an element of some πét1 (X�l, x̄l) and e⃗, ⃖⃖⃖⃗()if) ∊ π1(Γ, T).
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Proof. Combining Corollary 6.16, the fact that 1-truncation is a left adjoint, and [HP25, Proposi-
tion A.1], we obtain an equivalence of condensed groupoidscolim[k]∊�op≤2Πcond1 (Xk�) ⥲ Πcond1 (X) .
The �xed geometric points and étale paths �x points and paths inΠcond1 (X)(∗),Πcond1 (X�i )(∗), . . . ,
so also in anyΠcond1 (X)(S),Πcond1 (X�i )(S), . . . for S ∊ Extr. By Corollary 4.19, these groupoids are
connected. We now want to pass from a statement about fundamental groupoids to a statement
involving fundamental groups. For a �xed S ∊ Extr, we can apply the usual “discrete” van
Kampen formula: see [Lar24, Theorem 3.7] for a version for 2-complexes of Noohi (and so also
discrete) groups or [Bou16, Chapter IV, §5], cf. also [Sti06]. It implies thatπcond1 (X, x̄) ≃ ( ∗condi πcond1 (X�i , x̄i) ∗cond π1(Γ, T))∕H′
where H′ is the normal condensed subgroup that for each S is generated by relations analogous
relations as in the statement, but where g ∊ πcond1 (e, x̄(e))(S), etc.

Now, passing to quasiseparated quotients and using πcond1 (X�i , x̄i)qs = πét1 (X�i , x̄i) (this is
Theorem 7.27) together with Proposition 7.47 and Corollary 7.49 yields the result.

We have used the following observation to get g ∊ πét1 (e, x̄(e)) as opposed to g being an
element of πcond,qs1 (e, x̄(e)) or πcond1 (e, x̄(e)) in relation (1): althoughX2� might not be normal, soπcond,qs1 (e, x̄(e)) might di�er from πét1 (e, x̄(e)), the maps πcond,qs1 ()1), πcond,qs1 ()0) have pro�nite
groups as the targets and thus, factorize through the pro�nite completion of πcond,qs1 (e, x̄(e)),
which is πét1 (e, x̄(e)) (cf. Proposition 7.28). As the topological normal closure of the image ofπcond,qs1 (e, x̄(e))(∗) inside πét1 (e, x̄(e) is the whole group (one uses the universal property of the
pro�nite completion to check this), the set of relations{ πét1 ()1)(g)e⃗πét1 ()0)(g)−1e⃗−1 | e ∊ E, g ∊ πét1 (e, x̄(e)) }
is still in Htnc and contains the original set of relations (i.e., a similarly-de�ned one whereg ∊ πcond,qs1 (e, x̄(e))), as desired.
7.52 Example. Let k be a separably closed �eld.

(1) Let C1 and C2 be normal curves over k with �xed closed points ci ∊ Ci . Let C = C ⊔c1=c2 C2
be the gluing of these curves along these closed points. Thenπcond,qs1 (C, c) ≃ πét1 (C1, c1) ∗top πét1 (X2, c2) .

(2) Let C be the nodal curve over k obtained from P1k by identifying 0 and 1. Thenπcond,qs1 (C, c) ≃ Z .

For more computations involving the van Kampen formula (but for Noohi groups), see [Lar24].

7.53 Corollary (Künneth formula for the quasiseparated fundamental groups). Let k be a sepa-
rably closed �eld and letX andY be k-schemes such thatX,Y, andX×k Y satisfy the hypotheses of
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Notation 7.50. Let z̄ → X ×k Y be a geometric point lying over geometric points x̄ → X and ȳ → Y.
If Y is proper or char(k) = 0, then the natural homomorphism of condensed groupsπcond,qs1 (X ×k Y, z̄) → πcond,qs1 (X, x̄) × πcond,qs1 (Y, ȳ)
is an isomorphism.

To prove this result, one can combine the van Kampen formula for πcond,qs1 and the classical
Künneth formula for πét1 as in the proof of [Lar24, Proposition 3.29], but this would require one
to argue using the explicit relations appearing in the van Kampen theorem. To avoid it, it is
bene�cial to �rst apply the classical van Kampen in the groupoid form and only compute the
fundamental groups at the very end. This is how we structure the proof below.

Proof of Corollary 7.53. Fix integral hypercovers �X,∙, �Y,∙ by normal schemes of X and Y. Their
product is again an integral hypercover of X ×k Y by normal schemes. Apply Π̂ét∞(−) to these
diagrams and pass to colimits in Cond(Ani). The �xed geometric point z̄ points them. Then1-truncate and apply πcond,qs1 (−) to both sides. We get a homomorphism of condensed groups

π1( colim[m]∊�op Π̂ét1 (Xm × Ym), ∗)qs → π1( colim[m]∊�op Π̂ét1 (Xm) × Π̂ét1 (Ym), ∗)qs
Using [HP25, Proposition A.1], we can compute the colimits as colimits over the full subcategory�op≤2 ⊂ �op. Apply the usual Künneth formula for πét1 (c.f. [SGA 1, Exposé X, Corollaire 1.7 &
Exposé XII, Proposition 4.6] or [HHW24a, §4]), which implies thatΠ̂ét1 (Xm × Ym) = Π̂ét1 (Xm) × Π̂ét1 (Ym) ,
to get an isomorphism

π1( colim[m]∊�op≤2 Π̂ét1 (Xm × Ym), ∗)qs ⥲ π1( colim[m]∊�op≤2 Π̂ét1 (Xm), ∗)qs × π1( colim[m]∊�op≤2 Π̂ét1 (Ym), ∗)qs .
Now, using the equality πcond,qs1 = πét1 on normal schemes and arguing via the van Kampen

formula as in Theorem 7.51 to replace the fundamental groupoids by groups, we get that, e.g.,

π1( colim[m]∊�op≤2 Π̂ét1 (Xm), ∗)qs = πcond,qs1 (X, x̄)
and similarly forY andX×Y. Note thatX2�, X3� (and similarly forY…) might not be normal, but
in the van Kampen formula all maps from πcond,qs1 of (connected components) of those schemes
will always factor though a pro�nite group (by normality of X�, Y� and X� × Y�), so we were
allowed to replace πcond1 by Π̂ét1 even for those non-normal schemes in the above computation
(cf. similar argument appears in the proof of Theorem 7.51). This completes the proof.

7.54 Corollary. Let K ⊃ k be an extension of separably closed �elds, and let X be a k-scheme
satisfying the hypotheses of Notation 7.50. If char(k) = 0 orX is proper, then the projectionXK → X
induces an isomorphism πcond,qs1 (XK) ⥲ πcond,qs1 (X) .
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7.55 Remark. In the parlance of [Ked17], the property of schemes established in Corollary 7.54
could be calledπcond,qs1 -properness. As explained inRemark 7.14, before passing to quasiseparated
quotients, this is already false for X = P1k.
7.56 Remark. In the context of anabelian geometry, it is sometimes bene�cial to have a version
of the Kurosh subgroup theorem available in the category of groups where our fundamental
groups live, or at least its corollary: the characterization ofmaximal �nite/compact/. . . subgroups
of a free product as a “vertex subgroup” (i.e., one of the free summands up to conjugation). See,
e.g., [Moc06]. Proving such a result for the proétale fundamental group seems rather tricky due to
the presence of Noohi completions. For πcond,qs1 , however, this can be done: see Proposition 7.57.

7.57 Proposition. Let X be a scheme and x̄ a geometric point. Assume that there are pro�nite
groups (Gi)i∊I and an integer r ∊ N such thatπcond,qs1 (X, x̄) ≃ ∗topi Gi ∗top Z∗r .
Let H be a compact topological group and '∶ H → πcond,qs1 (X, x̄) a continuous homomorphism.
Then there exists an index i and an element g ∊ πcond,qs1 (X, x̄) such thatim(') ⊂ gGig−1 .
Proof. This follows follows from [MN76, Theorem 1].

7.58 Remark. We expect the assumptions of Proposition 7.57 to be satis�ed, e.g., when X is a
(semistable) curve over a separably closed �eld k, with Gi = πét1 (X�i , x̄i), where X = ∐i X�i is
the the normalization of X.

For πét1 (or even πproét1 ), this is a classical computation using the van Kampen theorem whenX is semistable. See [Sti06, Example 5.5] in the case of πét1 or [Lav18, Theorem 1.17] for πproét1 .
With some care, this can be done for arbitrary curves, see [LYZ22, Theorem 2.27]. A similar
computation (using Theorem 7.51) should extend this to πcond,qs1 .

8 Noohi completion of the condensed fundamental group
Let X be a topologically noetherian scheme. The goal of this section is to recover the proétale
fundamental group πproét1 (X, x̄) of [BS15, §7] from the condensed fundamental groupπcond1 (X, x̄).
The main input needed for this is the observation that all weakly locally constant sheaves in the
sense of [BS15, De�nition 7.3.1] can be recovered from πcond1 (X, x̄). We prove a stronger derived
version of that result in §8.1. In §8.2, we explain how to Noohi complete condensed groups and
show that the Noohi completion of πcond1 (X, x̄) is indeed the proétale fundamental group. See
Theorem 8.17.

8.1 Recovering weakly locally constant sheaves
In this subsection, we explain how to recover weakly locally constant proétale sheaves on a
scheme X as representations of the condensed homotopy type. The following is a generalization
of [BS15, De�nition 7.3.1] to sheaves of anima:
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8.1 Recollection. Recall that for a qcqs scheme X there is a canonical algebraic morphismSh(π0(X)) → Xét induced by sending a clopen subset of π0(X) to its preimage inX. Furthermore,
we say that F ∊ Xhypproét is locally weakly constant if there is a proétale cover {Ui → X}i∊I by qcqs
schemes such that each F|Ui is in the image of the canonical algebraic morphism

Sh(π0(Ui)) Uhypi,ét Uhypi,proét .�∗
We write wLoc(X) ⊂ Xhypproét for the full subcategory spanned by the locally weakly constant
sheaves.

We want to show that wLoc(X) is equivalent to the∞-category of continuous functors fromΠcond∞ (X) into the following condensed subcategory of Cond(Ani).
8.2 De�nition. We de�ne the condensed∞-category Aniult by the assignmentS ↦ Sh(S)
for every pro�nite set S.7 Similarly, we refer to the 0-truncated version of this condensed∞-cat-
egory by Setult.
8.3 Recollection. Let S be a pro�nite set, and write c∗S ∶ PSh(S) → Cond(Ani)∕S for the left
Kan extension of the natural functorOpen(S) ↪ Cond(Ani)∕S
along the Yoneda emebdding. Then the restrictionc∗S ∶ Sh(S) → Cond(Ani)∕S
is a fully faithful left exact left adjoint. See [Hai22, §3.2 & Corollary 4.9]. Moreover, this com-
parison functor is natural in S [Hai22, Lemma 3.16], hence induces a fully faithful functor of
condensed∞-categories

Aniult ↪ Cond(Ani) .
8.4Remark. The superscript ‘ult’ comes from thewordultrastructure. Any categorywith �ltered
colimits and in�nite products can be canonically upgraded to an ultracategory by equipping it
with the categorical ultrastructure, see [Lur18, Example 1.3.8]. In [Lur18, Construction 4.1.1]
Lurie explains how to regard ultracategories as condensed categories. Furthermore it follows
from [Lur18, Theorem 3.4.4] that the image of Set equipped with the categorical ultrastructure
is precisely Setult.
8.5 Recollection. By [Wol22, Corollary 1.2], precomposition with the localization functorb∶ Gal(X) → BcondGal(X) = Πcond∞ (X) induces a fully faithful functor

b∗ ∶ Functs(Πcond∞ (X),Cond(Ani)) Functs(Gal(X),Cond(Ani)) ≃ Xhypproét .
Cf. the proof of Proposition 3.38.

7The fact that Aniult satis�es descent for surjections of pro�nite sets follows from the proper basechange theorem.
See [Hai22, Theorem 0.5 & Example 1.28].
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8.6 Theorem. Let X be a qcqs scheme. The composite fully faithful functor

(8.7) Functs(Πcond∞ (X),Aniult) Functs(Πcond∞ (X),Cond(Ani)) Xhypproétb∗
has image the full subcategory wLoc(X) of locally weakly constant sheaves.

The idea of the proof is to show it �rst in the case of w-contractible schemes, then conclude
by proétale hyperdescent.

8.8 Lemma. LetW be a w-contractible scheme. Then the fully faithful functorFuncts(π0(W),Aniult) → Whypproét
has image wLoc(W).
Proof. Recall from Example 3.11 that sinceW is w-contractible, Πcond∞ (W) ≃ π0(W). Moreover,
since π0(W) is a pro�nite set, the Yoneda lemma implies thatFuncts(π0(W),Aniult) ≃ Aniult(π0(W)) ≃ Sh(π0(W))
and the given functor is identi�ed with the functorSh(π0(W)) ↪ Whypproét
given by pullback alongW → π0(W). Therefore it lands in wLoc(W) by de�nition; it remains
to show surjectivity.

To show surjectivity, let F ∊ wLoc(W). Then there is a proétale cover p∶ U → W such thatp∗(F) is in the image of Sh(π0(U)) → Uhypproét. SinceW is w-contractible, we can pick a sections ∶ W → U of p. Since the square W π0(W)
U π0(U)

�
s π0(s)

commutes, we see that F = s∗p∗(F) is in the image of �∗.
Proof of Theorem 8.6. As we have a chain of fully faithful functors (8.7), we regardFuncts(Πcond∞ (X),Aniult)
as a full subcategory of Xhypproét. It remains to show that this full subcategory agrees with the full
subcategory wLoc(X). Since the assignment Y ↦ Πcond∞ (Y) is a hypercomplete proétale cosheaf,
the assignment Y ↦ Fun(Πcond∞ (Y),Aniult)
is in a fact a subsheaf of the proétale hypersheaf Y ↦ Yhypproét. Furthermore, by de�nition, the
assignment Y ↦ wLoc(Y)
is subsheaf of the proétale hypersheaf Y ↦ Yhypproét. Since w-contractible schemes form a basis for
the proétale topology, it su�ces to see that they agree on w-contractibles, which is the content
of Lemma 8.8.
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8.2 Recovering the proétale fundamental group
The goal of this subsection is to show that the Noohi completion of the condensed fundamen-
tal group recovers the proétale fundamental group. Since the proétale fundamental group is a
topological group, we �rst need to explain some technical points about the relationship between
topological groups and condensed groups.

8.9 Recollection. The canonical functor Grp(Top) → Cond(Grp) from topological groups to
condensed groups admits a left adjoint(−)top ∶ Cond(Grp) → Grp(Top) .
Note, however, that in general it is not the restriction of the left adjoint “underlying topological
space” functor (−)(∗)top ∶ Cond(Set) → Top

to condensed groups, as the latter functor does not preserve products.

It turns out that (−)top can be described as the composite of (−)(∗)top with the left adjoint of
the inclusion of topological groups into quasitopological groups.

8.10 Recollection. A quasitopological group is a topological space G with an abstract group
structure such that:

(1) The inversion operation G → G given by g ↦ g−1 is continuous.
(2) For each ℎ ∊ G, the translation maps G → G given by g ↦ gℎ and g ↦ ℎg are continuous.
The embeddingGrp(Top) ⊂ qTopGrp of topological groups into quasitopological groups admits
a left adjoint �∶ qTopGrp→ Grp(Top)
that moreover preserves the underlying abstract group and only a�ects the topology [Bra13,
Lemma 3.2 & Theorem 3.8].

While the functor (−)(∗)top does not provide an adjoint between Cond(Grp) and Grp(Top),
its image still lands in qTopGrp. This is essentially because the condition of continuity of the
inversion and translation maps does not involve forming a product. That is, we have a functor(−)(∗)top ∶ Cond(Grp) → qTopGrp .

Postcomposing with �, we get a functor�◦(−)(∗)top ∶ Cond(Grp) → Grp(Top) .
One can then quite directly verify the following:

8.11 Lemma (see [Mai25, Proposition 1.3.16] for details). The composite �◦(−)(∗)top is left ad-
joint to the “associated condensed group” functor. Visually,�◦(−)(∗)top ∶ Cond(Grp) ⇄ Grp(Top)∶ (−) .
Said di�erently, (−)top ≃ �◦(−)(∗)top.
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8.12. It follows from this discussion that for G ∊ Cond(Grp), the abstract group G(∗) and the
underlying group of Gtop coincide.

Before proceeding further, we provide a description of the category of Gtop-sets purely in
terms of condensed mathematics.

8.13 Lemma. LetG be a condensed groupwith condensed classifying animaBG, i.e., the condensed
groupoid that sends an extremally disconnected set S to the one object groupoidwith automorphismsG(S). There is a natural equivalence of categoriesFuncts(BG, Setult) ⥲ Gtop-Set
that is compatible with the forgetful functors to Set.

Proof. We �rst prove the following: the category Functs(BG, Setult) is equivalent to the category
of pairs (M, �) where M ∊ Set and �∶ G → Aut(M) is a map of condensed groups. Here,Aut(M) is the group of automorphisms ofM equipped with the compact-open topology. A map(M, �) → (N, �) is given by a map of sets f∶ M → N such that the squareG Aut(M)

Aut(N) HomTop(M,N)
�

� f∗
f∗

commutes (here HomTop(M,N) is again given the compact-open topology). If this description
holds, the claim follows: by the adjunction between condensed sets and topological spaces and
Recollection 8.10, the homomorphisms � and � correspond to unique homomorphisms of qua-
sitopological groups �′ ∶ G(∗)top → Aut(M) and �′ ∶ G(∗)top → Aut(N)making the square

G(∗)top Aut(M)
Aut(N) HomTop(M,N)

�′
�′ f∗

f∗
commute. Again, by adjunction, Lemma 8.11, and (8.12), the homomorphisms �′ and �′ corre-
spond to unique homomorphisms of topological groups �′′ ∶ Gtop → Aut(M) and �′′ ∶ Gtop →Aut(N)making the square Gtop Aut(M)

Aut(N) HomTop(M,N)
�′′

�′′ f∗
f∗

commute. Thus the assignment(M, �∶ G → Aut(M)) ↦ (M, �′′ ∶ Gtop → Aut(M))
de�nes an equivalence of categoriesFuncts(BG, Setult) ⥲ Gtop-Set
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as desired.
Nowwe prove that Functs(BG, Setult) admits the above description. The fully faithful functorFuncts(BG, Setult) ↪ Functs(BG,Cond(Set)) �ts into a cartesian squareFuncts(BG, Setult) Set

Functs(BG,Cond(Set)) Cond(Set) ,
ev∗
ev∗

where the horizontal arrows are given by pullback along ∗ → BG. Indeed, this follows from the
fact that the functorsFuncts(−, Setult), Functs(−,Cond(Set))∶ Cond(Ani)op → Cat1
are sheaves and ∗ → BG is a cover in Cond(Ani). Now recall that by [Wol22, Corollary 3.20], for
a condensed set A, there is a natural equivalence of categoriesFuncts(A,Cond(Set)) ≃ Cond(Set)∕A .

Using this combined with [HP25, Proposition A.1] and applying Functs(−,Cond(Set)) to the
Čech nerve of ∗ → BG, we obtain an equivalenceFuncts(BG,Cond(Set)) ≃ lim (Cond(Set) ⇉ Cond(Set)∕G →→→ Cond(Set)∕G×G) .

Explicitly unwinding the descent data, we see that Functs(BG,Cond(Set)) is equivalent to
the usual category of condensed sets with an action by the condensed group G. In other words,
its objects are condensed sets A together with a map G → Aut(A) of condensed groups and the
maps are de�ned as above. Here Aut(A) is the maximal condensed subgroup of the condensed
monoidHom(A,A) given by the internal hom in Cond(Set). Thus, the proof will be complete if
for a setM, we can show that there is a canonical isomorphismAut(M) ⥲ Aut(M) .
For this, we observe that we have a canonical isomorphismHom(M,M) ≃ HomTop(M,M) ,
under which the corresponding condensed subgroups of automorphisms agree. This completes
the proof.

In order to prove the main result of this section, we recall a bit about Noohi groups.

8.14 Recollection [BS15, §7.1]. For a topological group G, let FG ∶ G-Set → Set denote the
forgetful functor from the category of sets equipped with a continuous G-action to the category
of sets. We say G is Noohi if the canonical continuous mapG → Aut(FG)
is a homeomorphism of groups. Here, Aut(FG) is topologized using the compact-open topology
on groups Aut(FG(M)) forM ∊ G-Set. We write GrpNoohi ⊂ Grp(Top) for the full subcategory
spanned by the Noohi groups.
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Noohi groups are useful when one wants to generalize Grothendieck’s Galois theory to allow
in�nite �bers (cf. the “in�nite Galois theory” of [BS15, §7.2]). This formalism was used to de�ne
the proétale fundamental group of a scheme in §7.4 of loc. cit.. For any scheme X with locally
�nitely many irreducible components (this assumption su�ces by [BS15, Remark 7.3.11]) and
geometric point x̄ → X, the group πproét1 (X, x̄) is Noohi. Similarly, the fundamental group of de
Jong in rigid geometry [dJon95] and its later generalizations [ALY22; ALY23] are all Noohi.

Noohi groups can also be characterized in purely topological terms as Hausdor�, Raı̆kov
complete groups such that open subgroups form a fundamental system of neighborhoods of 1.

The inclusion GrpNoohi ⊂ Grp(Top) admits a left adjoint (−)Noohi, called Noohi completion,
given by G ↦ Aut(FG) .
See [Lar24, §2] for this and some other properties of Noohi groups and Noohi completion.

We now extend Noohi completion to condensed groups.
8.15 De�nition. Let G ∊ Cond(Grp). The Noohi completion of G is the Noohi groupGNoohi ≔ (Gtop)Noohi .
8.16 Remark. For a condensed group G, one can also de�ne a version of Noohi completion
directly as a condensed group without passing through (−)top. More precisely one can show thatGNoohi coincides with the condensed group de�ned by the assignment

S ↦ Aut (Functs(BG, Setult) Set Sh(S)Γ∗S ) .
We do not need this observation in this article.

We conclude by proving the main result of this section.
8.17 Theorem. Let X be a qcqs scheme with �nitely many irreducible components8 and x̄ → X a
geometric point. Then there is a natural isomorphismπcond1 (X, x̄)Noohi ≃ πproét1 (X, x̄) .
Proof. SinceX has �nitely many irreducible components, by Corollary 4.19 we may assume thatX, and therefore Πcond∞ (X), is connected. It follows from Theorem 8.6 that we have a chain of
natural equivalencesFuncts(Bπcond1 (X, x̄), Setult) ≃ Functs(Πcond1 (X), Setult)≃ Functs(Πcond∞ (X), Setult)≃ wLoc(X)≤0≃ πproét1 (X, x̄)-Set
that are compatible with the forgetful functors to Set. Here, the last equivalence follows from
the de�nition of πproét1 (X, x̄) in [BS15, De�nition 7.4.2] combined with Lemmas 7.3.9 and 7.4.1
in loc. cit.. Thus Lemma 8.13 shows that there is a natural equivalenceπcond1 (X, x̄)top-Set ≃ πproét1 (X, x̄)-Set .
In particular, both groups have the same Noohi completion. Since πproét1 (X, x̄) is Noohi complete
[BS15, Theorem 7.2.5], the claim follows.

8This is equivalent to being qcqs and having locally �nitely many irreducible components.

78



Appendices
A Rings of continuous functions & Čech–Stone compacti�-

cation
by Bogdan Zavyalov

The main goal of this section is to provide the crucial input for the computation of the
condensed shape of rings of continuous functions in § 4.3. Namely, we give a self-contained
account for the identi�cation (see Theorem A.30 below) of the Čech–Stone compacti�cation of
a topological space X with the maximal spectrum of the ring of continuous functions on X.

This identi�cation has already been established in [DO71] using the notion of pm-ring. In
this appendix, we follow the ideas already present in [DO71]. We do not claim originality of any
results in this appendix. Instead, we hope that this appendix gives a self-contained and reader-
friendly exposition of some ideas from [DO71] and [GJ76]. See also [Vec92; Vec94; Vec96].

Throughout this appendix, we denote by R (resp., C) the topological ring of real numbers
(resp. complex numbers) with the Euclidean topology. For a topological space X, we denote byC(X,R) (resp., C(X, C)) the ring of real-valued (resp., complex-valued) continuous functions onX.
A.1 Main constructions
The main goal of this subsection is to introduce some constructions that will be used in the rest
of this appendix. We also study their basic properties.

A.1 Construction. Let X be a topological space.

(1) For each point x ∊ X, we de�ne the evaluation functional evx ∶ C(X,R) → R by the formulaevx(f) ≔ f(x) .
(2) We de�ne the map �X ∶ X → Spec(C(X,R))

to be the unique map that sends each point x ∊ X to ker(evx).
A.2 Remark. The map �X is clearly natural in X.

For our later convenience, we record some basic properties of �X .
A.3 Lemma. Let X be a topological space.

(1) The natural map �X ∶ X → Spec(C(X,R)) is continuous;
(2) the image of �X(X) ⊂ Spec(C(X,R)) is a dense subset;
(3) the map �X factors throughMSpec(C(X,R)).
Proof. In order to see the �rst claim, it su�ces to show that �−1X (D(f)) is an open subset of X for
every f ∊ C(X,R). This follows immediately from the formula �−1X (D(f)) = {x ∊ X | f(x) ≠ 0}
and the assumption that f is continuous.
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Nowwe prove the second claim. LetZ ≔ V(I) ⊂ Spec(C(X,R)) be a closed subset containing�X(X). Then the construction of �X implies that, for every f ∊ I, we have 0 = evx(f) = f(x) for
all x ∊ X. Thus I = 0, and so we conclude that Z = V(0) = Spec(C(X,R)).

To justify the last claim, it is enough to prove that ker(evx) is a maximal ideal for every x ∊ X.
For this, it su�ces to show that evx is surjective. Fix a constant c ∊ R and denote by c the
corresponding constant function on X. Then the surjectivity of evx follows immediately from
the observation that evx(c) = c.
A.4 Remark. In what follows, we also denote by �X the restriction �X ∶ X → MSpec(C(X,R)).

Later in this appendix we show that if X is a compact Hausdor� space, then �X is a homeo-
morphism. See Theorem A.30.

A.5 Warning. The map �X is neither injective nor surjective for a general topological space X.
A.2 pm-rings
In this subsection, we introduce the notion of pm-rings following [DO71]. Then we show that
the natural inclusion MSpec(A) ↪ Spec(A) admits a continuous retraction for a pm-ring A.
As a consequence, we deduce thatMSpec(A) is a compact Hausdor� space for any pm-ring A.
We use the results of this subsection to relate the Čech–Stone compacti�cation of an arbitrary
topological space X to the maximal spectrum of the ring of continuous functions on X.
A.6 De�nition [DO71]. A ring A is a pm-ring if every prime ideal p ⊂ A is contained in a
unique maximal ideal p ⊂ mp ⊂ A.
A.7 De�nition. For a pm-ring A, we de�ne the retract map rA ∶ Spec(A) → MSpec(A) as the
unique map that sends a point x to its unique closed specialization (equivalently, it sends each
prime ideal p to the unique maximal ideal mp containing p). When there is no possibility of
confusion, we will denote the map rA simply by r.
A.8 Remark. Below, we present a proof that rA is always continuous for a pm-ring A. This
beautiful proof is due to de Marco and Orsatti. However, we want to emphasize that, a priori, it
is absolutely not clear whether the map rA has to be continuous or not. In fact, the author �nds
it quite surprising and is not aware of any one-line proof of this fact.

A.9 Theorem [DO71, Theorem 1.2]. Let A be a pm-ring. Then r∶ Spec(A) → MSpec(A) is a
continuous retraction of the natural embedding � ∶ MSpec(A) ↪ Spec(A).

In fact, [DO71, Theorem 1.2] shows that A is a pm-ring if and only if � admits a continuous
retract (and r is the unique continuous retract in this case). However, since we never need the
other direction and it is signi�cantly easier, we decided not to include it in this exposition.

Proof. Throughout this proof, we denote by VSpec(I) ⊂ Spec(A) the vanishing locus of an ideal I
inside Spec(A), and byVMax(I) ≔ VSpec(I)∩MSpec(A) the vanishing locus of I insideMSpec(A).

By construction, we know that r◦� = id. So the only thing we really need to show is that the
map r is continuous. We �x a closed subset Z ⊂ MSpec(A) and de�neI ≔ ⋂

m∊Zm and J ≔ ⋂
p∊r−1(Z)p .
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For the purpose of proving continuity of r, it is enough to show that r−1(Z) = VSpec(J).
Clearly, r−1(Z) ⊂ VSpec(J). Therefore, after unravelling all the de�nitions, we see that it su�ces
to show that, for any prime ideal p ⊂ A such that J ⊂ p, we have r(p) ∊ Z.

Step 1: We show Z = VMax(I). Since Z is closed, we know that Z = VMax(K) for some idealK ⊂ A. By construction, for any m ∊ Z, we have K ⊂ m. In particular, K ⊂ I = ⋂m∊Zm.
Thus, VMax(I) ⊂ VMax(K) = Z. On the other hand, the de�nition of I implies that Z ⊂ VMax(I).
Therefore, we conclude that VMax(I) ⊂ VMax(K) = Z ⊂ VMax(I) .
This implies that VMax(I) = Z.

Now we setM ≔ ⋃m∊Zm. We note that 1 ∉ M, soM ≠ A. We warn the reader that the setM is not generally an ideal in A.
Step 2: Let p ⊂ M be a prime ideal in A. Then r(p) ∊ Z. Since p ⊂ M and I = ⋂m∊Zm, we

conclude that p + I ⊂ M ≠ A. Thus, we can �nd a maximal ideal n ⊂ A such thatp ⊂ p + I ⊂ n .

Therefore, r(p) = n. Since I ⊂ n, Step 1 ensures that n ∊ Z. This shows that r(p) ∊ Z.
Step 3: Let J ⊂ p be a prime ideal in A. Then r(p) ∊ Z. Since each prime ideal is contained

in a unique maximal ideal, it su�ces to �nd a prime ideal q ⊂ p such that q ⊂ M; then Step 2
implies that r(p) = r(q) ∊ Z.

Now we choose any t ∊ A ∖ p and s ∊ A ∖M. Then ts ≠ 0 since otherwise it would imply thatt ∊ ⋂
m∊Zm = J ⊂ p .

Hence, the multiplicative systemS = { ts | t ∊ A ∖ p and s ∊ A ∖ M }
does not contain 0. Therefore, the localization A[S−1] is nonzero. Thus, any maximal ideal inA[S−1] de�nes a prime ideal q ⊂ A disjoint from S. Since 1 ∊ A ∖ p and 1 ∊ A ∖ M, we conclude
that q ⊂ p ∩M, �nishing the proof.

A.10 Corollary. Let A be a pm-ring. ThenMSpec(A) is a compact Hausdor� space.

Proof. Theorem A.9 implies that r∶ Spec(A) → MSpec(A) is a continuous surjection. SinceSpec(A) is quasicompact and images of quasicompact spaces are quasicompact, MSpec(A) is
seen to be quasicompact.

Now we show thatMSpec(A) is Hausdor�. First, [STK, Tag 0904] implies that it su�ces to
show that, for any two closed points x, y ∊ Spec(A), there does not exist a point z ∊ Spec(A)
which specializes to both x and y. This follows immediately from the fact that every point ofSpec(A) specializes to a unique closed point.

A.11De�nition. Let f∶ A → B be a homomorphism between pm-rings.We de�ne the induced
map of maximal spectraMSpec(f)∶ MSpec(B) → MSpec(A) as the composition

MSpec(B) Spec(B) Spec(A) MSpec(A) .�B Spec(f) rA
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A.12 Warning. In general, for a ring homomorphism A → B, the induced map of spectraSpec(f)∶ Spec(B) → Spec(A) does not sendMSpec(B) toMSpec(A). This does not even hold for
a general homomorphism of pm-rings. Indeed, consider a rank 2 valuation ring V with fraction
�eld K and a rank-1 localizationO. Then the map Spec(O) → Spec(V), induced by the inclusionV ⊂ O, sends the closed point of Spec(O) to a non-closed point of Spec(V).
A.3 Rings of continuous functions
The main goal of this section is to show that the rings of continuous functions C(X,R) andC(X, C) are pm-rings for any topological space X. This will be the crucial ingredient in showing
that the Čech–Stone compacti�cation β(X) is homeomorphic toMSpec(C(X,R)).

We do not claim originality of any results of this subsection. In fact, our presentation thatC(X,R) is a pm-ring follows [GJ76, Theorem 2.11] quite closely. The case of C(X, C) seems to be
missing in [GJ76].

Throughout the section, we �x a topological space X.
A.13 De�nition. Let f ∊ C(X,R) be a continuous function. Its vanishing locus is the setVX(f) ≔ { x ∊ X | f(x) = 0 } .
A.14 De�nition. For a subset S ⊂ C(X,R), the collection of its zero sets is the subsetVX[S] ≔ {VX(f) | f ∊ S} ⊂ Sub(X)
of the set of all vanishing loci of elements in S.9 For brevity, we put VX[X] ≔ VX[C(X,R)] for
the set of all vanishing loci of continuous functions on X.
A.15 Lemma [GJ76, Theorem 2.3]. Let I ⊂ C(X,R) be an ideal and let Z1, Z2 ∊ VX[I]. Then
(1) Z1 ∩ Z2 ∊ VX[I];
(2) if Z ∊ VX[X] and Z1 ⊂ Z, then Z ∊ VX[I].
Proof. Let Z1 = VX(f1), Z2 = VX(f2), and Z = VX(f) for f1, f2 ∊ I and f ∊ C(X,R). For the
�rst claim, note that Z1 ∩ Z2 = VX(f1) ∩ VX(f2) = VX(f21 + f22) ∊ VX[I].
The second claim follows immediately from the observation thatZ = Z1 ∪ Z = VX(f1) ∪ VX(f) = VX(f1f) ∊ VX[I].
A.16 De�nition. An ideal I ⊂ C(X,R) is a zs-ideal if VX(f) ∊ VX[I] implies f ∊ I.
A.17 Remark. Often, zs-ideals are called z-ideals.
A.18 Theorem [GJ76, Theorem 2.5]. Letm ⊂ C(X,R) be a maximal ideal. Thenm is a zs-ideal.

9We denote by Sub(X) the set of all subsets of X.
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Proof. We denote by Im ⊂ C(X,R) the subset of continuous functions whose vanishing locus is
equal to a vanishing locus of a function inm, i.e.,

(A.19) Im ≔ {f ∊ C(X,R) | VX(f) ∊ VX[m]} .
Now Lemma A.15 implies that Im is an ideal. We pick continuous functions f, g ∊ Im andℎ ∊ C(X,R) and wish to show that f + g ∊ Im and fℎ ∊ Im. The former claim follows from the

observation VX(f + g) ⊃ VX(f) ∩ VX(g) and Lemma A.15, while the latter claim follows from
the observation VX(fℎ) ⊃ VX(f) and Lemma A.15.

Now Equation (A.19) implies that, for the purpose of showing thatm is a zs-ideal, it su�ces
to show thatm = Im. Clearly, we havem ⊂ Im. Therefore, the fact thatm is a maximal ideal
implies that, in order to show thatm = Im, it su�ces to show that 1 ∉ Im. This is equivalent to
showing that ∅ ∉ VX[m]. For this note that any f ∊ m is not invertible, therefore ∅ ≠ VX(f).
This �nishes the proof.

A.20 Lemma. Let I, J ⊂ C(X,R) be two zs-ideals. Then I is a radical ideal and I ∩ J is a zs-ideal.
Proof. We start with the �rst claim. Suppose f ∊ rad(I), so fn ∊ I for some n. Then we note thatVX(f) = VX(fn). So the de�nition of a zs-ideal implies that f ∊ I. In other words, I is radical.

Nowwe deal with the second claim.We �rst claim thatVX[I ∩J] = VX[I]∩VX[J]. We always
have an inclusionVX[I∩J] ⊂ VX[I]∩VX[J], so it su�ces to show thatVX[I]∩VX[J] ⊂ VX[I∩J].
Pick Z ∊ VX[I] ∩ VX[J]. By de�nition, this means that there are elements f ∊ I and g ∊ J such
that Z = VX(f) = VX(g). Since J is a zs-ideal, it implies that f ∊ J. Therefore, f ∊ I ∩ J and,
hence, Z ∊ VX[I ∩ J].

Now let f ∊ C(X,R) be a continuous function such that VX(f) ∊ VX[I ∩ J] = VX[I] ∩ VX[J].
Then we use the fact that both I and J are zs-ideals to conclude that f ∊ I ∩ J, i.e., I ∩ J is azs-ideal.
A.21 Remark. Lemma A.20 implies that the ideal (idR) ∊ C(R,R) is not a zs-ideal.
A.22 Lemma [GJ76, Theorem 2.9]. Let I ⊂ C(X,R) be a zs-ideal. Then the following are equiva-
lent:

(1) The ideal I is prime.

(2) The ideal I contains a prime ideal.

(3) For any f, g ∊ C(X,R) such that fg = 0, we have f ∊ I or g ∊ I.
(4) For every f ∊ C(X,R), there is a subset Z ⊂ X such that Z ∊ VX[I] and f|Z does not change

its sign.

Proof. The implications (1)⇒ (2) and (2)⇒ (3) are trivial.
Now we show (3)⇒ (4). We start by considering the continuous functions f+ ≔ max(f, 0)

and f− ≔ min(f, 0). Then clearly we havef+ ⋅ f− = 0 ,
so we have f+ ∊ I or f− ∊ I. Suppose f+ ∊ I (the other case is similar), then we can chooseZ ≔ {x ∊ X | f(x) ≤ 0} = VX(f+) ∊ VX[I] .
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Now we show (4)⇒ (1). We pick two continuous functions f, g ∊ C(X,R) such that fg ∊ I
and wish to show that f ∊ I or g ∊ I. For this, we consider the continuous function ℎ = |f|− |g|.
Our assumption implies that there is a zero set Z ∊ VX[I] such that ℎ|Z is, say, nonnegative (the
other case is similar). Note that if f(x) = 0 and x ∊ Z, then ℎ(x) = −|g(x)| ≥ 0. Hence, ℎ(x) =g(x) = 0 for such x ∊ X. So we conclude that Z ∩ VX(fg) = Z ∩ (VX(f) ∪ VX(g)) = Z ∩ VX(g).
Therefore, we see that VX(g) ∊ VX[I] by virtue of Lemma A.15 and the following sequence of
inclusions: VX(g) ⊃ Z ∩ VX(g) = Z ∩ VX(fg)
Therefore, we conclude that g ∊ I since I is a zs-ideal.

We are almost ready to show that C(X,R) is a pm-ring. For the proof, we need the following
result from commutative algebra.

A.23 Lemma. Let R be a ring and let p1, p2 ⊂ R be prime ideals such that neither of them is
contained in the other. Then p1 ∩ p2 is not a prime ideal.

Proof. Choose t ∊ p1 ∖ p2 and s ∊ p2 ∖ p1. Then st ∊ p1 ∩ p2 but s ∉ p1 ∩ p2 and t ∉ p1 ∩ p2.
A.24 Theorem [GJ76, Theorem 2.11]. For any topological spaceX, the ring C(X,R) is a pm-ring.
HenceMSpec(C(X,R)) is a compact Hausdor� topological space.

Proof. Note that the second claim follows from the �rst and Corollary A.10. For the �rst, since
every prime ideal p ⊂ C(X,R) is contained in some maximal ideal, so it su�ces to show thatp cannot be contained in two di�erent maximal idealsm1 andm2. We set I ≔ m1 ∩m2. Then
Theorem A.18 and Lemma A.20 imply that I is a zs-ideal. By construction, we have an inclu-
sion p ⊂ I. Therefore, Lemma A.22 ensures that I is a prime ideal. However, this contradicts
Lemma A.23. Hence, there is only one maximal ideal containing p.

We now prove that that C(X, C) is a pm-ring. We need some preparatory lemmas.

A.25 Lemma. The canonical map C(X,R) ⊗R C → C(X,C) is an isomorphism.

Proof. First, we note that the assertion is equivalent to showing that the canonicalmapC(X,R)⊕i ⋅ C(X,R) → C(X, C) is an isomorphism. In other words, we need to show that any continuous
function f ∊ C(X, C) can be uniquely written as f = g + i ⋅ ℎ with g, ℎ ∊ C(X,R). Uniqueness is
clear. To see existence, we note that f = Re(f) + i ⋅ Im(f).
A.26 Lemma. The canonical map Spec(C(X, C)) → Spec(C(X,R)) restricts to a bijectionc∶ MSpec(C(X, C)) → MSpec(C(X,R)) .
Proof. By Lemma A.25, C(X,R) → C(X, C) is a �nite ring extension and thus Spec(C(X, C)) →Spec(C(X,R)) maps closed points to closed points. To show that it restricts to a bijection on
closed points, it su�ces to see that for every maximal idealm ⊂ C(X,R)with residue �eld κ(m),
the tensor product κ(m)⊗C(X,R)C(X, C) is a �eld. By Lemma A.25, this is equivalent to showing
that κ(m)⊗RC is a �eld. For this it su�ces to show that the equationX2+1 = 0 has no solutions
in κ(m). In other words, we need to show that there are no continuous functions f ∊ C(X,R)
and g ∊ m such that f2 = −1 + g. Suppose that such functions exist. Then we note that g is
not an invertible function since it lies in a maximal ideal. Therefore, there is a point x ∊ X such
that g(x) = 0. Thus, we see that f(x)2 = −1 + g(x) = −1. Contradiction, so no such functions
exist.
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A.27Corollary. For any topological spaceX, the ringC(X, C) is a pm-ring.HenceMSpec(C(X, C))
is a compact Hausdor� topological space.

Proof. Note that the second claim follows form the �rst and Corollary A.10. For the �rst, letP ⊂ C(X, C) be a prime ideal and let M ⊂ C(X,C) be a maximal ideal containing P. We
put p ≔ P ∩ C(X,R) and we set m ⊂ C(X,R) to be the unique maximal ideal containing p.
Since Spec(C(X, C)) → Spec(C(X,R)) is a �nite morphism (see Lemma A.25), it sends closed
points to closed points. So we conclude thatM ∩ C(X,R) = m. Thus the claim follows from
Lemma A.26.

A.28 Corollary. The canonical map c∶ MSpec(C(X, C)) → MSpec(C(X,R)) is a homeomor-
phism.

Proof. By Theorem A.24 and Corollary A.27 the source and target are both compact Hausdor�
spaces, so the claim follows from Lemma A.26.

A.4 Čech–Stone compacti�cation via algebraic geometry
In this subsection, we show that, for any topological space X, the compact Hausdor� spaceMSpec(C(X,R)) satis�es the universal property of the Čech–Stone compacti�cation of X.
A.29De�nition. TheČech–Stone compacti�cation of a topological spaceX is a pair (β(X), iX) of
a compact Hausdor� space β(X) and a continuous map iX ∶ X → β(X) such that, for every other
compact Hausdor� space Y with a continuous map f∶ X → Y, there is a unique continuous
map β(f)∶ β(X) → Y satisfying f = β(f)◦iX .

We recall (see Construction A.1) that, for every topological spaceX, we have the natural map�X ∶ X → MSpec(C(X,R)). We also write �X⊗RC ∶ X → MSpec(C(X, C)) for the composition of�X followed by the inverse of c∶ MSpec(C(X,R)) → MSpec(C(X, C)). Our goal is to show that
both

(MSpec(C(X,R)), �X) and (MSpec(C(X, C)), �X⊗RC) are Čech–Stone compacti�cations ofX.
A.30 Theorem. Let X be a compact Hausdor� space. Then all maps in the commutative triangleX MSpec(C(X,R))

MSpec(C(X, C))
�X�X⊗RC c

are homeomorphisms.

Proof. The diagram commutes by construction and c is a homeomorphism by Corollary A.28. It
thus su�ces to show that �X is a homeomorphism.

Step 1: �X is injective. To show injectivity of �X , it su�ces to show that any two di�erent pointsx, y ∊ X can be separated by a continuous function f∶ X → R. More precisely, we need to �nd
a continuous function f∶ X → R such that f(x) = 0 and f(y) ≠ 0. Such a function exists by
Urysohn’s Lemma [Mun00, Theorem 33.1].

Step 2: �X has dense image. This follows directly from Lemma A.3.
Step 3: �X is a homeomorphism. Since X is quasi-compact, we conclude that its image �X(X)

is also quasi-compact. Since MSpec(C(X,R)) is Hausdor� (see Theorem A.24), we conclude
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that �X(X) is closed. Since �X(X) ⊂ MSpec(C(X,R)) is dense, we conclude that �X must be sur-
jective. Therefore, �X is a bijective continuous map between compact Hausdor� spaces (see
Theorem A.24), so it is a homeomorphism in virtue of [STK, Tag 08YE].

A.31 Lemma. Let f∶ X → Y be a continuous map of topological spaces. Then there is a unique
continuous map f̃ ∶ MSpec(C(X,R)) → MSpec(C(Y,R)) that makes the square

X Y
MSpec(C(X,R)) MSpec(C(Y,R))

f
�X �Y

f̃
commute.

Proof. First, we note that �X(X) ⊂ MSpec(C(X,R)) is dense by Lemma A.3. Therefore, f̃ is
unique if it exists. For the existence, we denote by f∗ ∶ C(Y,R) → C(X,R) the natural pullback
homomorphism. Then f̃ = MSpec(f∗) does the job (see De�nitionA.11 and TheoremA.24).

A.32 Theorem. Let X be a topological space, Y a compact Hausdor� space, and f∶ X → Y a
continuous map. Then there is a unique continuous map f̃ ∶ MSpec(C(X,R)) → Y that makes
the triangle X Y

MSpec(C(X,R))
f

�X f̃
commute.

Proof. This follows immediately from Theorem A.30 and Lemma A.31.

A.33 Corollary. Let X be a topological space. Then both(MSpec(C(X,R)), �X) and
(MSpec(C(X, C)), �X⊗RC)

are Čech–Stone compacti�cations of X.
Proof. Combine Corollary A.28 and Theorem A.32.

B A pro�nite analogue of Quillen’s Theorem B
The goal of this appendix is to prove Theorem B.7, an analogue of Quillen’s Theorem B after
completion at a set of primes. Most of the material here is a part of the sixth author’s thesis
[Wol25, §7.3]. Nevertheless, here the main result is formulated slightly more generally and the
exposition was changed to make it more readable for those less familiar with the theory of
internal higher categories developed by the �fth and sixth authors.
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B.1 Quillen’s Theorem B
Given a functor of∞-categories f∶ C → D, Quillen’s Theorem B [Qui73, Theorem B] gives a
way of calculating the homotopy �ber of the induced map of classifying anima Bf∶ BC → BD.
We begin this appendix by giving a short and model-independent proof of Theorem B that is
easier to generalize than Quillen’s original argument.

B.1 Theorem (Quillen’s Theorem B). Let f∶ C → D be a functor of∞-categories such that for
any d → d′ ∊ D the induced map BC∕d → BC∕d′
is an equivalence. Then for any d ∊ D, the induced commutative square of animaBC∕d BC

∗ ≃ BD∕d BDBf
is cartesian.

The proof rests on the following observation:

B.2 Proposition. Let p∶ ℱ → D be a left �bration with corresponding straightened functorp̃ ∶ D → Ani. If for each map s ∶ d → d′ inD, the induced map p̃(s) is an equivalence, then for
each d ∊ D, the square ℱd Bℱ

∗ BDBpd
is cartesian.

Proof. By assumption, p̃ ∶ D → Ani factors through the unit map D → BD. Pulling back the
universal left �bration, we thus get a diagramℱd ℱ ℱ′ Ani∗∕

∗ D BD Ani

⌟ p ⌟ ⌟
d p̃

in which all squares are cartesian. Note that since left �brations are conservative and BD is an
anima, ℱ′ is an anima. Since B∶ Cat∞ → Ani is locally cartesian (see (5.3)), by applying B to
the middle and left-hand squares, we get another diagramℱd Bℱ ℱ′

∗ BD BD
⌟ ∼

Bp ⌟
d id

in which all squares are cartesian, completing the proof.

87



B.3 Remark. The assumptions of Proposition B.2 are satis�ed whenever the left �bration p is
additionally a right �bration, i.e., a Kan �bration.

We now need to build the correct left �bration to which we can apply Proposition B.2. For
this we need the following.

B.4 Notation. Let D be an ∞-category. We write Cocart(D) ⊂ Cat∞,∕D for the subcategory
with objects cocartesian �brations p∶ ℱ → D and morphisms the cocartesian functors. We
write LFib(D) ⊂ Cocart(D)
for the full subcategory spanned by the left �brations. Note that LFib(D) is also a full subcategory
of Cat∞,∕D.
B.5 Recollection. For an ∞-category D, the inclusion Fun(D,Ani) ↪ Fun(D,Cat∞) ad-
mits a left adjoint given by postcomposition with B∶ Cat∞ → Ani. Under the straightening-
unstraightening equivalence, this corresponds to a left adjoint of the inclusionLFib(D) ↪ Cocart(D) .
Explicitly, this adjoint sends a cocartesian �bration p∶ P → D to the unique left �brationL(p)∶ ℱ → D that �ts in a commutative triangleP ℱ

D ,

�
p L(p)

where the functor � is initial. Indeed, such a factorization exists because left �brations are the
right class in the initial-left �bration factorization system, see, e.g., [Mar21, § 4.1]. This also
implies that for any left �bration q∶ G → D, there is a natural equivalenceMapCocart(D)(p, q) ≃ MapCat∞,∕D(p, q) ≃ MapLFib(D)(L(p), q) .
Here, left-hand equivalence holds since for left �brations every edge is cocartesian. The right-
hand equivalence follows from the fact that the left �brations are the right class of a factorization
system [HTT, Lemma 5.2.8.19].

In order to prove Theorem B.1, we �x some notation regarding oriented �ber products of∞-categories.

B.6 Recollection. Let f∶ C → D be a functor of∞-categories. We consider the oriented �ber
product (also called comma∞-category) C ×⃗D D de�ned via the pullbackC ×⃗D D Fun([1],D)

C × D D ×D
⌟ (ev0,ev1)

f×idD
in Cat∞. Note that by the universal property of the pullback, the functors (idC, f)∶ C → C ×D
and C D Fun([1],D)f id(−)
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induce a functor j ∶ C → C×⃗DD. By [HTT, Corollary 2.4.7.12], the projection pr2 ∶ C×⃗DD → D
is a cocartesian �bration. The cocartesian �bration pr2 classi�es the functorD → Cat∞ , d ↦ C∕d .
Furthermore, f factors as C C ×⃗D D D ,j pr2
and j admits a right adjoint given by projecting to the �rst factor.

Proof of Theorem B.1. We apply the left adjoint L of Recollection B.5 to the cocartesian �brationpr2 ∶ C×⃗DD → D. Our assumptions precisely say that the resulting left �brationL(pr2)∶ ℱ → D
satis�es the assumptions of Proposition B.2. Thus we get a commutative diagramBC∕d BC B(C ×⃗D D) Bℱ

∗ ≃ BD∕d BD BD ,

Bj
Bf

B�
BL(pr2)

d
where the outer square is cartesian. Furthermore, since B inverts adjoints and initial functors
(see, e.g., [CJ24, Corollary 2.11(4) & Remark 2.20]), the right square is cartesian. Thus the left
square is cartesian, as desired.

B.2 Pro�nite Theorem B
The goal of this subsection is to prove a variant of Quillen’s Theorem B for pro�nite categories
following the general strategy of §B.1. The main ingredient of the proof of Theorem B.1 was the
straightening-unstraightening equivalence. However pro�nite categories are not well-behaved
enough to admit a full straightening-unstraightening equivalence. The solution is to embed
pro�nite categories into condensed categories, where we have a straightening-unstraightening
equivalence thanks to [Mar22, Theorem 6.3.1]. The precise theorem we aim to prove in this
subsection is the following:

B.7 Theorem. Let Σ be a nonempty set of prime numbers.
Let f∶ C → D be a map in Cat(Pro(Aniπ)) such that for any map d → d′ in D the map of
condensed anima Bcond(C∕d) → Bcond(C∕d′)
becomes an equivalence after Σ-completion. Then, for all d ∊ D, the induced mapBcond(C∕d) → �bd(Bcondf)
becomes an equivalence after Σ-completion.

As mentioned above, straightening-unstraightening plays a crucial role in our proof. Thus,
we begin by de�ning cocartesian �brations of condensed∞-categories.

B.8 De�nition. Let C be a condensed∞-category.

(1) A functor p∶ P → C of condensed ∞-categories is a cocartesian �bration if for each S ∊Pro(Set�n), the induced functor p(S)∶ P(S) → C(S) is a cocartesian �bration and, fur-
thermore, for each map �∶ T → S in Pro(Set�n), the functor �∗ ∶ P(S) → P(T) sendsp(S)-cocartesian morphisms to p(T)-cocartesian morphisms.
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(2) A cocartesian �bration p∶ P → C is a left �bration if for each S ∊ Pro(Set�n), the induced
functor p(S)∶ P(S) → C(S) is a left �bration.

(3) We write Cocartcts(C) for the subcategory of Cond(Cat∞)∕C with objects the cocartesian
�brations and morphisms the functors f∶ P → Q over C such that for every S ∊ Pro(Set�n),
the functor f(S) preserves cocartesian morphisms. We write LFibcts(C) ⊂ Cocartcts(C) for
the full subcategory spanned by the cocartesian �brations.

B.9 Remark. Let us denote by Funcocart([1],Cat∞) the subcategory of Fun([1],Cat∞) with
objects cocartesian �brations and a morphism from p∶ P → C to p′ ∶ P′ → C′ is a square
squares P P′

C C′
f

p p′
such that f sends p-cocartesian morphisms to p′-cocartesian morphisms. Then combining
[GHN17, Theorem 4.5] and [HA, Proposition 7.3.2.6] shows that the inclusionFuncocart([1],Cat∞) ↪ Fun([1],Cat∞)
is a right adjoint. In particular, the inclusion preserves limits.

Let p∶ P → C be a functor of condensed∞-categories. The closure of Funcocart([1],Cat∞)
under limits in Fun([1],Cat∞) shows that if p is a cocartesian �bration, then any map of con-
densed anima s ∶ B → A, the functor s∗ in the squareFuncts(A, P) Functs(B, P)

Functs(A, C) Functs(B, C)
s∗

p∗ p∗
s∗

sends p(A)-cocartesian morphisms to p(B)-cocartesian morphisms. Thus, using [Mar22, Propo-
sition 3.17], it follows that our de�nition of cocartesian �bration agrees with the de�nition given
in [Mar22] in the case ℬ = Cond(Ani).
B.10 Remark. By Remark 6.4, a functor of condensed∞-categories p∶ ℱ → C is a left �bration
in the sense of De�nition B.8 if and only if pop is a right �bration in the sense of De�nition 6.2.
Furthermore, ifℱ → C is a left �bration and P → C is a cocartesian �bration, then every functorf∶ P → ℱ of condensed∞-categories over C is a map in Cocartcts(C).

For the condensed version of straighetning-unstraightening, we need to consider the con-
densed∞-category of condensed∞-categories:
B.11De�nition. WewriteCond(Cat∞) for the condensed∞-category given by the assignmentPro(Set�n)op ∍ S ↦ Cat(Cond(Ani)∕S) .
B.12 Theorem ([Mar22, Theorem 6.3.1] and [Mar21, Theorem 4.5.1]). There is an natural equiv-
alence of∞-categories Cocartcts(C) ≃ Functs(C,Cond(Cat∞))
Moreover, this equivalence restricts to a natural equivalenceLFibcts(C) ≃ Functs(C,Cond(Ani)) .
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We also have the following analogue of Recollection B.5 for condensed∞-categories:

B.13 Observation. Recall that the inclusion Cond(Ani) ↪ Cond(Cat∞) admits a left adjointBcond ∶ Cond(Cat∞) → Cond(Ani). It is easy to see that both of these functors are compatible
with basechange and therefore lift to an adjunction of condensed∞-categories� ∶ Cond(Ani) ⇄ Cond(Cat∞) ∶Bcond ,
i.e., an adjunction in the (∞, 2)-category of condensed∞-categories. See also [MW24, De�ni-
tion 3.1.1 and Proposition 3.2.14]. Thus the induced functorFuncts(C,Cond(Ani)) → Functs(C,Cond(Cat∞))
admits a left adjoint given by postcomposition with Bcond.
Under the straightening-unstraightening equivalence of Theorem B.12, this corresponds to a left
adjoint L of the inclusion LFibcts(C) ↪ Cocartcts(C) .

Since left �brations of condensed categories are the right class in the initial-left �bration
factorization systems, as in Recollection B.5, it follows from [HTT, Lemma 5.2.8.19] that the left
adjoint is given by factoring P → C into an initial functor followed by a left �bration.

To follow the strategy outlined in §B.1, we need a version of Proposition B.2. Now another
complication enters. Unlike in §B.1, the maps Bcond(C∕d) → Bcond(C∕d′) are not assumed to
be equivalences on the nose, but only after Σ-completion. Thus, we also need an analogue of
Proposition B.2 that works up to completion. We prove the following statement, which is a
variant of [MN20, Corollary 5.4]:

B.14 Proposition. Let X be an ∞-category with colimits and let L∶ Cond(Ani) → X be a
colimit-preserving functor. Let C be a condensed ∞-category and p∶ ℱ → C a left �bration of
condensed∞-categories corresponding via Theorem B.12 to a functor of condensed∞-categoriesp̃ ∶ C → Cond(Ani). Assume that for each pro�nite set S, the functor

C(S) Cond(Ani)∕S Cond(Ani) Xp̃(S) L
sends all morphisms to equivalences. Then for every d∶ S → C, the induced mapp̃(d)∶ S ×C ℱ → S ×BcondC Bcondℱ
becomes an equivalence after applying L.
B.15 Recollection. For the proof of the Proposition B.14, we recall that a functor of condensed∞-categories f∶ ℱ → C is a Kan �bration if it is both a left and right �bration. Equivalently, f
is Kan �bration if any of the following equivalent conditions is satis�ed:

(1) For any S ∊ Pro(Set�n), the functor f(S) is a Kan �bration.

(2) The functor f is right orthogonal to all maps of the form S × {"} → S × [n], where S ∊Pro(Set�n), n ∊ N, and " ∊ {0, n}.
Indeed, this follows immediately from Remark 6.4 and [Mar21, Lemma 4.1.2].
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Proof of Proposition B.14. We work in the∞-categoryCond(Ani)� ≔ Fun(�op, Cond(Ani))
of simplicial objects in Cond(Ani). We factor S → C as S i,→ T f,→ C where i is contained in the
smallest saturated class in (Cond(Ani)�)∕C containing all maps of the form

{"} × S [n] × S
C

where n ∊ N, " ∊ {0, n}, and S ∊ Pro(Set�n), and f is right orthogonal to these maps. It follows
fromRecollection B.15 that f is a Kan �bration. Since Kan �brations are levelwise Kan �brations,
it follows from Remark B.3 that the natural mapBcond(S ×C ℱ) → S ×BcondC Bcondℱ
is an equivalence Thus it su�ces to see that the induced map S ×C ℱ → T ×C ℱ becomes an
equivalence after applying L◦Bcond.

Wenote that, by the universality of colimits inCond(Ani)�, the classℳ of allmaps s ∶ A → B
in (Cond(Ani)�)∕C, that have the property thatL colim�op(A ×C ℱ) → L colim�op(B ×C ℱ)
is an equivalence is a saturated class in the sense of [Mar21, De�nition 2.5.5]. To see that i
is contained in ℳ, it therefore su�ces to check this for the maps {"} × S → [n] × S, whereS ∊ Pro(Set�n) and " ∊ {0, n}. Note that since the pulled back functor ([n] × S) ×Cℱ → [n] × S is
again a left �bration and the pullback of a �nal functor along a left �bration is �nal [Mar21, Proof
of Proposition 4.4.7], the induced funtor ({n} × S) ×C ℱ → ([n] × S) ×C ℱ is �nal. In particular,Bcond(({n} × S) ×C ℱ) → Bcond(([n] × S) ×C ℱ)
is an equivalence, so {n}×S → [n]×S is inℳ. Furthermore, under this equivalence, the induced
map ({0} × S) ×C ℱ → Bcond(([n] × S) ×C ℱ)
is identi�ed with the map ({0} × S) ×C ℱ → ({n} × S) ×C ℱ induced by 0 → n in [n] (see
Lemma B.16 and Remark B.17 below). This map is an L-equivalence by assumption. Therefore,i is contained inℳ, which completes the proof.

B.16 Lemma. Let p∶ ℱ → C be a left �bration of condensed ∞-categories with straightened
functor p̃ ∶ C → Cond(Ani). Then for any morphism � in C(S) for some S ∊ Pro(Set�n), given by�∶ [1] × S → C, the map p̃(�) in Cond(Ani)∕S is given by composing({0} × S) ×C ℱ → Bcond(([1] × S) ×C ℱ)
with the inverse of the equivalence ({1} × S) ×C ℱ ⥲ Bcond(([1] × S) ×C ℱ).
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Proof. By pulling back along �wemay assume that � is the identity. Alsowe have an equivalenceLFibcts([1] × S) ≃ Functs([1] × S,Cond(Ani)) ≃ Fun([1], Cond(Ani)∕S) .
Now observe that p̃(�) can be computed as ev1(" ∶ const ev0 p̃ → p̃), where " denotes the counit
of the adjunction const∶ Cond(Ani)∕S ⇄ Fun([1], Cond(Ani)∕S) ∶ev0. Translating to the �bra-
tional perspective via Theorem B.12, we obtain a rectangle{1} × F{0} F{0} ×{0}×S ([1] × S) ≃ [1] × F{0}

F{1} F
{1} × S [1] × S
p̃(�) ⌟ "⌟

and we are done once we see that the composite F{0} → F{0} ×{0}×S ([1] × S) → F is identi�ed
with the inclusion F{0} → F after applying Bcond. But this is clear, since the two inclusions{i} × F{0} ↪ [1] × F{0}, i = 0, 1, are identi�ed after applying Bcond and the composite{0} × F{0} ↪ [1] × F{0} → F
yields the inclusion F{0} → F by construction.

B.17 Remark. In the situation of Lemma B.16, we may more generally consider a map�∶ [n] × S → C
corresponding to a composable sequence of n arrows in C(S). Let us denote by j ∶ [1] → [n] the
map that sends 0 to 0 and 1 to n. We then get a commutative diagram({0} × S) ×C ℱ Bcond(([1] × S) ×C ℱ) ({1} × S) ×C ℱ

({0} × S) ×C ℱ Bcond(([n] × S) ×C ℱ) ({n} × S) ×C ℱ≀
where the middle vertical map is induced by j. Since left �brations are smooth [Mar21, Propo-
sition 4.4.7], the right horizontal maps are equivalences and thus also the vertical map in the
middle is an equivalence. It follows that the composite of the lower left map with the inverse of
the lower right map is equivalent to p̃ applied to the composite of the n arrows determined by �.

One di�erence between Proposition B.14 and Theorem B.7 is that in the former we consider
�bers over general pro�nite sets S, while in the latter we only look at �bers over points. To reduce
from pro�nite sets to points, we use the following observation:
B.18 Lemma. Let Σ be a nonempty set of prime numbers. Consider a cartesian squareB A

T S
⌟

in Cond(Ani) such that A is the colimit of a diagram �op → Pro(Aniπ) → Cond(Ani) andS, T ∊ Pro(AniΣ). Then this square remains cartesian after Σ-completion.
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Proof. Since Cond(Ani) is an∞-topos, geometric realizations are universal in Cond(Ani). By
[Hai24, Example 1.9 and Corollary 1.13], geometric realizations are also universal in Pro(AniΣ).
Thus we may assume that A ∊ Pro(Aniπ). Since the functor Pro(Aniπ) → Cond(Ani) is fully
faithful, the composite

Pro(Aniπ) Cond(Ani) Pro(AniΣ)(−)∧Σ
agrees with the Σ-completion functor (−)∧Σ ∶ Pro(Aniπ) → Pro(AniΣ). The claim now follows
from the fact that Σ-completion is locally cartesian [HHW24b, Proposition 3.18].

B.19. Let f∶ C → D be a functor of condensed∞-categories. We now consider the condensed∞-category C ×⃗D D de�ned via the pullback squareC ×⃗D D Funcond([1],D)
C × D D ×D

⌟ (ev0,ev1)
f×idD

as in Recollection B.6. By by [HTT, Corollary 2.4.7.12], the projection pr2 ∶ C ×⃗D D → D is a
cocartesian �bration of condensed∞-categories.

For sake of completeness we verify the following two facts which we have already used
for ordinary∞-categories in the proof of Theorem B.1. First recall that by unstraightening the
cocartesian �bration of condensed∞-categories ev1 ∶ Funcond([1], C) → C, one sees that over-
categories of condensed∞-categories are functorial.

B.20Proposition. Letf∶ C → D be a functor of condensed∞-categories and consider the natural
cocartesian �bration pr2 ∶ C ×⃗D D → D. Then for every pro�nite set S and morphism d → d′ inD(S), the induced functor on �bers is the canonical functorC∕d = C ×D D∕d⟶C×D D∕d′ = C∕d′
in Cond(Cat∞)∕S induced by the slice functorialityD∕d → D∕d′ .
Proof. We observe that the pullback squareC ×⃗D D Funcond([1],D)

C × D D ×D
⌟ (ev0,ev1)

f×idD
is in fact a pullback square in Cocartcts(D). Under the equivalence of Theorem B.12, it therefore
corresponds to a cartesian square of functorsD → Cond(Cat∞)C ×⃗D D D∕(−)

const(C) const(D)f
which proves the claim.
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B.21 Lemma. For any functor of condensed∞-categories f∶ C → D, the functor j ∶ C → C×⃗DD
is a fully faithful left adjoint.

Proof. The functor j sits inside the commutative diagram

C D
C ×⃗D D Funcond([1],D)

C D

f
j ⌟ const

⌟ ev0
f

in which all squares are cartesian. Since const is the fully faithful left adjoint of ev0, the proof of
[MW24, Lemma 6.3.9] shows that j is also a fully faithful left adjoint.
Proof of Theorem B.7. We factor f as

C C ×⃗D D Dj pr2
and apply the left adjoint of Observation B.13 to the cocartesian �bration pr2. The resulting left
�bration p∶ ℱ → C classi�es the functorBcond◦p̃r2 ∶ C → Cond(Ani)
and is given by factoring C ×⃗D D ℱ C ,� p
where � is initial and p is a left �bration. Here, p̃r2 is the unstraightened functor of pr2.

We now apply Proposition B.14 to the left �bration p, with L the Σ-completion functor(−)∧Σ ∶ Cond(Ani) → Pro(AniΣ) .
Thus we have to verify that for any S ∊ Pro(Set�n) and any map �∶ d → d′ ∊ C(S), the induced
map Bcondp̃r2(�) becomes an equivalence after Σ-completion. By construction p̃r2(d) is de�ned
via a cartesian square p̃r2(d) C ×⃗D D

S D
⌟

d
and similarly for p̃r2(d′). It follows that both p̃r2(d) and p̃r2(d′) are in Cat(Pro(Ani�)) since the
latter is closed under limits in Cond(Cat∞). It follows that for any point s ∶ ∗ → S the cartesian
square Bcondp̃r2(d◦s) Bcondp̃r2(d)

∗ S⌟
s
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satis�es the assumptions of Lemma B.18, since Bcond is the geometric realization of the corre-
sponding simplicial object. Thus it remains cartesian after Σ-completion (also the same holds ford′ instead of d). By [SAG, Theorem E.3.6.1], equivalences in Pro(AniΣ) can be checked �berwise.
Thus wemay thus reduce to the case where S = ∗. But in this case Bcondp̃r2(�) is by construction
the map Bcond(C∕d) → Bcond(C∕d′) ,
which becomes an equivalence after Σ-completion by assumption. Thus, Proposition B.14 shows
that in the commutative diagram

BcondC∕d BcondC Bcond(C ×⃗D D) Bcondℱ
∗ ≃ BcondD∕d BcondD BcondD ,

Bcondj
Bcondf

Bcond�
BcondL(pr2)

d id
the outer square is cartesian. Since Bcond inverts left adjoints and initial functors of condensed∞-categories, the claim follows.

C Galois groups of function �elds
It is well-known that there is an isomorphism of pro�nite groupsF̂rC ≃ GalC(T)
between the free pro�nite group on the underlying set of C and the absolute Galois group of the
function �eld C(T). See [Dou64; HJ00]. Moreover, it seems to be folklore that this isomorphism
can be chosen so that the free pro�nite group generated by an element a ∊ C corresponds to a
decomposition group of the prime (T − a). See [Jar95, §1.8]. The purpose of this appendix is to
record a proof of this folklore statement. This was also implicitly shown in [KN71], and we do
not claim originality of any of the results in this appendix.

C.1 Notation. Throughout this section we �x an algebraic closure K of the function �eld C(T).
We write GalC(T) ≔ Gal(K∕C(T)).
C.2 Recollection. Write C[T] ⊂ K for the integral closure of C[T] in K. For any a ∊ C a choice
of prime ideal ā in C[T] lying over (T−a) then determines a decomposition groupDā ⊂ GalC(T).
Moreover, if ā′ is another choice of prime above (T − a), then Dā′ is conjugate to Dā.

Our goal is to prove the following result, which is a slight re�nement of [Dou64, Theorem 2]
for C = C.
C.3 Theorem. There is an isomorphism of pro�nite groupsF̂rC → GalC(t)
such that for each a ∊ C the image of Ẑ(a) under this isomorphism is the decomposition groupDā|a
of a prime ā lying over (T − a).
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C.4 De�nition. LetM be a set. Write Σ for the system of �nite subsets S ⊂ M partially ordered
by inclusion. Let ((GS)S∊Σ, (�TS )S⊂T) be an inverse system of pro�nite groups with limit GM ≔limS∊Σ GS and write �MS ∶ GM → GS for the canonical projection. Let N be either the whole ofM, or an element of Σ.
(1) We say that a function '∶ N → GN is adapted if �NS ('(n)) = 1 for all �nite subsets S ⊂ N

and all n ∉ S.
(2) We say that a function '∶ N → GN is an adapted basis if ' is adapted and if the mapF̂rN → GN induced by ' is an isomorphism.

(3) We say that a system ℬ = (ℬS)S∊Σ of sets of functions ℬS ⊂ Hom(S, GS) is a system of
adapted bases if the following conditions hold.

(a) For each S ∊ Σ, ℬS ⊂ Hom(S, GS) = ∏S GS is a nonempty closed subset consisting of
adapted bases.

(b) For each S ⊂ T ∊ Σ, and each ' ∊ ℬT , the restriction S ⊂ T ',→ GT �TS,,→ GS is an element
of ℬS .

C.5 Proposition. LetM be a set. Write Σ for the poset of �nite subsets S ⊂ M partially ordered by
inclusion. Let ((GS)S∊Σ, (�TS )S⊂T) be an inverse systemof pro�nite groupswith limitGM ≔ limS∊Σ GS
and write �MS ∶ GM → GS for the canonical projection. Let ℬ be a system of adapted bases. If all
the transition maps �TS ∶ GT → GS are surjective, then there exists an adapted basisM → GM such
that for each S ∊ Σ, the restriction

S ⊂ M → GM �MS,,,→ GS
is a basis contained inℬS .
Proof. In [Dou64, Theorem 1], Douady proved the above claim in the case whereℬ is the system
of adapted bases consisting ofℬS the set of all adapted bases S → GS . However, the argument he
gives actually only uses the axiomatic of a general system of adapted bases in the above sense.

We will use the following lemma:

C.6 Lemma. Let G be a pro�nite group and let H,H′ ⊂ G be closed subgroups. Let �∶ G → G′
be a homomorphism of pro�nite groups. LetM ≔ { g ∊ G | �(g−1)�(H)�(g) = �(H′) } .
ThenM is closed in G.
Proof. We �rst consider the setM′ ≔ { g ∊ G | �(g−1)�(H)�(g) ⊂ �(H′) } .
For ℎ ∊ H, write M′ℎ ≔ { g ∊ G | �(g−1ℎg) ∊ �(H′) } .
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This is preimage of �(H′) ⊂ G′ under the continuous map G → G′ that sends g to �(g−1ℎg).
Since �(H′) ⊂ G′ is closed it follows thatM′ℎ is closed. SinceM′ = ⋂

ℎ∊HM′ℎ
it follows thatM′ is closed. Now note that the same argument shows thatM′′ ≔ { g ∊ G | �(g)�(H′)�(g)−1 ⊂ �(H) }
is closed. ThusM = M′ ∩M′′ is closed.
Proof of Theorem C.3. Our choice of algebraic closure yields an isomorphismGalC(T) ⥲ limS⊂C �nite

πét1 (A1 ∖ S, �̄) .
Let uswriteGS = πét1 (A1∖S, �̄).Wewant to apply PropositionC.5 to this inverse systems of groups
and the system of adapted bases ℬS that consists of those maps '∶ S → GS that are adapted
bases and for any s ∊ S, the subgroup Ẑ('(s)) is (conjugate to) a decomposition group at s. To see
that (ℬS)S is a system of adapted bases, we need to show that the conditions De�nition C.4-(3.a)
and De�nition C.4-(3.b) are satis�ed. It is clear that (3.b) is satis�ed, so we only check (3.a).
We start by verifying that ℬS ⊂ Hom(S, GS) is closed. To this end, note that the larger subsetℬallS ⊂ Hom(S, GS), consisting of all adapted bases is closed, see the beginning of the proof of
[Sza09, Proposition 3.4.9]. To conclude, it su�ces to see that for all s ∊ S the subset Σs ⊂ GS ,
consisting of those � ∊ GS with the property that Ẑ(�) is a decomposition group at s, is closed.
Indeed, in this case ℬS = ℬallS ∩∏s∊S Σs ⊂ Hom(S, GS) = ∏S GS .
is seen to be an intersection of closed subsets, hence itself closed. Fix one decomposition groupDs at s. Since Ds ≃ Ẑ, the subset N ⊂ Ds of elements that topologically generate Ds is closed.
Now observe that Σs agrees with the image of the continuous mapN × GS → GS; (n, g) ↦ g−1ng
and is therefore closed, since the domain is compact. Finally, we need to check that ℬS ≠ ∅.
Choose a point x ∊ C ∖ S and an étale path �∶ �̄ ⇝ x and consider the isomorphism ∶ πtop1 (C ∖ S, x)∧ ⥲ πét1 (A1C ∖ S, x) ⥲ πét1 (A1C ∖ S, �̄)
obtained from theRiemann existence theoremand conjugationwith�−1. Recall thatπtop1 (C∖S, x)
is freely generated by simple loops 
s at x around s, that do not loop around other points in S.
Then (s ↦  (
s)) is clearly an adapted basis and furthermore  (
s) generates a decomposition
group at s. Thus (s ↦  (
s)) ∊ ℬS .

By applying PropositionC.5, we obtain an isomorphism'∶ F̂rC ⥲ GalC(T)with the property
that for all �nite subsets S ⊂ C and a ∊ S, (�CS ◦')(a) generates a decomposition group at a inGS . We now show that '(a) generates a decomposition group at a in GalC(T) for any a ∊ C. To
this end, �x one decomposition group Da ⊂ GalC(T) of a. By the above, for every �nite subsetS ⊂ C there exists some g ∊ GalC(T) such that Ẑ('(a)) = g−1Dag in GS . Now by Lemma C.6 the
set CS of all such g is closed. Therefore

⋂S CS = limS CS is nonempty as a co�ltered limit of
nonempty compact Hausdor� spaces. By construction, any element g ∊ ⋂S CS has the property
that Ẑ('(a)) = g−1Dag holds after projecting to GS simultaneously for all S ⊂ C �nite. Since
both Da and Ẑ('(a)) are closed subgroups of GalC(T) = limS⊂C �nite GS , this shows that indeedg−1Dag = Ẑ('(a)). In particular, '(a) generates a decomposition group as desired.
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