The condensed homotopy type of a scheme

Peter J. Haine Tim Holzschuh Marcin Lara Catrin Mair Louis Martini

Sebastian Wolf

with an appendix by Bogdan Zavyalov

October 8, 2025

Abstract

We study a condensed version of the étale homotopy type of a scheme, which refines both
the usual étale homotopy type of Friedlander-Artin-Mazur and the proétale fundamental
group of Bhatt-Scholze. In the first part of this paper, we prove that this condensed homotopy
type satisfies descent along integral morphisms and that the expected fiber sequences hold.
We also provide explicit computations, for example, for rings of continuous functions. A key
ingredient in many of our arguments is a description of the condensed homotopy type using
the Galois category of a scheme introduced by Barwick-Glasman-Haine.

In the second part, we focus on the fundamental group of the condensed homotopy type in
more detail. We show that, unexpectedly, the fundamental group of the condensed homotopy
type of the affine line A; over the complex numbers is nontrivial. Nonetheless, its Noohi
completion recovers the proétale fundamental group of Bhatt-Scholze. Moreover, we show
that a mild correction—passing to the quasiseparated quotient—fixes most of this group’s
quirks. Surprisingly, this quotient is often a topological group.
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1 Introduction

1.1 Motivation and overview

Let X be a locally topologically noetherian scheme. In their work on the proétale topology [BS15,
§7], Bhatt and Scholze defined a refinement of the étale fundamental group called the proétale
fundamental group throet(X ). Its profinite completion recovers the usual étale fundamental
group; moreover, the proétale and étale fundamental groups coincide for normal schemes. While
the étale fundamental group classifies local systems with values in profinite rings such as Zg, it
generally does not classify Q,-local systems. The proétale fundamental group fixes this, as it has
the better feature that it classifies local systems in a more general class of topological rings.

The (SGA 3) étale fundamental group is the fundamental group of the étale homotopy type, a
proanima introduced by Artin-Mazur [AM69, §9] and Friedlander [Fri82, §4]. The étale homo-
topy type classifies derived Z,-local systems, and has a number of important applications. For
example, Friedlander’s [Fri73a] and Sullivan’s [Sul74] proofs of the Adams Conjecture, Feng’s
proof [Fen20] of Tate’s 1966 conjecture on the Artin-Tate pairing [Tat95], and applications to
anabelian geometry [HSS14; SS16].

Motivated by the utility of the proétale fundamental group and the étale homotopy type,
one desires a common refinement of the two to a ‘homotopy type’ that classifies derived Q-
local systems and refines the key properties of the étale homotopy type. The main goal of this
article is to use the theory of condensed mathematics introduced by Clausen-Scholze [Sch19b]
to investigate such a refinement.

This article is not the first to introduce a condensed refinement of the étale homotopy type;
one definition has been given by Barwick-Glasman-Haine via exodromy [BGH20, 13.8.10], and
another one, following a suggestion by Bhatt-Scholze [BS15, Remark 4.2.9], was given by Hemo-
Richarz-Scholbach [HRS23, Appendix A]. But beyond a few basic properties, little more was
known about these refinements. Hence, the primary aim of this article is to undertake a thorough
investigation of them.

The definition given in [HRS23] proceeds as follows. For a qcqgs scheme X, pick a proétale
hypercover X, — X by w-contractible schemes. Then for every n € N, the set of connected
components 1y(X,,) is naturally a profinite set. Define the condensed homotopy type of X to be
the colimit

19"(X) := colimpop To(X.) € Cond(Ani) ,

computed in the co-category Cond(Ani) of condensed anima. The idea is that the condensed
homotopy type should be ‘trivial’ (meaning having no higher homotopy groups) on w-contracti-
ble affines, and on general schemes, defined via proétale hyperdescent. More formally, T15" is
the unique hypercomplete proétale cosheaf whose value on w-contractible affines is 7.

This definition is convenient for some formal manipulations but often too inexplicit to di-
rectly compute in concrete examples. To remedy this, one of the main tools that we use relies on
the work of Barwick-Glasman-Haine [BGH20]. They introduced an explicit profinite category
Gal(X) whose underlying category is the category of points of the étale topos of X; the profinite
structure globalizes the topologies on the absolute Galois groups of the residue fields of X.

The pro-category Gal(X) can be regarded as a condensed category; the aforementioned con-
densed refinement of the étale homotopy type proposed by Barwick-Glasman-Haine [BGH20,
13.8.10] is the condensed classifying anima of Gal(X), obtained by inverting all morphisms in
this condensed category. Wolf showed that the whole hypercomplete proétale co-topos can be
recovered from the condensed category Gal(X) [Wol22]. Using Wolf’s theorem, we prove in



Proposition 3.38 that this proposed definition agrees with the other proposal mentioned above:
19" (X) ~ BeondGal(X) .

Before explaining our main results in detail, we now turn to briefly summarizing the contents
of this article. This article consists of two parts. In the first part, we show that, in many respects,
the condensed homotopy type behaves as one would expect from a refinement of the étale
homotopy type. Among other results, we show that an analogue of the fundamental fiber sequence
holds and that the condensed homotopy type satisfies integral descent; see Theorems 1.1 and 1.3
below. We also provide explicit computations of the condensed homotopy type, for example for
rings of continuous functions C(T, C), where T is a compact Hausdorff space (see Theorem 1.4).

In the second part of this article, we focus on the condensed fundamental group. Every geo-
metric point X — X defines a point of the condensed anima I1$S"4(X), giving rise to condensed
groups

(X, %) = 7, (TM(X), %) .

Computing these groups is generally difficult, and the results can be wild and unexpected. For
instance, we prove in Corollary 7.8 that the fundamental group of the affine line over the complex
numbers is nontrivial:

AL ®) # 1.

While this departs from the classical situation, we show that the Noohi completion of niond(X , %)
recovers the proétale fundamental group of Bhatt-Scholze; see Theorem 8.17. In fact, we prove
that already the quasiseparated quotient niond’qS(X ,X), a milder completion similar to the Haus-
dorff quotient of topological groups, behaves computationally as expected. Also, surprisingly,
in many situations the quasiseparated quotient turns out to be a topological group. See Theo-
rem 1.10, the van Kampen formula (Theorem 1.12), and the Kiinneth formula (Theorem 1.13).
Studying niond’qs is another major theme of the second part of this article.

1.2 Results about the condensed homotopy type

‘We now turn to explaining the results that we prove in the first part of this paper in detail. The
first is a condensed version of the ‘fundamental exact sequence’ for the étale fundamental group.

1.1 Theorem (fundamental fiber sequence, Corollary 5.6). Let f : X — S be a morphism between
qcgs schemes, and let § — S be a geometric point of S. If dim(S) = 0, then the naturally null sequence

NEM(X5) — TN — HEM(S)

is a fiber sequence in the co-category Cond(Ani).

Second, using a profinite version of Quillen’s Theorem B, we prove the following analogue
of a result of Friedlander [Fri73b, Theorem 3.7].

1.2 Theorem (Theorem 5.12). Let f : X — S be a smooth and proper morphism between qcqs
schemes and let § — S be a geometric point. Let ¥ be a nonempty set of primes invertible on S. Then
the induced map

IEM(X5) — fibg(IEMX) — MZM(S))

becomes an equivalence after completion at %.



Third, we show that the hypercomplete proétale co-topos and the condensed homotopy type
have descent along hypercovers by integral surjections:

. h ;
1.3 Theorem (integral hyperdescent, Corollary 6.16). The functor X — proit sending a qcgs

scheme X to its hypercomplete proétale oo-topos satisfies integral hyperdescent. As a consequence,
if X. » X is an integral hypercover, then the natural map of condensed anima

COlionp Hggnd (X,) - Hggnd (X)
is an equivalence.

The description of TI$"4(X) via exodromy is a crucial ingredient in our proof of Theorem 1.3;
it follows rather quickly from the fact that, for an integral morphism of schemes f : X — Y, the
functor Gal(f) is a right fibration of condensed co-categories. See Proposition 6.9.

Finally, we give a complete computation of the condensed and étale homotopy types of rings
of continuous functions to the complex numbers:

1.4 Theorem (Corollary 4.35). Let T be a compact Hausdorff space and consider the ring C(T, C)
of continuous functions to the complex numbers. Then there is a natural equivalence of condensed
anima

19" (Spec(C(T, C))) ~ T .

(Here, the right-hand side denotes the condensed set represented by T.)

As a consequence, up to protruncation, the étale homotopy type of Spec(C(T, C)) is equiva-
lent to the shape of the topological space T. In particular, if T admits a CW structure, then, up to
protruncation, the étale homotopy type of Spec(C(T, C)) recovers the underlying anima of T.

1.5 Remark. The computation of the protruncated étale homotopy type of rings of continuous
functions seems new. We also do not know of a direct computation that does not pass through
the condensed homotopy type.

1.3 Results about the condensed fundamental group

We now turn to our results about the condensed fundamental group. But first, let us remark that
we also obtain a reasonably explicit description of the condensed set of connected components
of TIM(X).

1.6 Theorem (Theorem 4.18 and Corollary 4.19). Let X be a gcqs scheme. Then, for any extremally
disconnected profinite set S, we have

n(o)ond(x)(s) = Maqu(S, XD/~ ,

where ~ is the equivalence relation generated by pointwise specializations.
In particular, if X has finitely many irreducible components, then ﬂ(c)ond(X ) coincides with the
usual profinite set ,(X) of connected components of X.

1.7 Remark (see Example 4.24). Let R be a ring with the property that |Spec(R)| is homeomor-
phic to the underlying spectral space of Huber’s adic unit disk over Q,. Then the condensed set
Tt(c)‘md(Spec(R)) coincides with the separated quotient of the space |Spec(R)|. This is a compact
Hausdorff space, and moreover, it coincides with the Berkovich unit disk, i.e.,

TCgond(SpeC(R)) ~ |D3Berk| .
p

While this example feels rather contrived in the realm of schemes, in a follow-up article we plan
to study a similarly defined condensed homotopy type for rigid spaces.



We now turn to our results about the condensed fundamental group. As stated earlier, the
condensed fundamental group of A}: is nontrivial:

1.8 Theorem (Corollary 7.8). Let X — Aé be a geometric point. Then the abelianization of the
underlying group 7t§°“d(A1 , X)(x) is nontrivial. As a consequence, 7ti"rl‘l(A1 ,X)# 1.

One way to remedy this lies in the relationship between the condensed and proétale fundamental
groups. The proétale fundamental group has the property that it is a Noohi group in the sense
of [BS15, §7.1]. A consequence of Theorem 1.8 is that the condensed fundamental group is not
generally a Noohi group. The process of Noohi completion G + GN°°hi extends from topological
groups to condensed groups, and we prove:

1.9 Theorem (Theorem 8.17). Let X be be a qcqs scheme with finitely many irreducible compo-
nents and X — X a geometric point. Then there is a natural isomorphism

7.c<1:ond(X’ J—C)Noohi N 7.[Il)met(X’ %).

In the case of AIC, we prove that an operation much milder than Noohi completion forces
niond (Alc) to become trivial. Specifically, Clausen and Scholze introduced a localization A — A%
of the category of condensed sets called the quasiseparated quotient [Sch19a, Lecture VI], and

we show:

1.10 Theorem (Theorem 7.27). Let X be a qcqs geometrically unibranch scheme with finitely many
irreducible components, and let X — X be a geometric point. Then there is a natural isomorphism

cond,gs
T q

: X, %) > (X, %).

As a consequence of Theorems 1.1 and 1.6, we deduce a fundamental exact sequence for the
quasiseparated quotient of the condensed fundamental group:

1.11 Theorem (fundamental exact sequence, Corollary 7.26). Let k be a field with separable
closurek, let X be a qcgs k-scheme, and fix a geometric point X — Xp. If X is geometrically connected
and X} has finitely many irreducible components, then the sequence

d _ d _
1— Tcion ’qS(X,g,x) — nion Bx %) — Galp — 1
is exact.

Theorem 1.10 can be used, together with integral descent (Theorem 1.3), to show that for
many non-normal schemes, the quasiseparated quotient of the condensed fundamental group
still admits a description in terms of the étale fundamental group. Moreover, surprisingly, it is a
(Hausdorff) topological group rather than some more complicated condensed group.

1.12 Theorem (van Kampen formula for niond’qs, special case of Theorem 7.51). Let X be a

Nagata qcgs scheme and let X = Hl. X;’ be the decomposition of its normalization into connected
components. After choosing base points and étale paths, one has that

cond,gs oy top _at - t ’
m (X, %) = (%" n{{(X7,x;) %P Z*") /H' .

Here, Z*" is a free (discrete) group of finite rank, *'°P denotes the free topological product and H' is
an explicit closed normal subgroup.



Using the van Kampen and the Kiinneth formulas for the étale fundamental group, we prove:
1.13 Theorem (Kiinneth formula for ncond’qs, Corollary 7.53). Let k be a separably closed field
and let X and Y be schemes of finite type over k. If Y is proper or char(k) = 0, then the natural
homomorphism of condensed groups

d, - d, - d, _
TP Y (5,9) = 0 B xR )

is an isomorphism.

proét
1

d,q

In some ways, the group nion ® is even better-behaved than 7 (see, e.g., Remark 7.56).

1.4 Related work

As mentioned earlier, the first definitions of the condensed homotopy type were given via exo-
dromy by Barwick-Glasman-Haine [BGH20, 13.8.10], by Bhatt-Scholze [BS15, Remark 4.2.9]
and by Hemo-Richarz-Scholbach [HRS23, Appendix A]. Another approach to the condensed
homotopy type that mostly uses (simplicial) topological spaces rather than condensed mathe-
matics (along the lines of Artin and Mazur’s work) was studied by Meffle [Mef25].

Some results and definitions in this article constitute a part of doctoral theses of the forth
[Mai25] and sixth [Wol25] named authors.

1.5 Linear overview

In §2, we recall some preliminaries on condensed anima, pro-objects, condensed co-categories,
and proétale sheaves.

Part I is dedicated to proving fundamental results about the condensed homotopy type. In §3,
we give three definitions of the condensed homotopy type, and prove that they are equivalent.
We also compute the condensed homotopy type of henselian local rings (Corollary 3.48). In
§4, we prove Theorem 1.6, giving an explicit description of the connected components of the
condensed homotopy type. As an application of this explicit description, we also we compute
the condensed homotopy type of rings of continuous functions (Theorem 1.4).

Section 5 is dedicated to producing fiber sequences for the condensed homotopy type. Specif-
ically, we prove the fundamental fiber sequence (Theorem 1.1) as well as an analogue of a result
of Friedlander relating the condensed homotopy type of the geometric fiber of a smooth proper
morphism to the fiber of the induced map on condensed homotopy types (Theorem 1.2). In §6,
we prove that the condensed homotopy type satisfies integral hyperdescent (Theorem 1.3).

In Part II, we turn our attention to the condensed fundamental group. In § 7, we start by
showing that niond(Alc) is nontrivial (Theorem 1.8). We then study the quasiseparated quotient
of the condensed fundamental group. In particular, we prove Theorems 1.10 to 1.13. In §8, we
prove that the Noohi completion of the condensed fundamental group recovers the proétale
fundamental group (Theorem 1.9).

We have three appendices. Appendix A, by Bogdan Zavyalov, is on the structure of rings of
continuous functions and the relationship between these rings and Cech-Stone compactification.
We need these results for the computation of the condensed homotopy type of rings of continuous
functions, however were not able to find any sources that contained all of the results we needed.

In Appendix B, we prove an analogue of Quillen’s Theorem B for profinite completions of
classifying anima of condensed oo-categories. Together with the description of the condensed
homotopy type via exodromy, this is the key tool we use to prove Theorem 1.2.



It is well-known that there is an isomorphism between the absolute Galois group of the
function field C(¢) and the free profinite group on the set C. See, for example [Dou64; HJ00; Jar95].
It seems to be folklore that this isomorphism can be chosen to be compatible with decomposition
groups; this is crucial for our proof that niond(Alc) # 1. Since we could not find this proven in
the literature, and there are some subtleties involved, we have included a proof in Appendix C.

1.6 Conventions
Set theory

As usual when working with condensed mathematics, there are some set-theoretic issues one
needs to deal with. We give detailed explanations on how we handle these in Remarks 2.4, 2.36,
and 3.18.

Notational conventions
We use the following standard notation.

(1) We write Cat,, for the large co-category of small co-categories, and write Ani C Cat,, for
the full subcategory spanned by the anima (also called co-groupoids or spaces).

(2) Given a small oo-category C, we write PSh(C) := Fun(C°P, Ani) for the co-category of
presheaves of anima on C.

(3) Given an co-topos X', we write X™P ¢ X for the full subcategory spanned by the hypercom-
plete objects. The inclusion is accessible and admits a left exact accessible left adjoint, so
that ’MP is also an co-topos, called the hypercompletion of X.

(4) Given an co-site (€, 7), we write Sh.(C) for the co-topos of sheaves of anima on € with respect
to 7. We write Sh?yp((:’) := Sh.(C)MP. The co-topos Sh?yp(e) can also be identified as the full
subcategory of Sh.(C) spanned by those sheaves that also satisfy descent for hypercovers. If
the topology 7 is clear from the context, we may omit it from the notation.

(5) Given a scheme X, we write Ety and ProEty for its étale and proétale site, respectively. More-
over, we write X4 = Sh(Ety) and Xproet = Sh(ProEty) for the co-topoi of étale and proétale
sheaves of anima on X, respectively.

(6) For an integer n > 0, we write [n] for the poset {0 < --- < n}.

(7) For each integer n > 0, we write A, C A for the full subcategory spanned by [0], ..., [n].
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2 Preliminaries

For later use and the convenience of the reader, in this section we record a few definitions and
observations on condensed anima (§2.1), pro-anima and their relation to condensed anima (§2.2),
condensed oco-categories (§2.3), shape theory (§2.4), and proétale sheaves and w-contractible
objects (§2.5).

2.1 Recollection on condensed anima
All of the material contained in this subsection is gathered from [BH19] and [Sch19b].

2.1 Notation. We write Top for the category of topological spaces, and Comp C Top for the
full subcategory spanned by the compact Hausdorff spaces. We write §: Top — Comp for
the Cech-Stone compactification functor, i.e., the left adjoint to the inclusion. By Stone duality,
the category Pro(Setg,,) of profinite sets embeds fully faithfully into Comp with image the full
subcategory spanned by the totally disconnected compact Hausdorff spaces. We write

Extr C Pro(Setg,)

for the full subcategory spanned by the extremally disconnected profinite sets. By a theorem of
Gleason [Gle58], the projective objects of the category Comp are exactly the extremally discon-
nected profinite sets. Moreover, a profinite set is extremally disconnected if and only if it is a
retract of the Cech-Stone compactification of a set equipped with the discrete topology.

2.2 Recollection (condensed anima). Give the category Comp of compact Hausdorff spaces
the Grothendieck topology where the covering families are generated by finite jointly surjective
families. For each compact Hausdorffspace T, let T® denote the underlying set of T equipped with
the discrete topology. By the universal property of Cech-Stone compactification the ‘identity’
map T% — T extends to a surjection §(T®) - T. In particular, every compact Hausdorff space
admits a surjection from an extremally disconnected profinite set. Hence the subcategories

Extr C Pro(Setg,) C Comp



are bases for the topology of finite jointly surjective families. By [Aok23, Corollary A.7], the
restriction functors define equivalences of hypercomplete co-topoi

(2.3) Shhyp(Comp) = Shhyp(Pro(Setﬁn)) = Shhyp(Extr) .

The oo-topos Cond(Ani) of condensed anima is any of the equivalent co-topoi (2.3).

Since every surjection T/ - T of profinite sets with T extremally disconnected admits a
section, a presheaf F on Extr is a hypersheaf if and only if F carries finite disjoint unions to
finite products. That is,

Sh™P(Extr) ~ Fun*(Extr’®, Ani) .

From this description it follows that sifted colimits in Cond(Ani) can be computed in the
presheaf category Fun(Extr’®, Ani).

2.4 Remark. Since the category Comp of compact Hausdorff spaces is not a small category,
there are some set-theoretic issues in the above discussion. We explain how to deal with these
issues in Remark 2.36.

Given the final description of condensed anima, we make the following convenient general
definition.

2.5 Definition (condensed objects). Let C be an co-category with finite products. The co-cate-
gory of condensed objects of C is the co-category

Cond(€) := Fun™(Extr®, @)

of finite product-preserving presheaves Extr®® — €. If D is another co-category with finite
products and F : C — D is a finite product-preserving functor, we write

Feond » Cond(€) - Cond(D)
for the functor given by post-composition with F.
2.6. Observe thatif F: ¢ — D admits a right adjoint G, then G°°" is right adjoint to F<°nd,

2.7 Recollection (homotopy groups of condensed anima). The functor 7y : Ani — Set pre-
serves finite products. Moreover, for each integer n > 1, the functor rt,, : Ani, — Grp preserves
finite products. There is a canonical identification

Cond(Ani), = Cond(Ani,)

between pointed objects of condensed anima and condensed objects of pointed anima. We simply
write 1y : Cond(Ani) — Cond(Set) for n(c)ond and 7, : Cond(Ani), — Cond(Grp) for

cond

Cond(Ani), = Cond(Ani,,) I Cond(Grp) .

Explicitly, given a condensed anima A, the condensed set y(A) : Extr’® — Set is given by

To(A)(S) = TH(A(S)) -
Similarly, given a global section a : * — A, the condensed group 7t,,(A4, a) is given by

(A, a)(S) = 1, (A(S), a) .

10



2.8 Recollection [BH19, Construction 2.2.12]. Write
ev, . Cond(Ani) -» Ani

for the global sections functor, given by A — A(x). The functor ev, admits a left adjoint, that we
denote by '
(=)dis¢: Ani — Cond(Ani)

Furthermore (=) is fully faithful. We call the image of (—)dis¢ the discrete condensed anima.

2.9 Recollection (the restricted Yoneda embedding). The restricted Yoneda embedding defines
a functor

Top — Cond(Ani), T~ T
given by
T [SH MapTop(S, 7)].

Note that this functor factors through Cond(Set) C Cond(Ani).! Also recall that this functor is
fully faithful when restricted to the full subcategory of Top spanned by the compactly generated
topological spaces [Sch19b, Proposition 1.7]. Since it rarely leads to confusion, we often omit the
underline and simply write T for T.

2.2 Pro-objects and completions
‘We now turn to some recollections about proanima and their relation to condensed anima.
2.10 Recollection (7t-finite and truncated anima). Let A be an anima.

(1) We say that A is truncated if there exists an integer n > 0 such thatforalla € A and k > n,
we have (A, a) = 0.

(2) We say that A is mt-finite if A is truncated, my(A) is finite, and for all a € A and k > 0, the
group 1, (A, a) is finite.

(3) We write Ani,; C Ani_,, C Ani for the full subcategories of Ani spanned by the n-finite
and truncated anima, respectively.

2.11 Recollection (on various completions).
(1) Since Cond(Ani) admits cofiltered limits, the inclusions
Ani; C Ani_,, C Cond(Ani)
extend to cofiltered-limit-preserving functors
Pro(Ani,) < Pro(Ani.,) — Cond(Ani).

Here, the functor Pro(Ani..,) — Cond(Ani) is not fully faithful. However, by [BH19, Ex-
ample 3.3.10; Hai25, Proposition 0.1], its restriction to Pro(Ani,) is fully faithful.

IHowever, note that if T is not Ty, then the the sheaf MapTop(—, T) is not generally accessible [Sch19b, Warning

2.14 & Proposition 2.15]. So, depending on which way you deal with set-theoretic issues, it is not a condensed set, cf.
Remark 2.36. However, in this paper, we only apply this functor to T; topological spaces anyways.
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(2) The above chain of functors Pro(Ani,) < Pro(Ani.,) — Cond(Ani) admits left adjoints

()

T

Cond(Ani) —— Pro(Ani_) W) Pro(Ani,)

“disc
that we call the prodiscretization, resp., profinite completion functors.

(3) Similarly, the inclusions Sets, C Cond(Set) and Grp;,, C Cond(Grp) induce inclusions
Pro(Setg,) C Cond(Set) and Pro(Grp;,) C Cond(Grp) that admit left adjoints

Cond(Set) — Pro(Setg,,) and (=)": Cond(Grp) — Pro(Grpg,)
that we refer to as profinite completion functors.
We now explain the effect of profintie completion of condensed anima on 7 and ;.
2.12 Lemma (completions & 7y /m;). Let A be a condensed anima and a : * — A a point.

(1) The map nty(A) — mo(AL) induced by the unit map A — A2 exhibits 1y(AZL) as the profinite
completion of my(A).

(2) If my(A) € Cond(Set) is discrete, then the unit map A — A2 induces an isomorphism of
profinite groups
(A, a)" = 1 (Ap, a) .

Proof. For (1), note that since the square of inclusions

Pro(Setg,,) —— Cond(Set)

[ [

Pro(Ani;) —— Cond(Ani)

commutes, so does the induced square

A
Cond(Ani) R N Pro(Ani,)

nol lno

Cond(Set) —— Pro(Setg,,)

of left adjoints.
For (2), since 7y(A) is a set, we may assume that 7,(A) = x*. It suffices to show that, for any
finite group G, precomposition induces a bijection

Map o dcarp)(M1(4, @), G) = MapCOHd(Grp)(nl(AQ, a),G) = MapPrO(Grpﬁn)(nl(AQ, a),G).

To see this, note that we have a commutative square

TT
ToMaPp,oani.), (A7, BG) —— Mapp,oGrp, (M1 (A7, @), G)

l |

TCOMapcond(Ani)* (A,BG) 7:1 > MapCond(Grp) (m1(4,a),G),

12



where the vertical maps are those induced by the unit transformation A — AZ. Since 1y(A) = *,
by the equivalence of 1-truncated, pointed connected objects and group objects [HTT, Theorem
7.2.2.12], the horizontal maps are bijections. It thus suffices to see that the map

Mapc o, dcani, (A2,BG) — Mapc . d(ani), (4, BG)

induces a bijection on 7. But since G is finite and Pro(Ani,), & Cond(Ani),, is fully faithful,
by adjunction it is even an equivalence. O

2.13 Remark. One cannot drop the assumption that 7ty(A) is discrete in Lemma 2.12 (2). Indeed,
let A be the condensed set represented by the topological circle S'. Then for any x € S!, we have

m(A,x) =% but m (AL, x)= Z.

2.3 Condensed oo-categories

‘We now recall some background on internal higher category theory and condensed co-categories.
The main point is that it is often useful to use the fact that the co-category of condensed co-cate-
gories is equivalent to the co-category of categories internal to condensed anima. We refer the
reader to [Mar21, §3; MW24, §2] for more background about internal higher category theory.

2.14 Definition. Let B be an co-category with finite limits. A category internal to B is a simplicial
object F : A°? — B satisfying the following conditions.

(1) Segal condition: For each integer n > 2, the natural map

X F{n—-1<n})

FlnD = FQO <1p x FEL <2} x - X

is an equivalence in B.
(2) Univalence axiom: The natural square

F([0]) —2— F([0]) x F([0])

l 1

F([3]) — F{0<2)xF({1 <3}

is a pullback square in B. Here, the left vertical map is given by restriction along the unique
map [3] — [0], the right vertical map is the product of the maps given by restriction along
the unique maps {0 < 2} — [0] and {1 < 3} — [0], and the bottom horizontal map is induced
by restriction along the inclusions {0 < 2} < [3] and {1 < 3} & [3].

We write
Cat(B) c Fun(A°P, B)

for the full subcategory spanned by the categories internal to B.

2.15 Remark. Elsewhere in the literature, internal categories are also called complete Segal
objects.
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2.16. Joyal and Tierney [JT07] showed that the nerve construction defines an equivalence

N: Cat,, = Cat(Ani)
C ~ [[n] = Mapg,, ([n].C)]

from the co-category of co-categories to the co-category of categories internal to anima. See
[HS25] for a modern, model-independent proof of this fact.

2.17. The main example that we care about in this paper is the case where 3 = Cond(Ani). Since
the Segal conditions and the sheaf condition are both limit conditions, the canonical equivalence

Fun(Extr’®, Fun(A°P, Ani)) ~ Fun(A°, Fun(Extr°?, Ani))
restricts to an equivalence
Cond(Cat,,) ~ Cat(Cond(Ani)) .
Therefore, we often implicitly identify Cond(Cat,,) with Cat(Cond(Ani)).

We now turn to some specific features of Cond(Cat,,).

2.18 Definition (continuous functors). The co-category of condensed co-categories is cartesian
closed, see [Mar21, Proposition 3.2.11]. For condensed co-categories € and D, we denote the
internal Hom by

Fun®d(e, D).

Similarly, we write
Fun®(€, D) = Fun®™(¢, D)(x)
for the oo-category of continuous functors € — D.
2.19. Observe that the functor (€, D) — Fun®*(€, D) is characterized by the existence of natural
equivalences
Mapg,, (A, Fun™(€, D)) ~ Map,yq(cat..)(A X € D)
for each co-category A.

cts

2.20. Explicitly, Fun (€, D) is given by the end

FunCtS(e’ 2)) ~ J Fun(e(S), ﬂ(s)) )
SeExtr?

see, for example, [Gla16, Proposition 2.3]. In particular, the objects in this co-category are pre-
cisely natural transformations €(—) — D(—) of functors Extr®® — Cat,,.

Many of the condensed co-categories we are interested come from pro-objects:

2.21 Observation. By taking internal categories on each side, the right adjoint fully faithful
embedding Pro(Ani,) — Cond(Ani) of Recollection 2.11 induces a fully faithful right adjoint
functor

t: Cat(Pro(Ani,)) - Cond(Cat,,) .

Many of the examples of condensed co-categories that we care about are in the image of this
embedding.
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For condensed co-categories in the image of 1, we can describe their value at Cech-Stone com-
pactifations explicitly:

2.22 Proposition. Consider C € Cat(Pro(Ani,)) as a condensed co-category via t and let M be a
set. Then the functor
Fun®*(BM), ) > [] edm}

meM
induced by the inclusions {m} & (M) is an equivalence of co-categories.

Proof. It suffices to check that this functor becomes an equivalence after applying the functor
Mapg,, ([n],—) for every n. Since we have a natural chain of equivalences

Mapgy_ ([n], Fun®(B(1), ©)) = Mapgopq(cat, ) BM) X [1], €)
= MapCond(Catoo)(ﬁ(M)’ eV[n](G)),

it suffices to show that the natural map

Mapnqccat ) (B, V() (€)) — qdev[n](e)am})

is an equivalence. Since ev(,)(C) is a profinite anima by assumption and both sides are clearly
compatible with limits, we may assume that ev|,,|(C) = A is a 7-finite anima.

By [SAG, Lemma E.1.6.5], there exists a Kan complex A, with values in finite sets such that
|A.| =~ A. Since f(M) is a compact projective object in Cond(Ani), it follows that the natural
map

|MapC0nd(Ani)(6(M),A.)| - MaPCOHd(Ani)(B(M)’ [A.])

is an equivalence. Since every A,, is finite, it follows that Map 4 Ani)(B(M )»A) =~ T1 pA s
an infinite product of Kan complexes. Since geometric realizations of Kan complexes commute
with arbitrary products,? the natural map

MapcOnd(Ani)(B(M)’A) =~ |MapC0nd(Ani)(B(M),A.)| — H|A-| = HA
M M

is an equivalence. O

2.4 Recollection on shape theory

In this subsection, we recall a bit about shape theory for co-topoi. We do not explicitly need shape
theory for most of this paper, but, instead, we work with a relative version of shape theory over
the base co-topos of condensed anima. So this subsection serves as motivation for the theory we
develop; we also use it to recall some background on shapes of topological spaces and the étale
homotopy type.

2.23 Recollection (protruncation). The inclusion Pro(Ani.. ) C Pro(Ani) admits a left adjoint
T. . Pro(Ani) - Pro(Ani_,,)

defined as follows. The functor 1T, is the unique cofiltered-limit-preserving extension of the
fully faithful functor Ani & Pro(Ani_,,) that sends an anima A to the cofiltered diagram given
by its Postnikov tower {1, (A)},>0. We refer to 1., as the protruncation functor.

2This follows from the fact that the homotopy groups of the geometric realization of a Kan complex are computed as
its simplicial homotopy groups, and these commute with infinite products.
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2.24 Recollection. Let X' be an co-topos. We write I', := Map,.(1y,—): X — Ani for the
global sections functor. The functor I', admits a left exact left adjoint I'™* : Ani — X referred to
as the constant sheaf functor. The co-topos of anima is the terminal object of RTop _, so I',, is
the unique geometric morphism X — Ani.

While I'* need not preserve limits in general, the unique cofiltered limit-preserving extension
Pro(Ani) — X of I'* preserves all limits and admits a left adjoint

I'y: X — Pro(Ani) .
2.25 Recollection. Let X be an oo-topos. The shape of XX is the proanima
Mo (X) = Ty(1y) .
The assignment X — II,(X) naturally refines to a functor
I, : RTop  — Pro(Ani)
that is left adjoint to the unique cofiltered limit-preserving extension of the functor

Ani — RTop_
A+ Fun(A, Ani) ~ Ani /4

with functoriality given by right Kan extension.
The protruncated shape functor is the composite

Hoo . T<oo 0
II., : RTop,, —— Pro(Ani) —— Pro(Ani.,) .

Similarly, the profinite shape is defined by composing further with the profinite completion
functor

~ Mg . -z .
M., : RTop,, — Pro(Ani_,,) N Pro(Ani,) .

2.26 Observation. The prodiscritization functor (—)dAiSC : Cond(Ani) — Pro(Ani_) is the
composite of I'y : Cond(Ani) — Pro(Ani) with the protruncation functor 1.

We now give a useful, alternative description of the shape.

2.27 Recollection. Let C be an accessible co-category with finite limits (e.g., € = Ani). Then
by [SAG, Definition A.8.1.1 & Proposition A.8.1.6], there is a natural identification

Pro(@) ~ Fun'®**°(¢, Ani)°P

with the opposite of the co-category of left exact accessible functors € — Ani. Under these
identifications, the protruncation functor 1., : Pro(Ani) — Pro(Ani_,,) is identified with the
functor

Fun'®*“(Ani, Ani)®® — Fun'®**“(Ani__,, Ani)°

given by precomposition with the inclusion Ani.,, < Ani.
Given an co-topos XX, under this identification of Pro(Ani), the shape I, () is the left exact
accessible functor Ani — Ani given by the composite

[y .7 Ani - Ani.
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That is, for each anima A, the value of T1,(XX') on A is the global sections of the constant object of
X with value A. Moreover, given a geometric morphism f, : X' — Y withunitu : idy — f,f¥,
the induced morphism of proanima IT (X) — I (Y) corresponds to the morphism

Fy,*ul"z . Fy,*l—w; —> Fy,*f*f*rz ~ Fx’*].—‘;c
in Pro(Ani)°P? C Fun(Ani, Ani). We refer the reader to [HTT, §7.1.6; Hoy18, §2] for more details.

We now explain how the shape of the co-topos of sheaves on a locally compact Hausdorff
space T relates to the prodiscretization of the condensed set represented by T in the sense of
Recollection 2.11. To do this, we first need the following lemma.

2.28 Lemma. Let f, : X — Y be a geometric morphism of oco-topoi. If f* is fully faithful when
restricted to truncated objects, then I, (f) : I o(X) = I (Y) is an equivalence.

Proof. Note thatsince f* and f, are left exact, they preserve truncated objects [HTT, Proposition
5.5.6.16]. Hence the adjunction f* 4 f, restricts to an adjunction at the level of truncated
objects. Thus our assumption is that the unitu : idy — f, f* is an equivalence when restricted
to truncated objects. Under the description of the protruncated shape given in Recollection 2.27,
we see that we need to show that for each truncated anima A, the map induced by the unit

Ty, [ (A) — Ty, f. f*T3(A)
is an equivalence; this follows from our assumption. O
2.29 Example. Let X be an co-topos. There are natural geometric morphisms
POt 5 rhyp o

Here, XP%! is the Postnikov completion of XX in the sense of [SAG, Definition A.7.2.5]. By [SAG,
Theorem A.7.2.4] and [HTT, Lemma 6.5.2.9], these geometric morphisms restrict to equivalences
on truncated objects. Hence they induce equivalences on protruncated shapes.

Now we deal with sheaves on locally compact Hausdorff spaces.

2.30 Notation. For a topological space T, we write II(T) € Pro(Ani) for the shape of the
oo-topos Sh(T) of sheaves of anima on T. We write I1_,(T) for the protruncation of I1,(T). We
write LCH C Top for the full subcategory spanned by the locally compact Hausdorff spaces.

2.31 Example. If T is a topological space that admits a CW structure, then I1 (T) coincides
with the underlying anima of T. See [HA, §A.4; HPT23, §3.2].

2.32 Lemmma. The triangle

LCH

Cond(Ani) = Pro(Ani_)

disc

canonically commutes.
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Proof. Let T be a locally compact Hausdorff space. By [Hai22, Corollary 4.9], there is a natural
fully faithful left exact left adjoint

ShP*Y(T) & Cond(Ani)r

from the Postnikov completion of the co-topos of sheaves on T to condensed anima sliced over
T. By Lemma 2.28 and Example 2.29, we deduce that this algebraic morphism induces an equiv-
alence on protruncated shapes

I (Cond(Ani) 1) = I (ShP*(T)) = I (T).

Note that for any co-topos X and object U € X, the forgetful functor X' ,; — X is left adjoint
to the pullback functor U X (=) : X' — X ,y. Hence the shape of X'y coincides with the image
of U under Ty : X — Pro(Ani). Thus by Observation 2.26, the protruncated shape of the slice
Cond(Ani) 7 coincides with prodiscretization of the condensed set T. O

2.33 Remark. Lemma 2.32 was also (essentially) observed in [Aok24, Theorem 4.12].

2.5 Recollection on proétale sheaves

We now turn to recalling some background about the proétale topology and proétale sheaves.
The following definition is from [BS15]:

2.34 Definition. Let f: X — Y be a morphism of schemes.
(1) Wecall f: X — Y weakly étale if both f and its diagonal A are flat.

(2) We write ProEty for the proétale site of X, i.e., the site of weakly étale X-schemes equipped
with the fpqc topology.

(3) We furthermore write X, .4 := Sh(ProEty ) for the proétale co-topos of X.
proét X p D

. . ) hyp

2.35. We almost exclusively work with the hypercomplete proétale co-topos Xproét.

2.36 Remark (size issues). Since the category of weakly étale X-schemes is not small, Defi-
nition 2.34 introduces some set-theoretic issues. In the end, one can always circumvent these
issues and they do not have any serious effect on our results. For the more cautious reader, we

suggest one of the following two ways of reading this paper:

(1) Fixonce and for all two strongly inaccessible cardinals § < . All schemes, spectral spaces, etc.
are then assumed to be §-small and all categorical constructions, such as taking sheaves on a
site, are taken with respect to the larger universe determined by €. In particular X hfoi . always
means hypersheaves of e-small anima on §-small weakly étale X-schemes, and similarly for
the co-category of condensed anima Cond(Ani).

(2) If the reader does not want to work with universes, they may proceed as follows. For a
scheme X, choose a strong limit cardinal x such that X is x-small. Write ProEty , for the
category of x-small weakly étale X-schemes. We then define

XP Shhyp(ProEtX’K) )

proét,x
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The assumption that x is a strong limit cardinal guarantees that there are enough w-con-
tractibles in ProEtX’x, see Definition 2.42. We then define

h;
XYP

.. :=colim, X hyp
proét

proét,x
and similarly for the category of condensed anima. This is also the approach taken by Clausen
and Scholze [Sch19b].

However, then some statements aboutX yp . and Cond(Ani), such as Proposition 2.51, are
no longer true on the nose. In such a case to correct the result, one must make an implicit
choice of strong limit cutoff cardinal x, and X P should be understood as X™%. . In the

roét roét,x”
end, a choice of such a x is harmless and does not affect our results, see Remark 3.18.

The same discussion applies to the non-hypercomplete proétale co-topos X pros-
We now prove a generalization of [BS15, Lemma 5.1.2 & Corollary 5.1.6].

2.37 Notation. For a scheme X, we denote the inclusion Ety — ProEty of the the étale site into
the proétale site by v.

2.38 Proposition. Let X be a qcgs scheme. Then the pullback functor v* : X P X  is fully
faithful when restricted to truncated objects.

2.39 Notation. Let X be a scheme. Write ProEt aff = prokty for the full subcategory spanned by
the affine schemes. Note that ProEt;‘}ff isa bas1s for the proétale topology on ProEty. Hence by
[Aok23, Corollary A.7], restriction along the inclusion defines an equivalence of co-categories

h h : h :
Xpryof;t = Sh™P(ProFty) = Sh™P(ProEtf) .
Proof of Proposition 2.38. First observe that since the left exact pullback functor v* preserves n-
truncated objects [HTT, Proposition 5.5.6.16], the truncated pullback functors are well-defined.
We equivalently need to show that the composite
X0 2, xP_~, shYP(Profedfh
et proét

is fully faithful when restricted to truncated objects. To simplify notation, we also denote this
composite by v*.

First observe that a presheaf of n-truncated anima F : (ProEt)’J;ff)Op — Ani_, isasheafif and
only if the following conditions hold:

(1) The presheaf F sends finite disjoint unions of affine schemes proétale over X to finite prod-
ucts.

(2) For every surjection f: U - X of affine schemes proétale over X with associated Cech
nerve U, — X, the canonical map

F(X)— lim F(U;)

ileAcn

is an isomorphism.
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This is just the n-truncation of the sheaf condition as formulated in [SAG, Proposition A3.3.1],3
using the fact that totalizations in an (n + 1)-category can be calculated as limits over A, ,;
[HP25, Proposition A.1].

Since the problem is local on X, we immediate reduce to the case where X is affine. Then, the
category Plro]'Et;’}ff is exactly given by those U e ProEty which can be written as a small cofiltered
limit U = lim;¢; U; of affine schemes U; € Ety. Now let n > 0 be an integer and, let F be an
object of X¢; <,. The presheaf pullback of F to the proétale site of X is given by the formula
U + colim;op F(U;)on all U e ProEt;}ff. We wish to show, that this is already a sheaf. For this,
we can just copy the proof of [Lurl8, Proposition 7.1.3(2)]. The argument there works not only
for equalizers, but for all finite limits as they appear in our n-truncated sheaf condition. As v*F
restricts to I on affine étale schemes Et;‘(ff, itisclear that we have v, v*F = Fforall F € X4 <, i.e.,
the pullback v* is fully faithful when restricted to n-truncated objects. See [Mai25, Proposition
A.5.33] for more details. O

Now we deduce some consequences for the étale homotopy type. For this, recall our notation
regarding shape theory from Recollection 2.25.

2.40 Notation. Let X be a scheme. We write

. h P ~ h
M(X) =Me(Xy")  and TG = Mo (Xg")
for the protruncated étale homotopy type and the profinite étale homotopy type of X, respectively.

2.41 Corollary. Let X be a scheme. Then the map

h 7
H<oo(V*): 1_[<o<>()( P ) - Hitoo(X)

proét
is an equivalence.

Proof. Immediate from Lemma 2.28 and Proposition 2.38. O

Basis of weakly contractible objects

Recall that an object Y of a site € is weakly contractible if every covering U - Y admits a section.
In the proétale site, weakly contractible qcgs objects are given by w-contractible schemes.

2.42 Definition. A qcgs scheme X is w-contractible if every weakly étale surjection U » X
admits a section.

For the subsequent characterization of w-contractibles, recall the following fact on connected
components of qcgs schemes.

2.43 Lemma [STK, Tag 0900]. Let X be a gcgs scheme. Then the set y(X) of connected components
of |X|, endowed with the quotient topology induced by |X|, is a profinite set.

2.44 Definition. Let X be a qcgs scheme. We say that X is w-local if the subspace X C |X]| of
closed points is closed and every connected component of X has a unique closed point. We say
that X is w-strictly local if X is w-local and every étale surjection U - X admits a section.

2.45 Remark. Asobserved in [Art71, Proposition 3.1], since a w-strictly local scheme is a retract
of an affine scheme, every w-strictly local scheme is affine.

30ne easily checks that the category Pro}'Et}Z}ff C ProFEty satisfies the conditions stated there.
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2.46 Remark. By [BS15, Lemma 2.2.9], a qcqs scheme X is w-strictly local if X is w-local and
the local rings at all closed points are strictly henselian.

2.47 Example. Let k be a separably closed field. Then any qcgs weakly étale k-scheme X is
w-strictly local. Indeed, such a scheme is zero dimensional and thus, by Serre’s cohomological
characterization of affineness, affine. By [STK, Tag 092Q)], it is therefore a cofiltered limit of finite
disjoint unions of Spec(k) and hence w-strictly local.

2.48 Recollection [STK, Tag 0982]. A scheme X is w-contractible if and only if it is w-strictly
local and 7y(X) € Pro(Setg,,) is extremally disconnected. In particular, w-contractible schemes
are affine.

2.49 Notation. For a scheme X, we write Pro]’Et}’C C ProEty for the full subcategory spanned
by the w-contractible schemes.

2.50 Recollection [STK, Tag 0990]. The subcategory PI‘OEt}“(’C C ProFEty is a basis for the proé-
tale topology. But beware that ProEty/® is not closed under fiber products in ProEty.

2.51 Proposition. Let X be a scheme. Restriction along the inclusion of sites ProEt)"‘(’C C ProEty
defines an equivalence of hypercomplete co-topoi

h h : h .

Xoow, = Sh™P(Profity) = Sh™P(Profity®).

Moreover, this co-topos can be identified with the co-topos of finite product-preserving presheaves
Fun™((ProEt}{°)°?, Ani) .

Proof. This follows from Recollection 2.50 and [Aok23, Corollary A.7] combined with the defin-
ing property of w-contractible schemes. Details are given in [Mai25, Proposition 2.2.12]. O
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Part 1
The condensed homotopy type

3 Three perspectives on the condensed homotopy type

In this section, we introduce the condensed homotopy type of a scheme X. As explained in
the introduction, we give three definitions, and prove that they are equivalent. The first, given

in § 3.1, is the relative shape of the hypercomplete proétale co-topos X;lryoit over the co-topos

Cond(Ani) of condensed anima. The second, given in § 3.2, is as the unique hypercomplete
proétale cosheaf whose value on a w-contractible affine U is the profinite set 7y(U) of connected
components of U. The last, given in § 3.3, is as the condensed classifying anima of the Galois
category Gal(X) introduced by Barwick-Glasman-Haine [BGH20]. In § 3.4, we conclude the
section with a sample computation: given a henselian local ring R with residue field x, we show
inclusion of the closed point induces an equivalence

BGal, ~ Hf,gnd(Spec(K)) = Hgg’nd(Spec(R)) .

3.1 Definition via the relative shape

For an co-topos XX, the idea of shape theory relies on the existence of a canonical colimit preserv-
ing functor I'; : X — Pro(Ani). We define the condensed homotopy type of a gcqs scheme in the
tradition of shape theory but relative to the base Cond(Ani). To do this, we use the identification

X™P ~ Fun* ((ProBtY)°P, Ani)

proét

of the hypercomplete proétale co-topos as the co-topos of finite-product preserving presheaves
on the site of w-contractible weakly étale X-schemes (Proposition 2.51).

3.1 Definition. Let X be a scheme. Write
7y : PSh(ProEty®) — Cond(Ani)
for the colimit-preserving extension of
Ty : ProBEty® — Extr < Cond(Ani)
along the Yoneda embedding.
3.2 Observation. The functor 77y admits a right adjoint
7*: Cond(Ani) — PSh(ProEt}°)
given by the assignment
A W A(myW))I .

Note that since the functor 7 : ProEty® — Cond(Ani) preserves finite disjoint unions, the right
adjoint to 7y factors through

Fun”™ ((ProBty®)°?, Ani) C PSh(ProEty©).
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3.3 Notation. Given a scheme X, we also write Ty for the composite

, T
X;?,opét —~— Fun™ ((ProEt{°)°P, Ani) —~, Cond(Ani),

where the left-hand functor is the equivalence of co-topoi from Proposition 2.51.
Next, we need a generalization of [BS15, Lemma 4.2.13].
3.4 Proposition. Let X be a scheme. Then:

(1) The functor 7y xe Cond(Ani) is left adjoint to 7* : Cond(Ani) — xvP

proét proét’

(2) For each condensed anima A and w-contractible affine W e ProEty, there is a natural equiva-
lence
T (A)W) = A(my(W)) .

Proof. As explained in Observation 3.2, the functor
7*: Cond(Ani) — PSh(ProEt}°)

factors through ngoit. Hence 7™ remains right adjoint to the restriction of 7. In particular, we
have 7*(A)(U) ~ A(my(U)). O

3.5 Remark. The right adjoint 7* is part of a geometric morphism of co-topoi

AN
(3.6) Cond(Ani) — X oot

which is induced by the morphism of sites

7. Pro(Setg,) — ProEty
S =1imS; S®X :=1i X.
imS— S@X=lm]][

s€S;
For details, see [Mai25, Theorem 2.2.13].
Now we are ready for the definition of the condensed homotopy type.
3.7 Definition. Let X be a scheme.
(1) The condensed homotopy type of X is the condensed anima

19M(X) = m4(1) € Cond(Ani) .

(2) The condensed set of connected components of X is the condensed set

T[(C)(md(X) = TCO(Hggnd(X)) € Cond(Set) .

3.8. The first par}t1 of Definition 3.7 says that the condensed homotopy type is the relative shape

of the co-topos Xpryopét over the oo-topos Con%(Ani), see [CE18, §4.1] for background on relative

shapes. Since sending a scheme X to 7, : Xpryoit — Cond(Ani) defines a functor
Sch — (RTop )/ cond(Ani) »

composition with the relative shape over Cond(Ani), therefore defines a functor

(3.9) 1" : Sch — Cond(Ani), X +— IT9M(X).
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3.10 Warning. A consequence of the statement of [BS15, Lemma 4.2.13], is that that for any
condensed set A, the formula 7*(A)(U) ~ A(my(U)) in Proposition 3.4 holds for all qcqs schemes
U of the proétale site of X. However, this is not correct; indeed, if this stronger claim were true,
it would follow that for all qcqs schemes X one has
Map congsen To(X): A) = A(o(X)) = 7*(A)X)
=~ MaPthp (X, 7% (A))

proét
~ MapcOnd(Ani)(Hggnd(X), A)
= MapCond(Set)(ngond(X)’A) :

This would then imply that the condensed set of connected components matches the usual one,
ie., ngond(X ) = mp(X) in Cond(Set). As we show in Example 4.26, this is not generally the case.
However, this is true if X has finitely many irreducible components, see Corollary 4.19. The
problem here is that the proof of [BS15, Lemma 4.2.13] only works for w-contractible schemes.

The definition tells us the value of the condensed homotopy type on w-contractible schemes:

3.11 Example. Let W be a w-contractible scheme. Then, by definition,
MW = my(1) = mo(W) .
In particular, if W is the spectrum of a separably closed field, then IT"(W) = .
3.12. One consequence of Example 3.11 is that every geometric point X — X defines a point
* = QM) - IRM(X)
of the condensed homotopy type. Thus we can take homotopy groups at geometric points:

3.13 Definition. Let X be a scheme, let ¥ — X be a geometric point, and let n > 1. The n-th
condensed homotopy group of X at X is the condensed group (abelian if n > 2)

(X, %) = 7, (MI2M(X), %) .

From the definition, it is easy to see that the condensed homotopy type refines the protrun-
cated and profinite étale homotopy types. For this result, recall our notation on shapes and étale
homotopy types from §2.4 and Notation 2.40.

3.14 Lemma. Let X be a scheme. Then there are natural equivalences
d ét d fyét
MO, 2 M8,00  and  IEMEON = A0,
Proof. By Corollary 2.41, the protruncated shapes of the (hypercomplete) étale and proétale co-
topoi agree. This remains true after profinite completion. Thus the claims follow from the claim
that the triangle of left adjoints

xhyp
proét

7 %

Cond(Ani) T) Pro(Ani_,)

disc
commutes. To see this, note that the corresponding diagram of right adjoints commutes by the

uniqueness property of the pro-extension Pro(Ani) - X P of the constant sheaf functor. [J
proét
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3.15. The unit of the adjunction (—)
parison maps

(’i\isc : Cond(Ani) 2 Pro(Ani_,) induces canonical com-

neoMdx) - ¥ (x)  and  O2MX) - 08X)
in Cond(Ani). In particular, there are canonical comparison homomorphisms
(X)) — mé(X)

of the condensed homotopy groups to the (profinite) étale homotopy groups for all n > 0.

3.2 Characterization as a hypercomplete proétale cosheaf

The goal of this subsection is to prove the following characterization of the condensed homotopy
type and derive some consequences for the étale homotopy type.

3.16 Notation. We write Aff V¢ C Sch for the full subcategory spanned by the w-contractible
schemes. (Recall from Recollection 2.48 that w-contractible schemes are affine.)

3.17 Proposition. The condensed homotopy type
119" : Sch — Cond(Ani)

is the unique hypercomplete proétale cosheaf whose restriction to w-contractible schemes is given
by the functor
T, AffV¢ — Extr C Cond(Ani) .

Proof. First notice that since 7y preserves colimits, by definition 19" carries proétale hyper-
coverings to colimit diagrams. Moreover, by construction I19" agrees with 7, when restricted
to w-contractible schemes (see Example 3.11). Thus it suffices to show that every scheme admits
a proétale hypercover by w-contractible schemes. Since every scheme admits a Zariski cover by
gcgs schemes, we can reduce to the qcgs case. In this case, the claim is the content of [STK, Tag
09A1]. O

3.18 Remark (on set theory). Let X be a scheme and x a strong limit cardinal such that X is
x-small. Then there exists a hypercover by w-contractibles W, — X such that W, is x-small for
all n. Hence the formula

1" (X) ~ colimpop 7o(W.)

shows that for ¥ < x’ an implicit choice of cutoff cardinal in Definition 3.7 does not affect the
outcome. More precisely, under the embedding Cond(Ani), & Cond(Ani),, one gets carried
to the other. Equivalently, if one takes the approach to dealing with set theory explained in
Remark 2.36 (2), then for all choices of suitable cutoff cardinals the images of the condensed ho-
motopy type in the colimit Cond(Ani) = colim, Cond(Ani), agree. Therefore we can continue
to leave choices of cutoff cardinals implicit without getting into trouble.

If one would try to set up the theory in the setting of light condensed anima, one would get a
different result in general. See also Remark 3.44.

3.19 Corollary.

(1) The protruncated étale homotopy type Hi‘w : Sch — Pro(Ani_,) is the unique hypercomplete
proétale cosheafvalued in Pro(Ani_, ) whose restriction to w-contractible affines coincides with

T, . AffV¢ —» Extr & Pro(Ani_,) .
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(2) The profinite étale homotopy type TI& : Sch — Pro(Ani,) is the unique hypercomplete proé-
tale cosheafvalued in Pro(Ani,) whose restriction to w-contractible affines coincides with

Ty . AffV¢ —» Extr & Pro(Aniy) .
Proof. Since both (—)}._. and (-)7 are left adjoints, the composites

cond (A
Sch —= Cond(Ani) —2¢ Pro(Ani_)

and

cond A

Sch —=", Cond(Ani) — 2" Pro(Ani,)

are still hypercomplete proétale cosheaves. Moreover, on w-contractible affines they both are
given by U — my(U) e Extr. In Lemma 3.14, we have seen that these functors recover the
protruncated and profinite étale homotopy types, respectively. O

3.20 Remark. It follows immediately from Proposition 3.17 that the ‘condensed shape’ defined
in [HRS23, Appendix A] agrees with our notions.

In [HRS23], Hemo-Richarz-Scholbach prove that I1"4(X) classifies local systems on X
with coefficients in any condensed ring. We recall the precise statement here; for this, we need
the following definition from [HRS23]. In order to state it, recall that we write 7z* for the natural

pullback functor Cond(Ani) — X;ryopét of Observation 3.2.

3.21 Definition. Let A be a condensed ring.

(1) We define the condensed co-category Perf , of perfect complexes over A, to be the condensed
oo-category defined by

Extr” — Cat,,, S~ Perfyg) .
Here, Perf y (g is the usual co-category of perfect complexes over the ordinary ring A(S).

(2) Let X be a gcqs scheme. Write D(Xp,0¢i; A) for the derived co-category of 7* A-modules on
X. We define the co-category of lisse A-modules Dy;s(Xprosr; A) to be the full subcategory of
D(Xproet; A) spanned by the dualizable objects.

3.22 Propeosition [HRS23, Proposition A.1]. There is a natural equivalence of co-categories
Fun®*(II2"(X), Perfy) = Dyis(Xproer; A) -

3.23 Remark. Proposition 3.22 is one of the main motivations to study the condensed homotopy
type. Indeed, the analogous statement for the ususal étale homotopy type IS (X) is not even
true in for A = Q,. See [BS15, Example 7.4.9] for a concrete counterexample.

3.3 Definition via exodromy

In this subsection, we explain why the pyknotic étale homotopy type defined in [BGH20, Remark
13.8.10] agrees with nggnd(x ). For this, we recall the following definition from [BGH20] in the
general setting of coherent co-topoi, but we are most interested in the case of the étale co-topos
of a scheme. In order to understand the general definition, the reader may wish to review the
theory of coherent co-topoi from [SAG, Appendix A] or [BGH20, Chapter 3].
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3.24 Definition. Let XX’ be a coherent co-topos. The Galois co-category of X is the condensed
oo-category Gal(XX') defined by the functor

Pro(Setg,)°? — Cat,,
S > Fun™"(x, Sh(S)) .

Here, Fun™“°"(2, Sh(S)) is the co-category of coherent algebraic morphisms s* : X — Sh(S) of
oo-topoi, i.e., those left exact left adjoints that send truncated coherent objects of X to locally
constant constructible sheaves of anima on the topological space S.

The assignment X' — Gal(X) defines a functor from the co-category of coherent co-topoi
and coherent geometric morphisms to Cond(Cat,,).

Now we explain what this definition means more concretely in the two examples we are
interested in.

3.25 Recollection. Let X be a qcgs scheme. Then the co-topos X, is coherent and by [BGH20,
Lemma 9.5.3 & Proposition 9.5.4], the truncated coherent objects of X, are the constructible
étale sheaves of anima on X.

3.26 Notation. Let X be a qcgs scheme. We write Gal(X) := Gal(Xy).

3.27 Recollection. Let X be a qcgs scheme. Since the co-topos X, is 1-localic, for a profinite
set S, the value Gal(X)(S) is equivalent to the 1-category of algebraic morphisms of 1-topoi

s Xer,<o = Sh(S)<o

that send constructible étale sheaves of sets to locally constant constructible sheaves of sets on
S. In particular, the global sections Gal(X)(x) recovers the category of points Pt(X,) of the étale
topos of X.

3.28 Recollection. Let T be a spectral space (e.g., the underlying space of a qcgs scheme). Then
the co-topos Sh(T) is coherent and by [BGH20, Lemma 9.5.3 & Proposition 9.5.4], the truncated
coherent objects of Sh(T) are the constructible sheaves of anima on T.

3.29 Notation. For a spectral space T, we write Gal(T,,,) := Gal(Sh(T)).

3.30 Recollection. Let T be a spectral space. Since spectral spaces are sober, by [BGH20, Exam-
ple 3.7.1] and [HTT, Remark 6.4.5.3], for a profinite set S, the value Gal(T,,,)(S) is equivalent to
the poset of quasicompact maps f : S — T ordered by pointwise specialization: f < g if and only

if for all s € S, we have f(s) € {g(s)}. In particular, Gal(T,,,)(*) recovers the specialization poset
of T.

3.31 Remark. Note that the condensed set underlying the condensed poset Gal(T,,,) is indeed
a condensed set, i.e., is x-accessible for some x. In contrast, the condensed set represented by
the topological space T is typically not x-accessible, see [Sch19b, Warning 2.14]. The difference
between the two is that Gal(T,,,)(S) is given by the set of quasicompact maps S — T, as opposed
to all continuous maps.

3.32 Recollection. For a qcgs scheme X, the condensed co-categories Gal(X) and Gal(X,,,) are
in the image of the fully faithful functor

t: Cat(Pro(Ani,)) - Cond(Cat,,)
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of Observation 2.21. In fact, if we denote by Lay_ the full subcategory of Cat,, spanned by 7t-fi-
nite layered categories in the sense of [BGH20, Definition 2.3.7], then Gal(X) and Gal(X,,,) are
even in the image of the fully faithful functor Pro(Lay ) — Cond(Cat,). See [BGH20, §13.5]
for more details.

Now we fix some notation regarding condensed co-categories and classifying anima.

3.33 Definition. We define condensed co-categories Cond(Ani) and Cond(Set) by the assign-
ments
S Cond(Ani) s and S~ Cond(Set) s ,

respectively.

3.34 Notation. We denote the left adjoint to the inclusion Ani < Cat,, by B: Cat,, — Ani.
Given an co-category C, we call BC the classifying anima of C.

3.35. The functor B preserves finite products. Hence post-composition with B induces a functor
Beond : Cond(Cat,,) — Cond(Ani)

that is left adjoint to the inclusion Cond(Ani) < Cond(Cat,,).

3.36 Definition. Given a condensed co-category C, we call B<°nd(©) € Cond(Ani) the condensed
classifying anima of C.

To see the desired comparison, the idea is that, by [Wol22, Corollary 1.2], we have a natural
equivalence

Fun®®(Gal(X), Cond(Ani)) ~ X™P

proét *
In other words, in the condensed world, X hryoit is a presheaf co-category on Gal(X)P. But the

shape of a presheaf co-topos is given by taking the classifying anima of the co-category that it is
presheaves on; the same holds in the condensed world.

3.37 Remark. Anindependent and more direct proof of [Wol22, Corollary 1.2] is going to appear
in [vDW25].

3.38 Proposition. Let X be a qcqs scheme. Then there is a natural equivalence of condensed anima
107 (X) ~ BeondGal(X) .

Proof. This follows immediately from combining [Wol22, Theorem 1.2] and [MW24, Proposi-
tion 4.4.1]. For the reader not so familiar with the theory developed in [MW24], we spell out a
more hands-on proof. Recall that for co-categories € and D, the functor

Fun(BG, D) — Fun(C, D)

induced by precomposition along € — BC is fully faithful (since B€ ~ €¢[€~!] is the localization
of C obtained by inverting all maps, this follows from the universal property of localization). Since
limits of fully faithful functors are fully faithful [HRS25, Proposition 2.1; Mai25, Proposition
A.1.3], it follows that precomposition with b : Gal(X) — B®"dGal(X) defines a fully faithful
functor

Fun®®(BMGal(X), Cond(Ani)) —— Fun®®(Gal(X), Cond(Ani)).
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Furthermore, by [Wol22, Lemma 4.3] this functor admits a left adjoint by.
By [Wol22, Corollary 1.2] we have a natural equivalence X;foit ~ Fun®®(Gal(X), Cond(Ani)).
Under this equivalence the functor

7* . Cond(Ani) — xp

proét

agrees with the functor given by precomposing with the unique morphism Gal(X) — *. We
write a : B®Gal(X) — »* for the unique morphism, and obtain a commutative triangle

Fun®®(B*°"dGal(X), Cond(Ani)) b, xhp

proét
a*
¥

Cond(Ani)

But now since b* is fully faithful and b*(1) = 1, it follows that by(1) = 1, Thus,
(1) = agby(1) = ay(1) .
Finally, by [Wol22, Corollary 3.20] we have
Fun®®(B*°"dGal(X), Cond(Ani)) ~ Cond(Ani) /Beond Gal(X)
and the functor ay identifies with the forgetful functor. In particular ay(1) ~ BondGal(X). O

3.39 Remark. In particular, Proposition 3.38 shows that if X is a qcqs scheme with finitely
many irreducible components, then the underlying group niond (X, x)(x) coincides with Gabber’s
version of the proétale fundamental group, see [BS15, Remark 7.4.12].

3.40 Corollary. Let X be a gcgs scheme. If dim(X) = 0, then II°™M(X) = Gal(X) and this con-
densed anima is a 1-truncated profinite anima.

Proof. This is immediate from [HHW24b, Observation 1.25] and Recollection 3.32. O

3.41 Example (I1$9" of a field). Let k be a field and choose a separable closure k of k. Write
Galy, for the absolute Galois group of k with respect to k. Then the choice of separable closure
induces an equivalence

1$9d(Spec(k)) = Gal(Spec(k)) ~ BGaly .

The left-hand identification follows from Corollary 3.40, and the right-hand identification follows
from [BGH20, Examples 11.2.1 and 12.2.1].

We do not use the next corollary in the remainder of this article, but we include it for com-
pleteness:

3.42 Corollary. Let X be a qcqs scheme. If dim(X) = 0, then TI"4(X) = « if and only if the
reduced scheme X .4 is Spec(k) for k a separably closed field.

Proof. As the étale oco-topos is invariant under universal homeomorphisms, the same holds for
Gal and therefore T19™. As X — X,.q is a universal homeomorphism, the if direction follows
by the Example 3.41. For the reverse direction, note that Gal(X)(x) = Pt(X) of a 0-dimensional
affine scheme is contractible only if X = Spec(R) for R a local ring with separably closed residue
field k. For such a scheme, it is X;¢q = Spec(k). O
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3.4 Computation: I1" of henselian local rings

We conclude this section by explaining how to use the definitions to show that the condensed
homotopy type of a w-strictly local scheme X (in the sense of Definition 2.44) agrees with the
profinite set 75(X) of connected components of X. This allows for a direct computation of the
condensed homotopy type of a henselian local ring.

3.43 Proposition. Let X be a w-strictly local scheme. Then TI"(X) ~ my(X).

3.44 Remark. Let X be a qcgs scheme that locally can be written as the spectrum of a countable
colimit of finite type Z-algebras. Then one can show that there is a hypercover W, — X consisting
of w-strictly local X-schemes with the property that my(X) is a light condensed set. Hence it
follows from Proposition 3.43 that in this case ITS"4(X) is a light condensed anima in the sense
that it is in the image of the fully faithful functor

Sh(Pro(Setﬁn)Nl) < Cond(Ani) .

For a general scheme X, the condensed homotopy type I152"¢(X) need not be light.
Recall that the proétale site is “tensored” over profinite sets (cf. [BS15, Example 4.1.9]).

3.45 Recollection. Let X be an affine scheme and f; : S — my(X) a map from a profinite set.
Recall that the pullback of topological spaces |X| Xz, x) S naturally has the structure of an affine
scheme that we denote by X ® (x) S. This affine scheme comes equipped with a proétale map
f1 X ®Qryx) S — X satisfying y(f) = fo. Moreover, this construction is functorial in both X
and S. See [BS15, Lemma 2.2.8] for details.

3.46 Lemma. Let X be an affine scheme and f, : S — my(X) a map from a profinite set. If X is
w-strictly local, then 50 is X ®yx) S-

Proof. Write X’ := X ®p,(x) S. We can split the construction of X into two steps: first consider
X" = X ® S coming from “tensoring” by S. It satisfies y(X"") = my(X) X S. Then realize X’ as a
closed subscheme of X"’ that is moreover an intersection of clopen subschemes, by looking at
S C y(X) X S = p(X'") and writing S as an intersection of clopen subsets in this larger set.

Let us first check it for X”'. By definition and [BS15, Lemma 2.2.9], an affine scheme is w-
strictly local if it is w-local and all of its connected components are spectra of strictly henselian
rings. Here, we are using the following observation: the connected components of a w-local affine
scheme are spectra of local rings. Indeed, they are affine (being closed subschemes of an affine
scheme) and have a single closed point (by definition of w-locality). Thus, Zariski localizations
at closed points of a w-local affine scheme match the corresponding connected components.

One checks that both of these conditions are satisfied for X" = X ® S by checking the
following facts:

(1) We have (X ® S) = my(X) X S.

(2) Every connected component of X ® S is isomorphic (as a scheme) to some connected com-
ponent of X.

(3) Wehave X ® S)g =~ X4 ® S.
Note that if S = lim;¢; S; for finite sets S;, then X ® S is defined as an inverse limit of the form

lim;; X5 = lim;;(X U --- LX) where the transition maps restricted to each copy of X appearing
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there are just identities onto another copy of X. As a result, each of the above points is reasonably
easy to check.

The second step of passing from X"’ to X’ by intersecting an inverse system of clopen sub-
schemes follows similarly. O

Proof of Proposition 3.43. By Proposition 3.17, this statement holds when X is w-contractible. In
general, pick a hypercover of the profinite set y(X) by extremally disconnected profinite sets.
By [BS15, Lemma 2.2.8], Recollection 2.48, and Lemma 3.46, we obtain a proétale hypercover
X. — X by w-contractible affine schemes* that recovers the original hypercover of 7,(X) after
applying 7. We compute

nnd(x) = colim nsed(x,)

~ coli X)) ~1my(X),
[glf]JelAIg},no( n) = 7o(X)

as desired. O
We now move on to the promised applications.

3.47 Corollary. Let S be a profinite set and X a w-strictly local scheme. Then
(X ® S) ~ me(X) X S .

Proof. This follows from Proposition 3.43 and Lemma 3.46 with f, = pr, : 7o(X) X S — 7p(X)
together with the equality my(X ® S) = me(X) X S. O

3.48 Corollary. Let R be a henselian local ring with residue field x. Then the inclusion of the closed
point Spec(x) < Spec(R) induces an equivalence

" (Spec(x)) = T (Spec(R))
and both are equivalent to BGal,.

Proof. Write X = Spec(R) and x = Spec(x). Fix a separable closure % of x and let R*" be the
corresponding strict henselization. Writing % as an increasing union of finite separable exten-
sions (and using that FEt, ~ FEty) provides a presentation of X’ = Spec(R®") as a pro-(finite
étale) cover of X, see [STK, Tag OBSL]. Let X, be the Cech nerve of this cover X’ — X. As the
equivalence FEt, ~ FEty extends to the categories of pro-objects, we compute that X, writes as

= — — !
.:,X ® Gal, xGal, — X' ®Gal, /3 X

compatibly with the analogous presentation of the Cech nerve x, of X = Spec(x)) — Spec(x) = x.
Applying 19" to the corresponding “ladder” diagram (coming from the map x, — X.) and
using that, for every m € N,

Gall' ~ TI9M(x @ Gal') — "X’ @ Gal') ~ Gall

is an isomorphism (where we are using Corollary 3.47 and the fact that both X and X’ are
connected w-contractible schemes), we conclude. O

“Here we have used that the functor in loc. cit. commutes with limits and respects covers.
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4 Connected components of the condensed homotopy type

Let X be a qcgs scheme. In this section, we give an explicit description of the condensed set of
connected components Tc(c)ond(X ) of the condensed homotopy type I1$S"4(X). To do so, we make
use of the Galois category Gal(X,,,) of the Zariski co-topos in the sense of Definition 3.24. In
§4.1, we show that the condensed connected components of B Gal(X,,,) agree with ng"nd(X ).
In §4.2, we use this description to show that if X has finitely many irreducible components, then

C"nd(X ) agrees with the profinite set 7y(X) of connected components (Corollary 4.19). We also
give examples of connected schemes whose rtc"“d(X ) is nontrivial and show that ncond(X ) can
be quite exotic in general. Finally, in §4.3, we use our explicit description of ncond(X ) to compute
the condensed and étale homotopy types of the ring of continuous functlons from a compact
Hausdorff space to C, see Corollary 4.35.

4.1 Prozariski sheaves

Recall that for a scheme X, we will write X, for the oo-topos of Zariski sheaves on X. In this
subsection, we study a pro-version of the Zariski co-topos.

4.1 Definition. Let X be a qcqs scheme. Let us write X;or© C X for the full subcategory of Zariski
sheaves, that is spanned by the constructible sheaves on X, i.e., those sheaves that are locally
constant with mt-finite stalks on a finite constructible stratification of X. We give Pro(Xger®) the
effective epimorphism topology where covers are generated by finite jointly effectively epimorphic
families of maps. We call the co-topos

Xpib e = ShaP(Pro(Xors))

prozar zar

cons

of hypersheaves for the effective epimorphism topology on Pro(X;51'°), the hypercomplete pro-
zariski topos of X. Since pullbacks along qcqs morphisms of schemes preserve constructible

sheaves, Xpﬁ'opzar is functorial in X.

4.2 Remark. This construction makes sense more generally for any bounded coherent co-topos
(in the sense of [SAG, Appendix A]) and was called solidification in [BH19] and pyknotification
in [Wol22].
4.3. Let X be a qcqs scheme. The pullback functor X,,, — X preserves constructible sheaves
and thus defines a functor

zar

xcons _, xcons
et

Extending to pro-objects we obtain a morphism of sites p* : Pro(Xger®) — Pro(X gfns) and thus
an algebraic morphism of co-topoi

h h

Xprorar = Shey (Pro(X5e™)) .
: : : hyp ~ hyp cons

Finally, [Lurl8, Example 7.1.7] provides an equivalence Xproet Sh " (Pro(X ;™)) so that we

obtain an algebraic morphism

hyp hyp
p Xprozar - proét *

Recall thatamap Y — X isa Zariski localization if Y is isomorphic (over X) to a finite disjoint
union of open subschemes of X.
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4.4. Let X be affine scheme. We write Zar;}ff C Sch x for the full subcategory spanned by the
affine Zariski localizations of X. Since open immersions between qcqs schemes are of finite
presentation it follows from [STK, Tag 01ZC] that the canonical functor

Pro(Zar}‘}ff) — Schx

is fully faithful. Thus we may equip Pro(Zar;}ff) with the fpqc topology. Since the sheaf repre-
sented by a Zariski localization is constructible, we obtain a morphism of sites

u: Pro(Zar}ff) — Pro(X;ors) .
4.5 Lemma. Let X be an affine scheme. Then the algebraic morphism of co-topoi

h h
75 Shfgqpc(Pro(Zar;ﬁ)) - propzar

is an equivalence.
Proof. The proof is exactly the same as in [Lur18, Example 7.1.7]. O

4.6 Remark. Let X be an affine scheme. Then under the equivalence of Lemma 4.5, the functor
p* is induced by the morphism of sites

Pro(Zar;ff) - Pro(Et}H) ,

that comes from the inclusion Zar;}ff < Et;‘(ff. Here Et;‘(ff denotes the category of affine étale
X-schemes.

4.7 Recollection. For a qcgs scheme X, we write Gal(X,,,) for the Galois category of the Zariski
oo-topos in the sense of Definition 3.24. Note that X,,, is the co-topos of sheaves on the spectral
topological space |X|. Hence by Recollection 3.30, for a profinite set S, the category of sections
Gal(X,,,)(S) is the poset of continuous quasicompact maps f : S — |X| ordered by pointwise

specialization: f < g if and only if for all s € S, we have f(s) € {g(s)}. In particular, Gal(X,,,)(*)

is the specialization poset of | X|. To simplify notation, we denote the specialization poset of | X|
<

by X,

zar:

4.8 Lemma. Let X be a qcqs scheme. Then there is a natural equivalence of co-topoi

XMP  ~ Fun®®(Gal(X,,,), Cond(Ani)) .

prozar

Proof. Since X,,, is a spectral co-topos in the sense of [BGH20, Definition 9.2.1] and the profinite
stratified shape of X,,, is given by Gal(X,,,), this follows from [Wol22, Theorem 1.1]. O

We are interested in Lemma 4.8 because it allows us to compute 7, of the relative shape of
prozariski co-topos over Cond(Ani) via the condensed classifying anima of Gal(X,,,). The latter
turns out to be a quotient of the condensed set underlying Gal(X,,,) by an explicit equivalence
relation. Furthermore, the next proposition readily implies that this actually computes Tcgond(X ):

4.9 Proposition. The functor p* : Xprozar,<o = Xproet,<o I8 fully faithful.

In order to prove Proposition 4.9, we make use of the following construction:
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4.10 Construction. Let X be an affine scheme. Since the inclusion Zar;}ff < Et‘;ff preserves
finite limits, it admits a pro-left adjoint

Hensg" : Pro(Et3") — Pro(Zar2™).

4.11 Definition (Zariski henselization). Let X be an affine scheme and Y € Pro(Et‘;(ff). We call
Hensy (Y) the Zariski henselization of Y in X.

4.12 Lemma. LetX be an affine scheme and V Pro(Etaff) If V is w-contractible, the unit mor-
phism V' — Hensy (V) is surjective.

Proof. Since V is w-contractible, we can use the universal property of Hensy (V) to show that
any pro-Zariski cover of Hensy'" (V) admits a section. This in particular shows that Hensy (V) is
w-local, see [BS15, Lemma 2.4.2]. Since V — Hensy' (V) is flat and the image of a flat morphism
is closed under generization [GW20, Lemma 14.9], it suffices to show that all closed points are
in the image.

We now assume, for the sake of contradiction, that im(V) C Hensy (V') does not contain a
closed point x. Since im(V) is quasicompact, there is some quasicompact open H C Hensy (V)
containing im(V') such that x ¢ H. Since H is quasicompact, there exists a covering (U;);e; of H
by finitely many affine opens. Since im(V') C H, it follows that the induced map

H U, ><Hens?;"(V) VoV
iel

zar

is surjective and thus admits a sectiona: V — [[._, U; XHensz"(v) V- By the universal property
of Zariski henselization, the composition

vV — HieIU XHensm(V)V > HleIU

factors uniquely through some & : Hensy' (V) — Hie[ U;. Since the composite

V —= I Ui Xttens"vy) V. —— 11, Ui — Hensy" (V)

iel

zar

recovers the unit V' — Hensy (V), it follows by uniqueness that the composite

Hensy" (V) —— 11, Ui — Hensg"'(V)

is the identity. In particular the U; cover Hensy' (V) and thus H = Hensy' (V); this contradicts
that x ¢ H. O

4.13 Lemma. Let X be an affine scheme, and F ¢ propzar Then p*(F) € proit is the hypersheafi-
fication of the presheaf

Pro(Et;ﬁ)OP — Ani, W — F(Hensg (W)).
Moreover, if W is w-contractible, then p*(F)(W) = F(Hensy (W)).

Proof. The functor p* is given by the hypersheafification of the left Kan extension along the
functor
L Pro(Zar;}ff)Op < Pro(]@t?ff)Op .
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Explicitly, for F € X™P _the image is given by

prozar
¥
(4.14) p*(F) = (W ~ colim F(V)) ,
W—-i(V)

where V' € Pro(Zar)‘}ff), W e Pro(Et;‘(ff), and (—) denotes hypersheafification. By the universal
property of Zariski henselization, every map W — «(V') factors uniquely over Hensy (W), hence

the colimit in (4.14) reduces to

colim F(V) = F(Hensy (W)).
W-u(V)

It remains to argue why hypersheafification does not change the value on a w-contractible
scheme W. On the basis of w-contractible schemes weakly étale over X, the sheaf condition
simplifies to sending finite coproducts to finite products. Moreover, every sheaf is a hypersheaf.
Since Hensy, being a left adjoint, preserves finite coproducts and F carries finite coproducts to

finite products, the claim follows. O

Proof of Proposition 4.9. We can immediately reduce to the case where X is affine. We want to
show that for any F € Xr55ar,<o and any U e Pro(Zar;‘(ff) the unit evaluated at U

F(U) = p*(F)U)

is an isomorphism. For this, pick a w-contractible weakly étale X-scheme W with a surjection
W - U and a further w-contractible V with a surjection V' » W Xy W. Using Lemma 4.13, it
suffices to show that the natural map

F(U) - lim (F(Hensy" (W)) = F(Hensy (V)))
is an isomorphism. This is clear if we show that
Hensy (V) = Hensy, (W) - U

is the beginning of an augmented pro-Zariski hypercover.
For this, first observe that since the surjection W - U factors through the canonical map
Hensy (W) — U, the rightmost morphism above is surjective. Note that we have a commutative

diagram

1% Wxy W

| |

Hensy (V) —— Hensy (W) Xy Hensyg (W) .

Here, the top horizontal morphism is surjective by definition and the right vertical morphism is
surjective by Lemma 4.12. Thus the bottom horizontal morphism is also surjective, as desired.
O

4.15 Warning. Proposition 4.9 is only true on the level of O-truncated sheaves, i.e., sheaves
of sets. Full faithfulness on the level of sheaves of anima would imply an equivalence of the
condensed homotopy type with the relative shape of the the prozariski co-topos over Cond(Ani).
Therefore, it would also imply that the étale homotopy type of X agrees with the shape of the
underlying topological space of X, which is generally false.

Note that if X is an everywhere strictly local scheme, by [Sch17, Corollary 2.5] one has
Xet = Xyar- S0, in this case p* is fully faithful for all sheaves of anima.
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4.2 An explicit description of 72"

In this subsection, we give an explicit description of ngond(X ). To do this, we first observe that
together the results from §4.1 show:

4.16 Proposition. Let X be a qcgs scheme. Then there is a natural isomorphism of condensed sets
n(c)ond(X) = TEO(BcondGal(Xzar)) .

Proof. Consider the morphism of sites 7 : Pro(Setg,) — Pro(X;or%) given by S — S X X. We
have a commutative triangle

Cond(Ani)

hyp hyp
Xprozar p* Xproé[

Combining Lemma 4.8 and [Wol22, Lemma 4.3], it follows that 7* has a left adjoint, that we
denote 7y. By Proposition 4.9, it follows that ngond(X ) = mo(7y(1)). By Lemma 4.8, the same

argument as in Proposition 3.38 shows that 73(1) ~ B Gal(X,,,). Hence
EM(X) = my(7y(1)) = To(BMGal(X 0r))
as desired. O
Proposition 4.16 lets us explicitly describe ngond(X ).

4.17 Remark. Let S be a profinite set and let T be a spectral space. The next theorem involves
sets of continuous quasicompact maps Mapqc(S, T). Note that these are those maps such that
the preimage of a quasicompact open is clopen. It follows that these are precisely continuous
maps in the constuctible topology, i.e.,

Maqu(S, T) = Map(S, T").

Said differently, the inclusion of the full subcategory of profinite sets into the category of spectral
spaces and quasicompact maps admits a right adjoint, given by sending a spectral space T to the
underlying set of T equipped with the constructible topology.

4.18 Theorem. Let X be a qcqs scheme. Then for every extremally disconnected profinite set S, we
have
nend(X)(S) = Mapy (S, [X[)/~ ,

where f ~ g if and only if there is some n € N and quasicompact maps Sy, tq, ... ,Sp, t, © S = |X]|
such that
[zt 25<t,>225,Zt,28.

Here, a < b ifand only if for all s € S, we have a(s) € {b(s)}.
Moreover, if S = (M), restriction along the canonical map M — (M) induces an isomorphism

(Map, (S, IX])/~) = 7io((Xza)™) .

Here, no((XZSar)M) is the quotient of(XZSar)M identifying two points (X, mem ANd Vy)men if and
only if they can be connected by a finite zigzag of pointwise specializations.
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Proof. By Proposition 4.16, the first statement reduces to showing that for every extremally
disconnected profinite set S, we have

To(B™Gal(X4r))(S) = Map (S, IX])/~ .

This follows by the description of Gal(X,,,) in Recollection 4.7 noticing that maps f, g in the poset
Mapqc(S, |X]) are connected if and only if there exists a finite zig-zag of pointwise specializations
as indicated in the statement.

For the second statement, by Proposition 2.22, we have a chain of canonical equivalences of
partially ordered sets

Map, (B(M), X 1) = Gal(X ) (B(M))
~ [ GalXuu)) = [ [ Xz »
M M

where the second equivalence is induced by M — B(M). Under this identification, the equiv-
alence relation generated by pointwise specialization corresponds to the equivalence relation
defining no((XZSar)M ) explained in the final statement. This concludes the proof of the second
claim. O

Theorem 4.18 shows that Tcg"“d(X ) gives the expected answer in many cases of interest:

4.19 Corollary. Let X be a qcgs scheme with finitely many irreducible components. Then the
canonical map of condensed sets
M (X) — o(X)

of (3.15) is an isomorphism.

Proof. It suffices to check that the map is an isomorphism after evaluating at (M) for any
discrete set M. By Theorem 4.18, we need to see that the canonical map

ﬂo((XZSM)M) — (X )M

that sends a function M — |X| to the composite with |[X| — 7y(X) is an isomorphism (note
that this is not immediate, since in general 7, does not commute with infinite products). It is
surjective by surjectivity of | X| — my(X). For injectivity, suppose that we have maps f,g: M —
|X| that agree after composing with 7y. If the number of irreducible components of X is n, it
follows that we may connect any two points x, y € X in the same connected component with a
zig-zag of specializations involving at most 2n + 1 other points. Thus we may also connect f and
g with a zig-zag involving 2n + 1 other maps and thus [f] = [g] in 7((X,)™), as desired. [

4.20 Remark. For an alternative proof of Corollary 4.19, see [Mai25, Proposition 2.2.25].

4.21 Observation. Let X be a qcgs scheme and let X — X and ¥’ — X be geometric points. If X
is connected and has finitely many irreducible components, then by Corollary 4.19, ngond(X ) = .
Hence, for each n > 1, there exists an isomorphism nﬁ‘md(X ,X) nﬁﬁnd(X ,xN).

In the remainder of this subsection, we provide some examples illustrating that ngond(X )can

substantially differ from 7,(X) in general. By Proposition 4.16, ng"nd(X ) only depends on the
spectral space |X|; so we formulate the following result only in terms of spectral spaces.

37



4.22 Recollection [FK18, Chapter 0, §2.3]. A spectral space T is valuative if, for each t € T,
the set of generizations of ¢ is totally ordered under the generization relation. Every point ¢ of a
valuative space T has a unique maximal generization, denoted t™?*.

The separated quotient of a valuative spectral space T is the quotient TP := T/~ by the
relation s ~ t if s ~ /M3 By [FK18, Chapter 0, Corollary 2.3.18], TP is a compact Hausdorff
space.

For the next result, recall the Galois category of a spectral space from Notation 3.29 and Rec-
ollection 3.30.

4.23 Corollary. Let T be a valuative spectral space. Then the natural map
TEO(Gal(Tzar)) — TP
is an isomorphism of condensed sets.

Proof. Tt again suffices to check this after evaluating at the Cech-Stone (M) of any set M. So let
a: B(M) — TP be any continuous map. Since the quotient map 7 : T — TS is surjective, we
may pickamapa: M — T lifting a|,,;. Using Proposition 2.22 as in Theorem 4.18, a extends to a
quasicompact continuous map a : (M) — T and by construction we have woa|,; = a|y,. By the
universal property of Cech-Stone compactification, we thus get 7od = a, proving surjectivity.
For injectivity, suppose that we are given maps f,g: M — T such that the composites with
agree. By the valuative property, it follows that for any m € M, f(m) and g(m) specialize to the
same maximal element h(m). Thus we get a zig-zag

f<h>g
so that [f] = [g] in my(Gal(T,,,))(B(M)), proving injectivity. O

4.24 Example. Corollary 4.23 shows that even if X is a connected scheme, T[(C)(md(X )can be a
nontrivial condensed set. Concretely, we may take T to be the underlying topological space of
the adic unit disk. Then T is a connected spectral topological space, so there exists a ring R and
a homeomorphism T =~ |Spec(R)|. Thus Spec(R) is connected but ngond(Spec(R)) =T5Pisa
nontrivial compact Hausdorff space. In fact, this space is homeomorphic to the underlying space
of the corresponding Berkovich disk (cf. [Hub96, Remark 8.3.2]).

4.25 Remark. Let X be a qcgs scheme. Note that ng"nd(X ) is gs. Indeed, this is clearly true
for w-contractible qcgs X and in general it follows by proétale covering by w-contractibles and
using the following observation: let X’ — X be a proétale surjection. Then the induced map of
condensed sets T[(C)OHd(X N - Tcg"“d(X ) is surjective. Indeed, using Recollection 2.7, this eventually
boils down to the statement that for a map of simplicial sets that is surjective on vertices, the
induced map on 7, is surjective.

Theorem 4.18 can also be used to show that for a general qcgs scheme X, the condensed set
ngond(X ) can be quite exotic (in particular, ng‘md(X ) is not generally quasiseparated in the sense
of Recollection 7.17). This is achieved in the following example.

4.26 Example (schematic Warsaw circle). Let X be a qcqs scheme with the property that any
two points may be connected by a zig-zag of specializations but such that the minimal length of
such a chain is not bounded by any natural number. Then we have

Ttgond(X)(*) ~ %,
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However, for any function f : N — |X| such that the minimal length of a zig-zag connecting
f(n) and f(0) is at least n, the function f and the constant function at f(0) yield different
elements in n(c)ond(X )(B(N)). Thus, Ttgond(X ) is a nontrivial condensed set whose underlying set
is the point and therefore not quasiseparated. Indeed, if it were quasiseparated it would be qcqgs
and thus representable by a compact Hausdorff space.

Let us give a concrete example of a scheme satisfying these properties. Fix an algebraically
closed field k and write * = Spec(k). Let X € #p.q¢; be a scheme such that 1y(X) = N U {co}, i.e.,
the converging sequence of points together with its limit. Each connected component of X is
just a copy of . Take two copies X IL = X; = A}( X, X of a scheme that, intuitively, is a sequence
of affine lines converging to another affine line. Fix two points, say 0, 1, on each copy of AII{ and

glue X I“ and X 2+ to obtain a zigzag of A}{’s intersecting at 0’s and 1’s and converging to a copy of

A}{, as displayed in Figure 1. Let us denote this scheme simply by X*. To formalize this gluing

Il w
Niah

+
Xl

+
2

procedure, one notes that we are gluing affine schemes along closed subschemes, so by [Sch05,
Theorem 3.4] the pushout exists and is also affine.

Now, this scheme satisfies the condition of having specialization-distances between points
growing arbitrarily but it still needs a small correction: the points on the limit A}( are not joinable
by a specialization sequence with the points on the zigzag. To amend it, add a further copy of
Allc joining an arbitrarily chosen pair of k-points of the the leftmost line of the zigzag with the
limit line of X*. Let us denote by Xt this schematic “Warsaw circle’. One can check that X+
satisfies the desired properties.

4.3 Computation: IT™ of rings of continuous functions

Let T be a compact Hausdorff space. We conclude this section by using Theorem 4.18 to compute
the condensed homotopy type of the ring of continuous functions C(T', C); we show that it is 0-
truncated, and coincides with the condensed set represented by T. We accomplish this by proving
a more general result. To state it, recall that the ring C(T, C) has the property that every prime
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ideal is contained in a unique maximal ideal (see Theorem A.24). Moreover, [Ray70, Chapitre

VII, Proposition 4] shows that the local rings of C(T, C) at maximal ideals are strictly henselian.

We are able to compute the condensed homotopy types of rings satisfying these two properties.
To state our results, we first introduce some terminology.

4.27 Notation. Given aring R, we write MSpec(R) C |Spec(R)| for the subset of maximal ideals,
endowed with the subspace topology.

4.28 Recollection (see Appendix A). Aring R is a pm-ring if every prime ideal of R is contained
in a unique maximal ideal. In this case, the space MSpec(R) is compact Hausdorff.

cond

First, we identify 7

of an arbitrary pm-ring.

4.29 Proposition. Let R be a pm-ring. Then there is a natural isomorphism of condensed sets
d ~
7,°"“(Spec(R)) = MSpec(R) .
This isomorphism is constructed in the course of the proof.

Proof. By Theorem A.9, the map of topological spaces |Spec(R)| — MSpec(R) that sends a prime
ideal p to the unique maximal ideal containing p is a continuous retraction of the inclusion.
This retraction is also continuous for the constructible topology and therefore defines a map of
condensed sets

MapTop(—, [Spec(R)|°"S) — MSpec(R) .

Furthermore it clearly respects the equivalence relation described in Theorem 4.18 and therefore
induces a map
Ttgond(Spec(R)) — MSpec(R) .

To check that this map is an isomorphism, it suffices to check this after evaluating at f(M) for
any set M. Using the explicit description given in Theorem 4.18 and the fact that MSpec(R) is
compact Hausdorff (Corollary A.10), this is immediate. O

Under stronger hypotheses, we compute the whole condensed homotopy type:

4.30 Theorem. Let R be a pm-ring with the property that all local rings at maximal ideals are
strictly henselian. Then TI°™(Spec(R)) is O-truncated; hence there is a natural equivalence of
condensed anima

11$97(Spec(R)) = MSpec(R) .

To show that TTS2"(Spec(R)) is O-truncated, we use the description of the condensed homotopy
type via exodromy. We first prove some preparatory results about classifying anima of infinite
products.

4.31 Lemma. LetI be a set and let (C;);e be co-categories. Assume that for each i € I, there exists
a left adjoint functor A; : A; — C; where A; is an anima. Then all of the maps in the commutative
square

B([[;;; A) —— I, BA;
B(ng[ Al)j jHiGI Bﬂ'i
B(Hiel ei) - Hie[ BC; .

are equivalences of anima.
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Proof. First observe that since each 4; is a left adjoint, the induced functor on products

Hiel Ai: HiEI 4 — HieI Ci
is also a left adjoint. Since each A4; is an anima, the top horizontal map is an equivalence. Since
Hie[ A; and each 4; is a left adjoint and the functor B: Cat,, — Ani sends left adjoints to

equivalences [CJ24, Corollary 2.11], the vertical maps are also equivalences. Thus, by the 2-of-3
property, the bottom horizontal map is an equivalence, as desired. O

4.32 Example. Let I be a set and let (C;);e; be oco-categories. Assume that for each i € I, each
connected component of the co-category C; admits an initial object. Then the hypotheses of
Lemma 4.31 are satisfied where each A4; is the set of initial objects of connected components of
C; and 4; is the inclusion. In particular,

B(ITie €) = I1;e BC:
is O-truncated.
We also need the following criterion for detecting when a condensed anima is 0-truncated:

4.33 Lemma. Letn > 0 be an integer. Then a condensed anima A is n-truncated if and only if for
each set M, the anima A(B(M)) is n-truncated.

Proof. Since every extremally disconnected profinite set is a retract of the Cech-Stone com-
pactification of a set, this follows from the fact that every retract of an n-truncated anima is
n-truncated. O

Proof of Theorem 4.30. Note that, in light of Proposition 4.29, the final statement follows from
the claim that I'[ggnd(Spec(R)) is O-truncated; so we just show this. Let us write X = Spec(R).
By Lemma 4.33, it suffices to show that for every set M, the classifying anima of the category
Gal(X)(B(M)) is O-truncated. Together, Recollection 3.32 and Proposition 2.22 show that

Gal(X)(BN) ~ [ [ GalG)({mp) =~ [ P(Xeo) -
meM meM

So by Example 4.32, it suffices to show that every connected component of Pt(X,) has an initial
object. This last statement is immediate from the assumption that R is a pm-ring and all local
rings at maximal ideals are strictly henselian. O

We now derive some consequences of Theorem 4.30. The first is a computation of the étale
homotopy type of these pm-rings, which appears to be new.

4.34 Corollary. Let R be a pm-ring with the property that all local rings at maximal ideals are
strictly henselian. Then there is a canonical equivalence of proanima
% (Spec(R)) = I, (MSpec(R)) .

Here, I1.,,(MSpec(R)) denotes the shape of the compact Hausdorff space MSpec(R). See Nota-
tion 2.30.

Proof. We apply the functor (—)(’i‘iSC : Cond(Ani) — Pro(Ani. ) to the equivalence in Theo-
rem 4.30. To conclude, note that by Lemma 3.14, we have

159" (Spec(R)):. . ~ TT¢_(Spec(R))

disc
and by Lemma 2.32 we have

MSpec(R). . ~ Tl (MSpec(R)) . O

A
disc
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Finally, we turn to the special case of rings of continuous functions.

4.35 Corollary. Let T be a topological space and let Cy, (T, C) denote the ring of bounded continuous
functions to C. Then there are natural equivalences

3™ (Spec(Cy(T, ©))) = B(T)
and
1%, (Spec(Cp(T, €))) = Moo (B(TY) -
4.36. Note that if T is compact Hausdorff, then f(T) = T and C,,(T, C) = C(T, C).

Proof. By the universal property of Cech-Stone compactification, the natural map T — B(T)
induces an isomorphism of rings

C(B(T),C) = Cy(T,C).

By Theorem A.24, the ring C(3(T),C) is a pm-ring and by Theorem A.30 there is a natural
homeomorphism B(T) = MSpec(C(B(T), C)). Furthermore, [Ray70, Chapitre VII, Proposition
4] shows that the local rings of C(8(T), C) at maximal ideals are strictly henselian. Thus the
claim follows from Theorem 4.30 and Corollary 4.34 applied to R = C(3(T), C). O

4.37 Remark. Let T be a compact Hausdorff space that admits a CW structure and ¢ € T. Since
T admits a CW structure, the shape IT,(T) coincides with the underlying anima of T. Hence
Corollary 4.35 shows that, up to protruncation, the étale homotopy type of Spec(C(T, C)) co-
incides with the underlying anima of T. In particular, the SGA3 étale fundamental group of
Spec(C(T, C)) at the maximal ideal of functions vanishing at ¢ coincides with the usual funda-
mental group 7, (T, t).

5 Fiber sequences

Let k be a field with separable closure k D k, and let X be a qcgs k-scheme. Write X} for the
basechange of X to k. Then the naturally null sequence of étale homotopy types

(5.1) % (xp — 0% _(X) — BGal,

is a fiber sequence, see [HHW24b, Theorem 0.2]. The existence of this fiber sequence implies
the usual fundamental exact sequence for étale fundamental groups [STK, Tag 0BTX; SGA 1,
Exposé IX, Théoréme 6.1].

The first goal of this section, accomplished in § 5.1, is to prove the analogue of the funda-
mental fiber sequence (5.1) for the condensed homotopy type. The second goal of this section,
accomplished in §5.2, is to show that given a smooth proper morphism of schemes X — S, up
to suitable completion, the homotopy-theoretic fiber of the induced map I152(X) — T19"4(5S)
agrees with the condensed homotopy type of the scheme-theoretic fiber. See Theorem 5.12.

5.1 The fundamental fiber sequence for the condensed homotopy type

Using the description of TI"(X) as the condensed classifying anima B®"Gal(X), the same
methods as in [HHW24b] allow us to prove the fundamental fiber sequence for the condensed
homotopy type. The key observation is that even though B does not preserve pullbacks, it
preserves pullbacks along morphisms between condensed anima. Let us now explain this point.
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5.2 Recollection. Let € be an co-category with pullbacks and D C € a full subcategory such
that the inclusion admits a left adjoint L: € — 2. We say that the localization L is locally
cartesian if for any cospan U - W « V in € with U, W e D, the natural map

L(U Xy V) = U Xy L(V)
is an equivalence. See [GK17, §1.2; Hoy17, §3.2].

5.3. Importantly, the localization B : Cat,, — Ani is locally cartesian; see [HHW24b, Example
3.4].

5.4 Corollary. Let C be an co-category with finite limits and let L : C — D be a locally cartesian
localization that also perserves finite products. Then the localization L™ : Cond(€) — Cond(D)
is locally cartesian.

Proof. By definition, the functor
reond - Fun*(Extr?, @) — Fun™(Extr’?, D)

is given by pointwise application of L : € — D. Since finite limits in Cond(€) and Cond(D) are
computed pointwise, the claim follows from the assumption that the localization L is locally
cartesian. O

5.5 Example. The localization B4 : Cond(Cat,,) — Cond(Ani) is locally cartesian.

5.6 Corollary. Let f : X — S be a morphism between qcqs schemes, and let § — S be a geometric
point of S. If dim(S) = 0, then the naturally null sequence

nEM(Xy) — TEME) — TL(S)

is a fiber sequence in the co-category Cond(Ani). As a consequence, given a geometric point X — Xj,
the induced sequence of pointed condensed sets

1 — ncl:ond(X§’ )_C) _ chi,ond(X’ )_C) N Tciond(s’ 5) SN Tcgond(Xs_) N Tcgond(X) SN Tcgond(s)

is exact.

Proof. For the first claim, note that by [HHW24b, Corollary 2.4] and the fact that the functor
Pro(Cat,,) — Cond(Cat,,) preserves limits, the natural square

Gal(X;) —— Gal(X)

| l

Gal(s) —— Gal(S)

is a pullback square in Cond(Cat,,). Moreover, since 3 is a geometric point, Gal(3) =~ . Since
dim(S) = 0, by Corollary 3.40 the condensed oo-category Gal(S) is a 1-truncated condensed
anima. The claim now follows from Proposition 3.38 and the fact that the localization B is

locally cartesian.
To conclude, note that since IT"4(S) ~ Gal(S) is 1-truncated, the second claim follows from
the first by taking homotopy condensed sets. O
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5.7 Corollary. Letk be a field with separable closure k, let X be a gcgs k-scheme, and fix a geometric
point X - X;. If ng"nd(X @) = 1, then the sequence of condensed groups

1 — Tcgond(X,g,)'c) — niond(X, X) — Galp, — 1

is exact.

5.8 Remark. By Corollary 4.19, the hypotheses of Corollary 5.7 are satisfied if X is geometrically
connected and X} has finitely many irreducible components.

As an application of the fundamental fiber sequence and Corollary 4.35, we compute of the
condensed homotopy type of rings of continuous functions to R:

5.9 Corollary. Let T be a compact Hausdorff space. Then there is a natural equivalence of con-
densed anima
1$0"d(Spec(C(T, R))) ~ T x BGaly .

Proof. As explained in Lemma A.25, the natural ring homomorphism C(T,R) ®g C — C(T,C)
is an isomorphism. Hence by the fundamental fiber sequence

10"4(Spec(C(T, €))) — M2(Spec(C(T, R))) — BGalg

of Corollary 5.6, we just have to show that action of Galg on Hgg’nd(Spec(C(T ,C))) is trivial. By
Theorem 4.30, we have natural identifications

1" (Spec(C(T, C))) ~ MSpec(C(T,C)) ~ T .
Thus it suffices to show that map on maximal spectra
MSpec(C(T, C)) — MSpec(C(T, C))

induced by complex conjugation is the identity. To see this, note that by Theorem A.30, each
maximal ideal is given by all functions T — C that vanish at some fixed ¢ € T, and a function
vanishes at a point if and only if its conjugate does. O

5.2 Geometric and homotopy-theoretic fibers

Let f: X — S be a smooth and proper morphism of schemes. The goal of this subsection is
is to show that, up to suitable completion, the homotopy-theoretic fiber of the induced map
() : Md(X) — T197(S) agrees with the condensed homotopy type of the scheme-
theoretic fiber.

5.10 Notation. For a morphism of schemes f : X — S and a geometric point § — S, we denote

by
X =X Xs S5

the Milnor ball of f at § . Here S(5) denotes the strict localization at 3.
5.11 Recollection (Z-completion). Let X be a nonempty set of prime numbers.

(1) We write Aniy C Ani, for the full subcategory spanned by those n-finite anima all of whose
homotopy groups are Z-groups (i.e., their order is a product of elements of X).
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(2) The inclusion Pro(Anis) < Pro(Ani,) admits a left adjoint (—)g that we refer to as X-com-
pletion.

(3) We also write (—)g : Cond(Ani) — Pro(Aniy) for the left adjoint of the inclusion
Pro(Aniy) & Pro(Ani,) & Cond(Ani).

As a consequence of the exodromy description of the condensed homotopy type, we can
apply a profinite version of Quillen’s Theorem B, see §B.2, to prove:

5.12 Theorem. Let f : X — S be a smooth and proper morphism between qcqs schemes and let
§ — S be a geometric point. Let ¥ be a nonempty set of primes invertible on S. Then the induced
map

™ (Xy) — fibg(TI™(f)
becomes an equivalence after completion with respect to X.

Proof. We want to apply Theorem B.7 to the functor Gal(f) : Gal(X) — Gal(S) induced by f. To
verify that the assumptions of Theorem B.7 are satisfied, we need to see that for any specialization
n: ' - fin S, the induced map

(5.13) Bcond(Gal(X);/) - BCOnd(Gal(X)f,/)

becomes an equivalence after X-completion.
Recall that by [BGH20, Corollary 12.4.5], we have a natural equivalence of underlying co-
categories

(5.14) Gal(S(;)) = Gal(S)g/ .

Using Observation 6.5 below, one can show that this equivalence refines to an equivalence of con-
densed co-categories, see [Wol25, Proposition 7.3.3.7] for more details. Furthermore, [HHW24b,
Proposition 2.4] implies, that the natural functor

Gal(X(g)) - Gal(X)f/ ,
induced by the equivalence (5.14), is an equivalence of condensed co-categories as well. Thus
by Lemma 3.14, the Z-completion of the map (5.13) identifies with the specialization map
IS X p)p = TEX @) -

By [HHW24a, Proposition 2.49], this specialization map is an equivalence. Thus, Theorem B.7
implies that the natural map ITO"(X; ) — fib;(ITS"4(£)) becomes an equivalence after Z-com-
pletion. Finally, note that by Lemma 3.14 and [HHW24a, Corollary 2.39], the natural map

IEM(Xy) — TEM (X ()
becomes an equivalence after X-completion. O

5.15 Remark. In the setting of Theorem 5.12, the canonical map IT"(X;) — fib;(IT<2™( £)) is
not generally an equivalence before X-completion. The reason why this fails is that the proper
and smooth basechange theorems do not hold for arbitrary proétale sheaves; they only hold for
constructible étale sheaves.

5.16 Remark. Theorem 5.12 is an analogue of Friedlander’s result [Fri73b, Theorem 3.7]. Since
we do not have to require that the base S be normal, at the cost of working with a more compli-
cated homotopy type, our result holds in a more general setup. However, since the X-completion
functor does not preserve fiber sequences, it is also not immediate how to recover Friedlander’s
result from ours.
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6 Integral Descent

The goal of this section is to prove that the condensed homotopy type satisfies integral hyperde-
scent. Let us start by formulating what we mean by this more precisely.

6.1 Definition. Let X be a scheme and € an co-category.

(1) We call an augmented simplical object X, — X an integral hypercover if for each n > 0, the
morphism X,, — X is integral and X; — X and X,, — (cosk,_;(X.)), are surjective.

(2) We call a functor F : Sch®® — @ a hypercomplete integral cosheaf if F sends integral hyper-
covers to colimit diagrams.

The main goal of §6.1 is to show that 11974(—) is a hypercomplete integral cosheaf, which we
achieve in Corollary 6.16. In fact, our methods will show that already Gal(—) is a hypercomplete
integral cosheaf of condensed categories. In § 6.2, we use some of the results in this section
to characterize those morphisms of schemes, for which the étale co-topos is compatible with
basechange; this included integral morphisms.

6.1 Integral morphisms and right fibrations

In this subsection, we show that for an integral morphism of schemes, the induced functor on
Galois categories is a right fibration of condensed categories. We begin by recalling the notion
of a right fibration of condensed co-categories:

6.2 Definition. We say that a functor of condensed oo-categories f : C — D is a right fibration
if and only if the commutative square

Fun®([1], €) —L°" Fun*([1], D)

evll levl

e D

is a cartesian square in Cond(Cat,,).

6.3 Remark. Definition 6.2 is a special case of the notion of a right fibration of simplicial
objects in a general co-topos B, as introduced in [Mar21, Definition 4.1.1]. In particular it follows
from the discussion in loc. cit. that right fibrations in Fun(A°P, Cond(Ani)) are the right class
in an orthogonal factorization system. The left class consists of the final maps, i.e., the smallest
saturated class which contains all maps of the form {n}xS < [n]xS forn € Nand S € Pro(Setg,).
See [Mar21, Lemma 4.1.2].

6.4 Remark. A functor f: € — D of condensed oo-categories is a right fibration if and only
if for every profinite set S, the functor f(S): C(S) — D(S) is a right fibration of co-categories.
Indeed, the square in Definition 6.2 is cartesian if and only if this is true after evaluation at
every profinite set S. Under the equivalence Fun®4([1], €)(S) ~ Fun([1], €(S)), the claim then
follows by the characterization of right fibrations via a corresponding cartesian square, see [Cis19,
Proposition 3.4.5].

In the cases we care about, being a right fibration can often be detected on the level of
underlying co-categories, which we deduce from the following observation.
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6.5 Observation. Recall from [SAG, Theorem E.3.1.6] that the functor
lim: Pro(Ani,;) - Ani

is conservative. It follows that the functor lim,, : Cat(Pro(Ani,)) — Cat,, given by postcompo-
sition with lim is also conservative.

6.6 Lemma. Let f . C — D be a functor in Cat(Pro(Ani,)) considered as a functor of condensed
oo-categories. If the underlying functor of co-categories is a right fibration, then f is a right fibration
of condensed co-categories.

Proof. By definition, f is a right fibration if and only if the induced map
6.7) Fun®™([1], €) —» Fun®"4([1], D) x4 €

is an equivalence of condensed co-categories. Since € and D are in Cat(Pro(Aniy)), it follows
that Fun®4([1], €) and Fun®"4([1], D) are also in Cat(Pro(Ani,)). Thus, by Observation 6.5,
the comparison map (6.7) is an equivalence if and only if it an equivalence on underlying co-
categories. Since taking underlying oo-categories commutes with pullbacks, this proves the
claim. O

By Recollection 3.32, we immediately deduce the following.

6.8 Corollary. Let f : X — Y be a morphism of qcqs schemes. Then the induced functor
Gal(f) : Gal(X) - Gal(Y)
is a right fibration of condensed categories if and only if this is true on the underlying categories.

6.9 Proposition. Let f: X — Y be an integral morphism of qcqs schemes. Then the induced

functor
Gal(f): Gal(X) — Gal(Y)

is a right fibration of condensed categories.

Proof. By Corollary 6.8, it suffices to check this on underlying categories. The statement about
underlying categories appears in [BGH20, Proposition 14.1.6]; for the convenience of the reader,
we give a quick proof here.

Throughout the proof, we simply write Gal(—) for the underlying category as well. By [STK,
Tag 09YZ], any integral morphism f : X — Y with Y qcgs can be written as f = lim; f; for some
cofiltered system of finite morphisms f; : X; — Y. Since right fibrations are stable under limits,
by the continuity of étale co-topoi [SGA 4,;, Expose VII, Lemma 5.6; CM21, Proposition 3.10],
we may assume that f is finite. Since Gal(X) and Gal(Y') are 1-categories, by [Ker, Tag 015H] it
suffices to show that any lifting problem of the form

{1} —— Gal(X)

[ 3” lGal(f)

[1] —— Gal(Y).
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has a unique solution. Writing y for the source of the map s, this diagram factors as

{1} e Gal(Y)}—,/ XGal(Y) Gal(X) _— Gal(X)

[ g l - lGal(f)

[1] = Gal(Y);; ——— Gal(Y),

N

and it suffices to show that this induced lifting problem has a unique solution.
By [BGH20, Corollary 12.4.5] and [HHW24b, Corollary 2.4], we can identify

Gal(Y)y/ =~ Gal(Y()-,)) and Gal(X) xGal(Y) Gal(Y(}—,)) =~ Gal(X Xy Y(y)) .
Moreover, since f : X — Y is finite, by [STK, Tag 04GH] we have a coproduct decomposition
X Xy Y5 = H)Z,-Ef’l()'/) X(x,)- Now the map

{1} - Gal(Y(5)) Xcayy) Gal(X) ~ | | Gal(X(x,)
i

factors through Gal(X()—CiO)) for some iy. Hence, writing X := X; , we finally arrive at a lifting
problem of the form
{1} — Gal(X(3)) —— Gal(X)

[ [ sa
[1] —— Gal(Yyy;) —— Gal(Y).
\_/

Here, existence and uniqueness of a lift is clear. Let j’ be the target of the map s, determined
by {1} — Gal(X(x)). Note that X is the initial object of Gal(X(x)) ~ Gal(X)x,, and also the only
object lifting y. So if there exists a lift, it has to be the unique map from x — x’ for x’ the lift of
y'. Since ¥ is the initial object of Gal(Y(y)) =~ Gal(Y)j;/, it is clear that X — x' actually lifts the
map s: y - j’ we started with. O

6.10 Corollary (Kiinneth formula for integral morphisms). Let X — Y be an integral morphism
of qegs schemes. Then for any qcqs scheme Y' and morphism Y' — Y the natural functor

Gal(X xy Y') = Gal(X) Xgay) Gal(Y")
is an equivalence.

Proof. As integral morphisms and right fibrations are stable under pullbacks, by Proposition 6.9
both functors

Gal(pr,) : Gal(X xy Y') - Gal(Y") and pr; : Gal(X) Xgay) Gal(Y’) — Gal(Y’)
are right fibrations. Therefore, by [Ker, Tag 01VE] it suffices to see that the natural functor
Gal(X xy Y') = Gal(X) Xgay) Gal(Y")
becomes an equivalence after taking fibers over any j’ e Gal(Y’). This holds by [HHW24a,
Corollary 2.4]. O

48


http://stacks.math.columbia.edu/tag/04GH
http://kerodon.net/tag/01VE

6.11 Lemma. Let f : C — D be a morphism in Cat(Pro(Ani,)). Then f is surjective as a functor
of condensed oco-categories (i.e., for all S € Extr, the functor C(S) — D(S) is surjective) if and only
if the induced functor on underlying co-categories f(x): C(x) — D(x) is surjective.

6.12 Observation. The inclusion Cond(Ani) — Cond(Cat,,) also admits a right adjoint. We
denote this right adjoint by (—)~.

Proof of Lemma 6.11. First, by definition, if f is a surjective functor of condensed co-categories,
then f(x): C(x) — D(x)is surjective. Conversely, if f(x) : C(x) — D(x) is surjective, then it fol-
lows from [SAG, Corollary E.4.6.3] that the induced map € — D= is an effective epimorphism
in Pro(Ani,) C Cond(Ani). Now let S € Extr. Since any map S — 2 in Cond(Cat,,) factors
through D~ and S is projective in Cond(Ani) it follows that we can find a lift in the diagram

e:

" l f
S —
which completes the proof. O

6.13 Corollary. Let f: X — Y be a surjective morphism of qcqs schemes. Then the functor of
condensed categories Gal(f) : Gal(X) — Gal(Y) is surjective.

Proof of Corollary 6.13. By Lemma 6.11, we just need to see that the induced functor on cate-
gories of points Gal(X)(x) — Gal(Y)(x*) is surjective. Since any point of X is represented by a
geometric point X — X, it is clear. O

Right fibrations automatically satisfy descent in the following sense:

6.14 Definition. An augmented simplicial co-category €. — € is a hypercover if for each n € N,
the induced functor €, — (cosk,_1(C.)), is surjective.

6.15 Lemma. Let C., — C be a hypercover in Cat,, and assume that for each n € N, the induced
functor C,, — Cis a right fibration. Then colimaop C. = C.

Proof. By straightening-unstraightening, our given hypercover translates to a hypercover of the
terminal object in the co-category RFib(€) ~ PSh(C) of right fibrations over €. Furthermore,
the inclusion RFib(€) C Cat,, /e preserves limits and colimits (the case of limits is clear as
right fibrations are defined via a lifting property, for colimits see [Ram22, Corollary A.5]). Since
RFib(C) is a presheaf co-topos and therefore hypercomplete, the claim follows. O

‘We can now deduce the desired descent results.
6.16 Corollary.

(1) The functor Gal : Sch®® — Cond(Cat.,) is a hypercomplete integral cosheaf.

(2) The functor (—);Zopét : (Sch¥®)or _, Cat,, with functoriality given by pullbacks is an integral
hypersheaf.

(3) The functor TI%™ : Sch%® — Cond(Ani) is a hypercomplete integral cosheaf.
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Proof. By [Wol22, Theorem 1.2], we have a natural equivalence

X%, = Fun“®(Gal(X), Cond(Ani),
hence second assertion is an immediate consequence of the first. By Proposition 3.38, the third
assertion is also an immediate consequence of the first. Thus, we only need to prove the first
assertion.
Using Corollary 6.10, it follows that for any integral hypercover X, — X and n € N, the
canonical map
Gal(cosky,_1(X.),) = cosk,_1(Gal(X.)),

is an equivalence. Thus, Proposition 6.9 and Corollary 6.13 imply that Gal(X,) is a hypercover
of right fibrations of condensed categories. Since sifted colimits are computed pointwise in the
co-category Cond(Cat,,) = Fun™(Extr°?, Cat,,), the claim follows by combining Remark 6.4
and Lemma 6.15. O

We can also recover the schematic description of the over category Gal(X) /x given in [BGH20,
Corollary 12.4.5]:°

6.17 Corollary. Let X be a qcgs scheme, let X — X be a geometric point, and let X® denote the
strict normalization of X at X in the sense of [BGH20, Notation 12.4.2]. Then the natural integral
morphism f : X% — X induces an equivalence of condensed categories

Gal(X®) = Gal(X) ;.

Proof. Since the morphsism f is integral, by Proposition 6.9 the functor of condensed categories
Gal(f) is a right fibration. Hence for % : % — Gal(X®®)) — Gal(X), the induced functor

[zt Gal(X®) 5 — Gal(X) x

is an equivalence of condensed categories. The condensed category Gal(X £2)) already has a
terminal object induced by the generic point of X®), which is given by x — X&), cf. [Mai25,
Theorem 2.4.21]. We conclude using that

Gal(X®) ~ Gal(X®) ; ~ Gal(X) 5 - O

Finally, using some of the machinery developed in [Mar21], we can also deduce integral
basechange for proétale hypersheaves. We do not need this in the rest of this article, but it might
be of independent interest.

6.18 Proposition. Let

Y — Y
p

SThe description of the under categories of Gal(X) in terms of strict henselizations in loc. cit. is immediate from the
definition. The description of over categories in terms of strict normalizations is less obvious, so we decided to include
an argument here.
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be a cartesian square of qcqs schemes where f is integral. Then the induced square

( X;)hyp 9= thp

proét proét
(Y/ )hyp Yhyp
proét  py proét

is horizontally left adjointable, i.e., the natural exchange transformation p*f,, — g.q* is an equiv-
alence.

Proof. By [Wol22, Corollary 1.2], this square is identified with the square

Gal(q).
_

Fun*(Gal(X"), Cond(Ani)) Fun®(Gal(X), Cond(Ani))

Gal(g)*l Gal(f),

Fun®*(Gal(Y"), Cond(Ani)) ———— Fun"(Gal(Y), Cond(Ani))

Since f is integral, Proposition 6.9 shows that Gal(f) is a right fibration, and Corollary 6.10
shows that the natural map Gal(X’) - Gal(X) Xga(y) Gal(Y’) is an equivalence. Because right
fibrations of condensed oco-categories are proper functors [Mar21, Proposition 4.4.7], the the
above square is horizontally left adjointable. O

6.2 Digression: strongly kiinnethable morphisms of schemes

We conclude this section by explaining at what level of generality the Kiinneth formula for étale
oco-topoi (equivalently, Corollary 6.10) holds.

6.19 Definition. We call a morphism of schemes X — Y strongly kiinnethable if for any mor-
phism Y’ — Y the induced map

4 4
(X Xy Yer = Xet Xy, Yy
is an equivalence.

6.20 Remark. Since all co-topoi involved in Definition 6.19 are 1-localic, being strongly kiin-
nethable is equivalent to the canonical geometric morphism

! !
(X Xy Y'et,<0 = Xet,<0 XV <o Yer <o

of 1-topoi being an equivalence.

6.21 Proposition. Let f : X — Y be a morphism of finite presentation. Then f is strongly kiin-
nethable if and only if it is quasi-finite.

Proof. Letus first assume that f is quasi-finite. Since open immersions are strongly kiinnethable
by [HTT, Remark 6.3.5.8], we may immediately reduce to the case where X, Y, and Y’ are affine.
Applying Zariski’s main theorem, we can factor f as an open immersion followed by a finite
morphism. Thus we may assume that f is finite.
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We have to check that the induced map

(6.22) (X Xy Yet,.<0 = Xet,<0 Xvy o Yig <o

is an equivalence. By Corollary 6.10, it induces an equivalence of categories of points. Further-
more it follows from the site-theoretic description of the fiber product of topoi [ILO14, Exposé XI,
§3] that (6.22) is a coherent geometric morphism of coherent topoi. Thus, the Makkai—-Reyes con-
ceptual completeness theorem [SAG, Theorem A.9.0.6] implies that this geometric morphism is
an equivalence.

For the converse, assume that f is not quasi-finite. Then at least one geometric fiber of f is
not quasi-finite. Since taking geometric fibers is compatible with taking étale co-topoi [HHW24b,
Proposition 2.3], we may reduce to the case where Y = Spec(k) is the spectrum of a separably
closed field k. Furthermore, we may always modify X by quasi-finite maps to reduce to the
case where X is integral of dimension at least 1. By Noether normalization, there exists a finite
surjective map h: X — Al Let X, — A} denote the Cech nerve of h. Now if f were strongly
kiinnethable, then since the maps X,, — Spec(k) are the composite of a finite map dy : X,, > X
and f, it would follow that also all maps X,,, — Spec(k) would be strongly kiinnethable as well.
Thus for every k-scheme Y’ and every m > 0, the induced map

Gal(X,, x Y') — Gal(X,,) x Gal(Y")

would be an equivalence. But by integral descent (Corollary 6.16), after passing to the colimit
over A% this would imply that the canonical map

Gal(A} X Y') — Gal(A}) x Gal(Y")

is an equivalence.
Thus we may assume that X = AZ and therefore even that X = Allc. Now let Z = A}{ as well.
This would imply that the canonical map

Gal(A}) — Gal(A}) x Gal(A})
is an equivalence. In particular, it would induce an equivalence on underlying posets and thus

an isomorphism of specialization posets

(A2)° - (AL x (Al
k zar k zar k

’
zar

which is a contradiction. O
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Part 11
The condensed fundamental group

The purpose of this part is to analyze the fundamental group of the condensed homotopy type
and its relationship to the étale and proétale fundamental groups. We start by showing that,
surprisingly, 7 Cor‘“‘(Al ) is nontrivial (see Corollary 7.8). This can be viewed as saying that there
exists a nontr1v1a1 proetale local system of condensed rings on Al See Example 7.10.

In § 7, we show that a mild quotient of the condensed fundamental group of A1 indeed
becomes trivial. Specifically, Clausen and Scholze introduced a localization A > A% of the cat-
egory of condensed sets called the quasiseparated quotient [Sch19a, Lecture VI]. For topological
groups, this is analogous to the Hausdorff quotient. We show that if X is a topologically noethe-
rian scheme that is geometrically unibranch, then there is a natural isomorphism of condensed
groups

(X, %)% = né(X, %)
See Theorem 7.27. Under mild hypotheses on the scheme (e.g., being Nagata), we also prove a
van Kampen formula for the quasiseparated quotient of the condensed fundamental group that
only involves topological free products, topological quotients, and the étale fundamental group
of the normalization, see Theorem 7.51.

In §8, we turn to the relationship between the condensed fundamental group and the proé-

tale fundamental group introduced by Bhatt and Scholze [BS15, §7]. One of the special features

of t proe (X) is that it is a Noohi group. We show that if X is topologically noetherlan the Noohi
completlon (suitably extended to condensed groups) of ncond(X ) recovers TC (X ), see Theo-
rem 8.17.

7 The quasiseparated quotient of the condensed fundamen-
tal group

In §7.1, we begin by using the Galois category description of the condensed homotopy type
to show that ncond(Al) is nontrivial. The rest of the section is dedicated to studying the qua-
siseparated quotient of th"nd(A ). In §7.2, we recall the basics on quasiseparated quotients of
condensed sets and prove some fundamental results about the quasiseparated quotient. In §7.3,
we show that the quasiseparated quotient of nc"nd of a geometrically unibranch and topologically
noetherian scheme recovers T[?t In §7.4, we prove avan Kampen formula for the quasiseparated
quotient of the condensed fundamental group, see Theorem 7.51.

7.1 n9(Al) is nontrivial

In this subsection, we show that ncond can behave wildly, even in geometrically very simple
situations. For simplicity, we work over the complex numbers C.

7.1 Notation. For a topological group G and an (abstract) subgroup H < G, let H"® denote the
group-theoretic normal closure of H in G. Let

Hte .= Fync

be the fopological normal closure of H in G, i.e., the smallest closed normal subgroup of G con-
taining H or, equivalently, the topological closure of H" in G.
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7.2 Proposition. Let S C C be a subset. Let us write
AL~ S = Spec(C[t][(t —a)™! |aeS]).

Let IA:rC be the free profinite group on the underlying set of C. Let Ng be the abstract normal subgroup
of Frc generated by Z(a) for all a € C~ S. Write ) for the generic point of Aé and 7] for the geometric
generic point induced by choosing an algebraic closure of C(T). There is a short exact sequence of
(abstract) groups

1 — Ng — Fre — niond(Aé NS, () — 1.

To prove Proposition 7.2, we make use of an alternative description of BGal(X)(x). To explain
this, we first recall that Gal(X)(x) admits a conservative functor to a poset:

7.3 Example. Let X be a qcgs scheme. Note that there is a natural functor
51 Gal(X)(x) = X

from the category of points of the étale topos to the specialization poset of |X|. The functor s is
the unique functor that sends a geometric point ¥ — X to the underlying point x € |X]|. Since
the fiber of s over a point x € X, Zsar is equivalent to the classifying anima of the discrete group
Gal,y), the functor s is conservative.

Our description thus relies on the following presentation of co-categories with a conservative
functor to a poset:

7.4 Recollection (co-categories with a conservative functor to a poset). Let P be a poset. Write
sd(P) for the poset of nonempty linearly ordered finite subsets of P, ordered by inclusion. The
poset sd(P) is referred to as the subdivision of P. Write Catigfl/sp C Cat,, /p for the full subcategory
spanned by those co-categories over P such that the structure morphism € — P is conservative.

Barwick-Glasman-Haine proved that the nerve functor
Np : Cat‘;;’j’/sp —> Fun(sd(P)°P, Ani)
[€ = P]— [{po < <P} Mapey (P < < Pul, 6’)]

is a fully faithful right adjoint. See [BGH20, Theorem 2.7.4].

The next result provides a convenient way of computing the classifying anima B€ in terms
of the nerve Np(C).

7.5 Proposition. Let P be a poset and ¢ — P a conservative functor. Then there is a natural
equivalence
BC ~ colim Np(C) .
colim p(€)

cons

Proof. First, observe that the functor P X (—): Ani — Cat,, /p factors through Cat_ /p and
is right adjoint to the functor B: Cat(_,, — Ani sending ¢ — P to the classifying anima BC.
Since the colimit functor Fun(sd(P)°?, Ani) — Ani is left adjoint to the constant functor, in

light Recollection 7.4 and the diagram of adjunctions

B
Fun(sd(P)°P, Ani) N:P; Catf;’fl/i, F(_) Ani,
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it suffices to show that the composite right adjoint Ani — Fun(sd(P)°P, Ani) is equivalent to
the constant functor.

To prove this, first note that for nonempty linearly ordered finite subset {p, < --- < p,,} C P,
the classifying anima B{p, < --- < p,} is contractible. Hence, for any anima A and nonempty
linearly ordered finite subset {p, < :-- < p,} C P, we have natural equivalences

Np(P X A){py <+ < Pp} = Mapey ,({Po <+ < pp} P X A)
= MaPAni(B{Po < < puhA)
~ Map,,;(x,A4)
=A. O

7.6 Example. In particular, if X is a qcgs scheme, then there is a natural equivalence

BGal(X)(*) ~ col<im NXZga r(Gal(X )(%)) .

sd(X5r

Proof of Proposition 7.2. To simplify notation, write X = Aé ~ S, Gal(X) for Gal(X)(x), and

N(Gal(X)) for N, < (Gal(X)). We compute BGal(X) using Example 7.6. Note that sd(XZSar) con-
sists of elements of the form

{a}, {0}, and  {a<n}

for any a € C\ S, and the ordering is given by {a} < {a < n} and {5} < {a < n}. Furthermore, the
functor
N(Gal(X)): sd(X5,)° — Ani

can be explicitly described by applying & followed by lim : Pro(Ani,) — Ani to the diagram
sd(XZSm)Op — Sch that sends {a} < {a < 1} > {5} to the span of schemes

(7.7) Spec(CIT],)) «—— Spec(C[T1f,) ~{a} —— Spec(C(1)).

See [BGH20, Example 12.2.2].
For each a € C~ S, we now choose a lift 7, of 7 fitting into a commutative triangle

Spec(C[T ]}, )~ {a}

ﬁa‘_.u“w l

Spec(ﬁ) T» Spec(C(T)) .

In particular, we can lift the span (7.7) to a span of pointed schemes; therefore, N(Gal(X)) also
lifts to a diagram of pointed anima N(Gal(X))... Using that 7; is an equivalence between pointed,
connected, 1-truncated anima and the category of groups [HTT, Proposition 7.2.12], we may
thus compute

m,(BGal(X), ) ~ col(irr})p T, (N(Gal(X)),.) .

sd(X.

Now for any {a} < {a < 5} > {n}, the corresponding span in groups is given by

i —— 7(Spec(CITI" ) {a}, ) —— mEi(Spec(CT)), ).
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Moreover, the colimit of the diagram 7, (N(Gal(X)),.) over sd(X. Zsar)op is given by taking the quo-
tient of n‘ft(Spec(C(T)), 1) = Galg(ry by the (abstract) normal closure of the subgroup generated
by the images of all the decomposition groups

D, = nft(Spec(C[T]ﬁg) “{a}).
By Theorem C.3, there is an isomorphism
Fre = Gale(r) = my'(Spec(C(T)), 7)

from the free profinite group on the set C, under which the preimage of D, is, up to conjugation,
given by the profinite subgroup Z(a) generated by a. It follows that 7r; (BGal(X), 77) is isomorphic
to the quotient of Fr¢ by the smallest (abstract) normal subgroup containing Z(a)foralla € CS,
as desired. O

7.8 Corollary. Letx — Aé be a geometric point. Then the abelianization of the underlying group
Tc‘l"md(A1 , X)(x) is nontrivial. As a consequence,

AL ) #1 and AL X)P #1.

Proof. Since Aé isirreducible, Observation 4.21 implies that the condensed fundamental groups
of Aé with respect to all basepoints are isomorphic. So it suffices to treat the case where X = 7
is the geometric generic point.

Consider the canonical continuous homomorphism Fr¢ — I1,.c Z that carries a generator
a to the unit vector at a. Note that since the image of this is homomomorphism dense, the source
is profinite, and the target is Hausdorff, this homomorphism is surjective. Also notice that that
the (abstract) normal subgroup N lands in the subgroup @aec Z. Thus, by Proposition 7.2, we
obtain commutative diagram of abstract groups

1 Ng Frc (AL () — 1
1—)®aec/z\_)HaeC/Z\ Q 1,

where the rows are short exact sequences. Here, Q # 1 denotes the abstract quotient. Since the
middle vertical map is surjective, the right vertical map is also surjective. Since Q is abelian, we
deduce that Tti"“d(A1 ()2 £ 1. O

7.9 Example. The proof of Corollary 7.8 also shows that the abelianization of 7t§°“d(P1 ,X)(%)is
nontrivial. Indeed, the argument of the proof of Proposition 7.2 can be used to show that there
is a pushout square of groups

Z Dy, —— AL D))

l |

1 ——— nSod(PL, %)(x) .
By the proof of Corollary 7.8, n$*™(Ag,, £)(+) surjects onto Q = ([T ,.c Z)/( D, Z)- It follows

that 7r§°nd(P1 , X)(x) surjects onto Q/ im(D,) which has the same cardinality as Q and is thus
nontrivial.
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One can also use Corollary 7.8 to show that for some exotic condensed rings, there are non-
trivial lisse sheaves on A(..

7.10 Example. The forgetful functor Cond(Ring) — Cond(Ab) admits a left adjoint given by
applying the group ring functor pointwise and then sheafifying. Writing A = 7t§‘”wl(Al , %)%,
we thus obtain a nontrivial condensed ring Z[A]. Furthermore, there is a canonical action of
the condensed group A on the free Z[A]-module of rank 1, given by multiplication. Using the
monodromy equivalence of Proposition 3.22, this yields a lisse Z[ A]-module on AlC that is not
constant, i.e., not in the image of the basechange functor

DiisCproet; Z[A]) — Dlis(Aé’prOét; Z[A]).

While they fit best in this subsection, the following remark and example use the notion
of a quasiseparated condensed set. We recall some background about quasiseparatedness and
quasiseparated quotients in §7.2 below; hence the reader might prefer to return to these points
after consulting §7.2.

7.11 Remark. The proof of Corollary 7.8 can be adapted to show more generally that whenever
C \ S is infinite, the condensed group niond(A}: \ S,7) is not profinite and therefore, by Theo-
rem 7.27, also not quasiseparated. Indeed, if it were, it would follow from Proposition 7.2 that
Ng C IA:rC is a closed subgroup. Thus, the image of Ng under the map /Frc - HaeC Z would also
beclosed in [] .o Z. But this image is exactly @ g Z, which is not closed if C \ S is infinite.
Even more generally, the above arguments show that for any Dedekind scheme X, if the abstract
normal closure N C Galg(x) of the subgroup generated by all decomposition groups is not closed,
then the condensed fundamental group of X is not quasiseparated.

The next example shows that whenever S # @, even if C \ S is finite, the condensed funda-
mental group on Aé \S is not quasiseparated. For example, this covers the case of the localization
Spec(C[T]p_q)) for a € C. To explain it, we need the following lemma about profinite groups.

7.12 Lemma. LetG = ﬁr{a,b} be the free profinite group on two elements a and b, and let
H:=7(0b)CG
be the (necessarily free) profinite subgroup of G generated by b. Then H™® ¢ H™C,

Proof. Foreachintegern > 1,letg, = H?zl(a“b”a_”). For each n, we have g,, € H". Moreover,
(gn)n>1 is a Cauchy sequence in G. To prove that H™ # H™¢, we show that (g,),»1 converges
to an element outside of H"°.

We first claim that since G is Raikov-complete, the Cauchy sequence (g,),>; converges to
some g € G. Indeed, for a given ny > 1 and n > ny, we have

n
g;01gn _ H (al'bila1t) .

i=ng+1

Let N < G be a normal open subgroup. Then there exists ny such that for any m > n,, we have
a™,b™ e N. This is because a and b are images of generators of Z via (two different) continuous
maps Z - G, and the corresponding fact already holds in Z. 1t now follows that for any n > ny,
the element g;ol g, lies in N. By normality, g, g,;ol also lies in N. It follows that g € H'™C,
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We want to show that g ¢ H". Assume the contrary. Then there exist some r € N, ¢; € G,
and d; € H such that g = H:zl cidici_l. Now consider the following system of finite quotients of
G. For each m > 1, let P,,, := (Z/m!)*™ denote the m!-fold product of copies of Z/m!, and write

Qm =P, XNZ/m!,
where the action of Z/m! on P,, permutes the factors. Define a homomorphism G -» Q,, by
b~ (1,0,0,..) € P, = (Z/m!)>™ and am1leZ/m!.

Note that this map sends g to P,,. Now, for m > r, we get that, on the one hand, the image
of g in P, has an increasing (with m) number of nonzero entries and, on the other hand, the
presentation g = Hirzo cl-dici_1 implies that this number is bounded by r. This is a contradiction.

O

7.13 Example. Let S C C be a nonempty subset; we claim that T[iond(Al \ S, 7)) is not quasisep-
arated. With the same notation as Lemma 7.12, we have a diagram of short exact sequences

1 Ny Frc TEMALN S, D)%) — 1
1 Hoe ﬁr{a’b} E—— ﬁr{a’b} /an —_ 1 ,

where the middle vertical map sends z € Cto b if z € S and to a otherwise. Then, by construction,
H™ is the image of Ng under this map. Thus, if Ttiond(Al \S, 7)) were quasiseparated, Ng would be
a closed subgroup (see Proposition 7.20 below). Hence so would H"®, contradicting Lemma 7.12.

7.14 Remark (counterexample to “niond-properness” of Pla). In this remark, we show that
cond (pl cond (pl
) (Pﬁ)(*) 2 P (Pe)(x)

by showing that the cardinality of the former is smaller than that of the latter. This contrasts
with the more classical story of cht; see [SGA 1, Exposé X, Théoréme 2.6] and the discussion in
[Ked17, §4.1, esp. Lemma 4.1.16] and [SW20, §16].

We have seen in Example 7.9 that niond(Pé)(*) admits a quotient with the same cardinality

Q= (HaEC 2)/( 69aeC 2) ’

which will provide a lower bound for the cardinality. On the other hand, as PL is normal, we

as

Q
have seen before that the Galois group of the generic point Gal, ;) surjects onto ni‘md(Pl_)(*).
By [Dou64, Theorem 2], Q
Galk(n) ad Fra .

This will provide an upper bound for the cardinality.
We now need to compute the cardinalities of some rather concrete profinite groups. First,
note that |Z| = |C| = 2%o. It follows that

L] @Y™ =202 =2,
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We also have

colim Zl<|C|-|Z| = 2%
FcCﬁnite®a5F <ICl- 1zl

‘®aec/z\’ =

Thus, |Q| = 22°°. _
Now, we want to bound | Fry, |, where M is a countable set (in our case M = Q). From the
universal property (or see [RZ10, Corollary 3.3.10]) it follows that

Fry, ~ lim Frp.
M FCM finite F

Now (again from the universal property and thanks to the finiteness of the F’s), each of the
groups Fry is just the profinite completion (Frp)" of the abstract free group Fry on F. In a
finitely generated group, there are only finitely many normal subgroups of a given index. This
implies that the profinite completion of Fry can be written as a countably-indexed inverse limit
of finite groups, so | Frp | = 280, Thus, | Fry, | < (2%0)® = 280, Plugging in these bounds, we
obtain the desired result.

7.15 Remark (counterexample to proper base change for proétale sheaves). The results in this
subsection can also be used to show that proper base change does not hold for proétale sheaves,

even with torsion coefficients prime to the characteristic. Concretely, we claim that proper base
change does not hold for the cartesian square

P9 . pl

J |s

Spec(C) — Spec(a) .

That is, we claim that the natural transformation

(7.16) p*fi— &4
of functors Dproét(Pl_; F},) = Dproet(Spec(C); Fp,) is not an equivalence. By passing to left adjoints,

this is equivalent to the natural transformation gsg* — f* py being an equivalence. Note that py
is an equivalence of co-categories. After plugging in the unit and applying a further fy, (7.16)
being an equivalence would thus imply that there is an equivalence

g () = fy(1).
Note that we may compute gy(1) (and similarly f3(1)) explicitly as the F,-homology of the

condensed homotopy type nggnd(Pé). The latter is computed by taking homology pointwise
and then sheafifying. In particular, on global sections gy(1)(x) is simply the F,-homology of

the anima Hf,‘,fnd(Pé)(*). Since the anima Hf,‘,?nd(Pé)(*) is connected, the universal coefficient
theorem implies that

T (g(D() = 1 (P, ()P @ F, .
As in Remark 7.14, the latter surjects onto a group with the same cardinality as

( 1_[aeC FP)/( @aec FP) ’

which is 22,
On the other hand, we also see that 7t; (f3(1)(*)) is a quotient of Fra an thus its cardinality

is at most 280 by the computation in Remark 7.14. We conclude that g4(1) and f(1) cannot be
isomorphic, as desired.
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7.2 Preliminaries on quasiseparated quotients

7.17 Recollection. A condensed set A is quasiseparated if for any maps B —» Aand B’ - A in
which B and B’ are quasicompact, the pullback B x4 B’ is quasicompact as well. We denote by
Cond(Set)® c Cond(Set) the full subcategory that is spanned by the quasiseparated condensed
sets.

7.18 Lemma [Sch19a, Lemma 4.14]. The inclusion Cond(Set)®® C Cond(Set) admits a left
adjoint (—)% that preserves finite products.

Explicitly, if A is a condensed set, its quasiseparated quotient A% can be computed by choosing
acoverU = Hie[ S; » A by profinite sets and by defining A% as the quotient of U by the closure
of the equivalence relation U X, U C U X U.

Since (—)% preserves finite products, it induces a functor Cond(Grp) — Cond(Grp)% which
is left adjoint to the inclusion. Our next goal is to derive a more explicit description of the
quasiseparated quotient of a condensed group.

7.19 Definition. An inclusion C C A of condensed sets is closed if for every profinite set S and
map S — A, the pullback C X, S C S is a closed subspace.

7.20 Proposition. Let G be a condensed group, and letﬁ C G denote the intersection of all closed
normal subgroups of G. Then there is a natural isomorphism

G% = G/{1}.
For the proof, we need two auxiliary results.

7.21 Lemma. Let A be a condensed set and let R C A X A be a closed equivalence relation. Then
the quotient A/R is quasiseparated.

Proof. First, let us choose a cover U = [],_, S; - A by profinite sets S;. Set

iel

R;:=R x (UxU)
AXA

and note that R; defines a closed equivalence relation on U with the property that the natural
map U/R; - A/R is an isomorphism. Let A be the filtered poset of finite subsets of I, and for
eachJ e A, letU; = ]_[jE ; Sj. Then we can write U as the filtered union of the Uj, and for each

J c J' the inclusion U; C Uy is a closed immersion of compact Hausdorff spaces. Moreover, for
eachJ € A, let us set
R;=R; X (U;xUy).
=Ry X (U xUy)

Then each R; defines a closed equivalence relation on Uy, and, since A is filtered, we have
R = colimjc, R;. As a consequence, we may identify colim;., Uy /R; ~ A/R. Now since each
Rj is a closed equivalence relation on Uy, the condensed set U; /R; is a compact Hausdorff space.
Moreover, for every inclusion U; C Uy, the induced map U;/R; — Uy /Ry is injective by
construction of Ry and Ry, and is therefore automatically a closed immersion. Hence the desired
result follows from [Sch19a, Proposition 1.2 (4)]. O

7.22 Lemma. Let ¢ : G — H be a homomorphism of condensed groups. If H is quasiseparated,
then ker(gp) is a closed subgroup of G.

60



Proof. Since ker(gp) is the inverse image of {1} C H, it suffices to show that {1} is closed in
H. For this, pick any map from a profinite set S — H. Since S and {1} are quasicompact and
H is quasiseparated, the fiber product S Xy {1} C S is quasicompact. Since a subobject of a
quasiseparated condensed set is quasiseparated, S Xy {1} is also quasiseparated. It follows that
S xp {1} is compact, and hence a closed subset of S, as desired. O

Proof of Proposition 7.20. We begin by showing that the quotient G /{T} is quasiseparated. To see
this, first note that the map

(7.23) (pry,mult) : G x {1} - G xG

is a closed immersion since when composing this map with the isomorphism G X G - G X G
given by (g, h) — (g, g~'h), the resulting map can be identified with the product of the identity
with the inclusion. Observe that the map in (7.23) is precisely the equivalence relation defining

the quotient group G /m. Hence the quasiseparatedness of G /{1} follows from Lemma 7.21.
To complete the proof, we need to show that for every map ¢ : G — H of condensed groups

in which H is quasiseparated, the kernel ker(¢p) contains {1}. For this, it suffices to check that
ker(g) is closed. This is Lemma 7.22. O

In order to produce short exact sequences on the level of quasiseparated quotients, it is useful
to know the following analogue of being a locally cartesian localization for the quasiseparated
quotient.

7.24 Proposition. Let1 — N — G — H — 1 be a short exact sequence of condensed groups. If
H is quasiseparated, the induced sequence 1 — N¥ — G%¥ — H — 1 is again exact.

Proof. Since H = H%, we only need to show that N® — G% is injective. Again since H is

quasiseparated, Lemma 7.22 shows that N — G is closed. Therefore, mN = EG (as subgroups
of G), and thus

NS — N/EN N G/EG = GSs
is injective. O

We now obtain a fundamental exact sequence of the quasiseparated quotient of the con-
densed fundamental group.

7.25 Notation. Given a scheme X and geometric point X — X, we write

niond,QS(X’ %) = T[(lzond(X’ %)

for the quasiseparated quotient of the condensed fundamental group of X.

7.26 Corollary (fundamental exact sequence on quasiseparated quotients). Let k be a field with
separable closure k, let X be a qcgs k-scheme, and let X — X} be a geometric point. If X is geometri-
cally connected and X has finitely many irreducible components, then the sequence of condensed
groups

1 — 7P, %) — 1P, x) — Gal, — 1

is exact.

Proof. Combine Corollary 5.7 and Remark 5.8 with Proposition 7.24. O
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7.3 7" of geometrically unibranch schemes

Itis a common theme in arithmetic geometry that various generalizations of n‘it are all equal (and
profinite) for normal (more generally: geometrically unibranch) schemes. See [AM69, Theorem

11.1] and [BS15, Lemma 7.4.10] for instances of this phenomenon. As we saw before, this fails

for ni"nd and X = A}:. However, the expected behavior still holds for niond’qs

is the main goal of this subsection.

. Proving this fact

7.27 Theorem. Let X be a gcgs geometrically unibranch scheme with finitely many irreducible
components, and let X — X be a geometric point. Then the natural homomorphism niond(X ,X) >

T[i:t(X , %) induces an isomorphism
TP, %) = (X, 5)

In particular, niond’qs(X ,X) is a profinite group.
For the proof, we need the following observation.

7.28 Proposition. Let X be a gqcgs scheme such that ng"nd(X ) is discrete. Then for any geometric
point X — X, the natural comparison homomorphism

nend(x, %) - né(X, %)
of (3.15) exhibits ﬂ:i’t(X , X) as the profinite completion of niond(X , X). The hypothesis on ngond(X )
is satisfied, for example, when X has locally finitely many irreducible components.
Proof. Combine Lemma 2.12, Lemma 3.14, and Corollary 4.19. O

To prove the main result, we first want to show that this quasiseparated quotient is a compact
topological group. For this, we make use of the following simple consequence of the fact that
the fundamental group of a simplicial set coincides with the fundamental group of its geometric
realization:

7.29 Lemma. Let f : T, — S, be a map of simplicial sets that is bijective on vertices and surjective
on edges. Then, for any choice of basepoint t € T, the induced homomorphism

fo it m(T., 1) - m(S., f(1))
is surjective. O

7.30 Lemma. LetY — X be a morphism of qcqs schemes. Assume that there exist proétale hyper-
covers X. — X and Y. — Y by w-strictly local schemes and a morphism Y. — X! that fit into a
commutative square

Y — X!

||

Yy — X
such that:

(1) Theinduced map of profinite sets nO(Y(’)) - TEO(X(/)) is a bijection (and thus, a homeomorphism).
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(2) The induced map of profinite sets nO(Y{) - nO(X{) is a surjection (and thus, a topological
quotient map).

Then, for any choice of geometric points y — X, the induced homomorphism
7MY, 5) > 7K, %)
is a surjection of condensed groups.

Proof. By Recollection 2.7 and Propositions 3.17 and 3.43, the fundamental group niond(X ,X)
can be computed as

op : ' =
Extr* s S~ n1< [SﬁlelAr{}p MapTop(S,no(Xm)), x) .

In other words, for each extremally disconnected profinite set S, we have to compute the fun-
damental group of the simplicial set MapTop(S,no(Xf)) given by [m] ~ Mapy, (S, o(X))).
Analogous statements hold for Y and Y.

The assumptions on the maps TtO(Y(’)) — (X (’)) and nO(Y{) - nO(X{) imply that, for each
S e Extr, the induced map

Mapu,, (S, mo(Y))) — Mapy,, (S, mo(X?))
of simplicial sets satisfies the assumptions of Lemma 7.29. It follows that, for each S, the map
7MY, §)(S) — 7K, %)(S)
is a surjection, as desired. O

7.31 Lemma. Let X be a quasiseparated, geometrically unibranch, irreducible scheme and let
7 € X be its generic point. Let X, be any proétale hypercover by w-contractible qcgs schemes of X.
Then there exists a proétale hypercover Y, of ) satisfying the conditions of Lemma 7.30 (with respect
to X, and the map n — X).

Proof. LetX., , be the basechange of X, to7. Note that by geometrical unibranchness and the fact
that each connected component of a w-contractible proétale X’ over X is the strict localization
at some geometric point of X (see, e.g., [Lar22, Lemma 3.15]), the map my(X. ,) — my(X.) isa
levelwise homeomorphism. In particular, the profinite sets 7y(X; ) are still extremally discon-
nected. Being w-strictly local, however, will usually be lost after base-changing to 7. We want to
define a w-strictly local hypercover Y, of  with a map to X. ,, that still has the desired properties
on 1, in low degrees.

To do that, fix a geometric point 77 lying over 7 and write X, = X, X, 7. The projection
induces a surjective map of profinite sets 7y(Xo ;) — 7o(Xp ;). As the target is extremally dis-
connected, this map admits a section. Let T C 7((X ;) be the image of one such section. By
[BS15, Lemma 2.2.8], there exists a pro-(Zariski localization) W, — X, ; that realizes the map
T C my(Xo5) on connected components. Such W, is, in particular, weakly étale over 7; by Ex-
ample 2.47 we deduce that W, is w-strictly local. By construction, the map 7o(Wy) = (X )
induced by Wy — X, ; = X, is a homeomorphism.

We can extend this to a map of hypercovers

Y. = cosky(W, X  X.,—X.
0( O)COSkO(X.’,?) 7 7
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that induces a bijection on 0-simplices. The map on 1-simplices is explicitly given by

XonXyXoy

Since W, — X, is surjective, we deduce that (7.32) is surjective. Furthermore, all terms of Y,
are weakly étale over 7, hence, by Example 2.47, they are w-strictly local. This completes the
proof. O

7.33 Corollary. Let X be a quasiseparated, geometrically unibranch, irreducible scheme with
generic point 1) € X. Choose a geometric point 7 lying over 7). Then the natural map

Galy(y) = 75" (Spec(ie(n)), 7) — 7§ (X, 7)
is a surjection of condensed groups.

Proof. Combine Lemmas 7.30 and 7.31 and Example 3.41. O

7.34 Lemma. Let G’ » G be a surjection of condensed groups. Assume that G' is a profinite group.
Then the quasiseparated quotient G% is a profinite group.

Proof. Since the quotient of a quasicompact condensed set is quasicompact, the quotient G is
gcgs. By [CS22, Proposition 2.8], its underlying condensed set is a compact Hausdorff space. Since
the embedding of compact Hausdorff spaces into condensed sets is fully faithful and commutes
with products finite products, it follows that G% is a compact Hausdorff group. Since G also
admits a surjection from the profinite group G’, we deduce that the compact Hausdorff group
G% is itself profinite. O

Finally, we are ready to prove the main result of this subsection.

Proof of Theorem 7.27. Note that, since Pro(Grpg,,) C Cond(Grp)® C Cond(Grp), the profinite
completion G* of a condensed group G factors over the quasiseparated quotient G% of G. Qur

assumptions guarantee that every connected component of X is irreducible. By the preceding
cond,gs

preparatory results Corollary 7.33 and Lemma 7.34, we thus have that 7t; (X, x) is already
profinite, hence agrees with the profinite completion niond(X , ). By Proposition 7.28, this latter
profinite completion recovers nit(X ,X). This completes the proof. O

7.35 Warning. It seems like a natural idea to try to extend the notion of quasiseparatedness and
quasiseparated quotients to all condensed anima, and also extend Theorem 7.27 from fundamen-
tal groups to homotopy types. However, a sufficiently nicely behaved quasiseparated quotient
of condensed anima can not exist. More precisely, there is no full subcategory € C Cond(Ani)
with the following properties:

(1) The inclusion € € Cond(Ani) admits a left adjoint (—)%.
(2) A condensed set is in € if and only if its is quasiseparated.

(3) For any quasiseparated condensed group G, the condensed anima BG is contained in C.

Indeed, both BZ and BZ would be contained in €. Since Z/Z is the fiber of the canonical map
BZ — BZ, the condensed set Z/Z would also be contained in €. But Z/Z is not quasiseparated.
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7.4 The van Kampen and Kiinneth formulas for 7,

The goal of this subsection is to prove a van Kampen formula for the quasiseparated quotient
of the condensed fundamental group (Theorem 7.51). We then use this to prove a Kiinneth
formula for this quasiseparated quotient (Corollary 7.53). To do this, we start by analyzing the
relationship between free topological groups and free condensed groups as well as free products
of topological groups and condensed groups.

7.36 Notation. The forgetful functor Cond(Grp) — Cond(Set) has a left adjoint

Frfgl)ld : Cond(Set) — Cond(Grp) .

For a condensed set M, the condensed group Fr,°\2rld is given more explicitly as the sheafification
of the functor
Frf\);e : Pro(Setg,)°? — Grp
S FrM(S) .

The free group on M comes with a canonical map M — Frio™ in Cond(Set).

7.37. For a profinite set T, we want to compare Fr‘liOnd with FrtTOP, ie., ttclgngree topological group

on T (see [ATO08, Chapter 7]). Note that, by the universal property of Fr; , there is a canonical
homomorphism

top

T

cond

Fry™" — Fr

in Cond(Grp). To do this, we recall some important facts about free topological groups adn free
products of topological groups.

7.38 Recollection (on free topological groups and products). In this recollection, T always
denotes a topological space and G; denote topogical groups.

(1) Markov showed that for every Tychonoff (=completely regular) space T, the free topological
group Fr;?p on T exists and the unitzn : T — Fr;?p is a topological embedding. In addition,
the image 7(T) is a free algebraic basis for G. See [AT08, Theorems 7.1.2 & 7.1.5].

top

(2) When T is compact (more generally, k), Graev-Mack-Morris-Ordman showed that Fr.

is the topological colimit of subspaces
(Frr)<, = {words of reduced length < n}.
See [ATO08, Theorem 7.4.1].

(3) By [Gra48], the underlying set of *;Op G; is the abstract free product and if the groups are
Hausdorff, their free product is Hausdorff too.

Moreover, when each G; is either compact or finitely generated discrete (e.g., Z*"), by looking
at the surjection from a suitable free product (see Lemma 7.46 below) and using (1), it follows

that *:Op G; is a topological colimit of compact subsets of bounded words. Here, by bounded
words we in particular mean that all “letters” from one of the copies of Z sit inside of some
interval [—n, n]. See [Lar24, Remark 4.27].
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7.39 Recollection. In the context of (abstract) free groups on a set M (resp., free products of
groups Gy, ..., G,,) we say that g:}ll g:,;‘n (resp., g1 - gn), where g, is the generator correspond-
ing to m; € M (resp., where g; is a nontrivial element of one of the groups G(;)) is a reduced word
iffor 1 <i < n, we have m; # m;; (resp., j(i) # j@ + 1)).

The following result is a nonabelian analogue of [Sch19a, Proposition 2.1]. The proof essen-
tially follows the one of loc. cit.

7.40 Proposition. Let T be a compact Hausdorff topological space. Then the natural map

(7.41) Fry™™ — FryP

is an isomorphism.

7.42. In the proof, we use the following convention: for a profinite set S and t € T(S), we denote
by g; € Frs°™ the element given by the composite

s ‘> T — preomd

>

where T — Frs™™ is the unit map.
Proof. First, we want to check that the map (7.41) is injective. Note that this boils down to
checking that any section of Fr>° that maps to 1 € Fr,.”, trivializes after passing to a cover in
Pro(Setg,).

Observe that this is the case for the underlying groups. Indeed, it is enough to check that the
map Frre,) — Fr;?p(*) is injective.® This follows directly from Recollection 7.38 (1).

We now treat the injectivity for a general S € Pro(Setg,). Assume that 1 # g € Fry(s) maps

tole Fr;?p(S). By the previous point, for any s € S, the restriction g(s) € Fry(, is trivial. Write g
as a reduced word g = gfll g:j g:r’n", where now ¢; € T(S). All g;; are nonzero and, if m > 1, we
have g, #g,, forl<i<m-1
If m = 1, then we plug in any s € S to see that 1 = g(s) = g;l(s). But the right hand side
cannot be trivial being a generator in the free group raised to a nonzero power - a contradiction.
Assume now that m > 1. Let S; denote the closed subset of S where ¢; = ¢;,,. First, note
that the S;’s (where 1 < j < m) jointly cover S. Indeed, if that would not be the case, then any

point s in the complement would have the property that
—_ — 1 p) 'm
1= 80 = 8,816 " Bty

is a nontrivial reduced word, a contradiction.

Thus, passing to a finite closed cover of S, we can assume that t; = t;,; for some j, effectively
decreasing the “m” in the shortest word that g can be written as. By induction, this implies that
g has to be trivial — a contradiction.

As the proof of injectivity is finished, we now move on to surjectivity. Consider the map of
compact topological spaces

T" x {~1,0,1}* - (Fr;")<,

6We are using here that evaluating Frﬁgnd on x as a sheaf is the same as evaluating its defining presheaf.
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given by (1, ..., tys €15 e » Ep) — gfll “e gf: This map is clearly surjective. It fits into a commutative
square

T" x {~1,0, 1}" (FryP)en
cond

Fr;"" —— Um(Fr;?p)Sm = Fr;?p .

Evaluating at any S € Extr, and using [BS15, Lemma 4.3.7], this shows the surjectivity of the
lower horizontal map (by varying n). O

7.43 Remark. Assume that S = lim; S; is a profinite set with S; finite. Essentially, the same proof
cond

strategy (but without having to use the results of Recollection 7.38 (1)) shows further that Frg
and Frg)]p are isomorphic to the group Um lim; ((Frsi)sm)- This is analogous to the presentation

in [Sch19a, Proposition 2.1].

Now we turn to analyzing free products of condensed and topological group.

7.44 Notation. We denote the the coproduct in the category of condensed groups by #°°"d, It
can be explicitly described as the sheafification of the presheaf *f’re G; given by

Pro(Setg,)°? — Grp
S I—)*i GI(S) .

7.45. Free products of topological groups '°P exist as well. For G; € Grp(Top) there is a canonical
homomorphism *l?ond G; — *EOP G;.

In order to compare condensed and topological free products, we first prove an auxiliary
lemma.

7.46 Lemma. Let Gy, ...,G,, be compact Hausdorff topological groups and r € N. Denote by
T =G, U---UG, U{l,...,r} the topological space that is the disjoint union of the the topological
groups Gy, ..., G, and r singletons. Then the canonical homomorphism

cond
Fr%ond -G, geond . ,cond G, woond Zxendr

is surjective. An analogous fact holds for topological free products.

Proof. The universal properties of these groups give a homomorphism as above (here, we are
mapping each of the r pointsin T to 1 € Z via one of the r canonical maps Z — Zr ). This
map already exists on the level of the defining presheaves and is surjective there, so the map of
sheaves is surjective as well.

We omit the details for the topological counterpart (it uses Recollection 7.38). O

7.47 Proposition. Let Gy, ...,G,, be compact Hausdorff topological groups and r € N. Then the
natural map

scond .

G, gcond - cond Gpm xoond 7 G, %0P ... ytop Gy «top Z*mpr

is an isomorphism in Cond(Grp).
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Proof. To see the surjectivity, one can either redo the argument in the proof of Proposition 7.40 or
use its statement together with Lemma 7.46 and the square (with T = Gy LI -+- UG, L0 % Ll --+ LI %)

Fri?™ —— soond G,

| |

to
—)*ipGi.

Now, for the injectivity, the argument is very similar to the proof of Proposition 7.40. We can
work with *fre G;. The homomorphism of underlying groups

x; Gi(x) — ( *EOP G;)(*)

is a bijection (see Recollection 7.38).

Now, fix S € Pro(Setg,) and let g = g8, --- g, €*; G;(S) be mappingto 1 € ( *EOP G;)(S).
Here, each g; is in some G,(;)(S) and we can assume this presentation of g is a reduced word
(we assume m > 1 as the case when m = 1 is again easy). We know that g(s) ex; G;(x) is trivial
foranys e S.

Let S; denote the closed subsets of S where g; vanishes. First, note that the S;’s (where
1 < j < n)jointly cover S. Indeed, if that’s not the case, then any point s in the complement would
have the property that g(s) = g;(s)g,(s) --- g,(s) is a nontrivial reduced word - a contradiction.

But now, passing to the this cover, we have again reduced the length of the presentation of g
as a word. We are done by induction. O

7.48 Lemma. Let T be a compactly generated topological space. Sending a closed subspace Z C T
to Z — T induces an order-preserving bijection between closed subspaces of T and closed condensed
subsets of T. The inverse is given by sending a closed condensed subset Z C T to Z(x) CT(x) =T
equipped with the subspace topology.

Proof. In order to avoid confusion during the proof, we will write S for the condensed set repre-
sented by a profinite set S. We at first check that the inverse defined above is well-defined, that
is, that Z(x) is a closed subset of T. We may check this after pulling back along any continuous
map f: S - T for S a profinite set. Then the pullback S X1 Z(x) C S is the subspace given by
those s € S such that f(s) € Z(x). If we alternatively compute the pullback Z X7 S in Cond(Set),
then Z X7 S C S is a closed condensed subset by definition. In particular, (Z xT_ S)(x) is a closed
subset of S. But (Z X7 S)(*) = Z(*) X1 S, as subsets of S, and thus Z(x) is closed.

Furthermore, for a closed subspace Z C T, we have Z = Z(x). So, conversely, let us start
with a closed condensed subset Z C T. Then for any S € Pro(Setg,) we claim that the subset
Z(S) C T(S) is given by those f : S — T such thatforall s € S, f(s) € Z(x). Indeed, since Z is a
subobject, f isin Z(S), if and only if the monomorphism j: Z X S — S is an isomorphism. But
since j is a closed immersion, it follows that j is an isomorphisr_n if and only if j(x) is. But this
is the case if and only f(s) € Z(x) for all s € S, as claimed. Since the same description applies
to the condensed subset represented by the subspace Z(x) equipped with the closed subspace
structure, the claim follows. O

7.49 Corollary. Let G be a topological group and H < G a normal condensed subgroup. Assume
that G% is represented by a compactly generated topological group G,. Let

Hy:=im(H - G - G¥ ~ G).
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Then the canonical homomorphism of condensed groups

(G/H)* = Gy [Hy()

is an isomorphism. Here, Hy(x) denotes the topological closure in G.

Proof. Comparing universal properties, we see that the natural map (G/H Y 5 (G /Hy)% is
an isomorphism. By Proposition 7.20, it follows further that the natural map

(G¥/Ho)® — G¥/H,
is an isomorphism. Now since G% ~ G,,, Lemma 7.48 shows that H,, ~ H,(x), completing the
proof. O
We now turn to the van Kampen formula. To do so, we fix some notation.
7.50 Notation. Let X be a scheme.

(1) Assume X is connected and has finitely many irreducible components. Write v : X* — X
for the normalization and write

X :=X"xx X" and XV =X"xyX"XxX".

Assume that X?” and X3 also have finitely many irreducible components (this is true, for
example, if X is Nagata). Decompose X" = Hi X} into connected components. Write I for
the “dual graph” with vertices V = my(X") and edges E = m,(X?"), and fix a maximal tree T
of T.

(2) We write )
meend(x) =14 (X)  and X)) =148 X)

for the condensed fundamental groupoid of X and profinite étale fundamental groupoid of X,
respectively. Here, T, denotes 1-truncation of condensed (resp., profinite) anima.

7.51 Theorem (van Kampen formula for the quasiseparated fundamental group). In the nota-
tion of Notation 7.50, after making choices of geometric base points and étale paths (as in [Sti06,
Corollary 5.3)), there is a natural isomorphism

d, - t é -
T[(lzon qS(X, x) ~ ( *iop Tfit(X;',xi) «top T[l(r, T))/thc ,

where H is the subgroup generated by the following relations:
(1) Foralle € E and g € {'(e, %(e)) we have n'(8,)(g)¢ = éns'(3,)(g).

(2) Forall f € my(X3"), we have

N — —\—1
@2 Neigp@r)™ Goetyio(eo) ™ (@uD) gy ()™ =1

)]

Here, each a isan element of some ni’t(X”, x¢)ande,(0;f) € my(T, T).
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Proof. Combining Corollary 6.16, the fact that 1-truncation is a left adjoint, and [HP25, Proposi-
tion A.1], we obtain an equivalence of condensed groupoids

colim TTM(X*7) = Trend(X) .
[k]eA‘;P2

The fixed geometric points and étale paths fix points and paths in Hi‘md(X )(%), Hi‘md(Xl?)(*), .
so also in any Hiond(X )(S), Hi"nd(X [)(S), ...for S € Extr. By Corollary 4.19, these groupoids are
connected. We now want to pass from a statement about fundamental groupoids to a statement
involving fundamental groups. For a fixed S € Extr, we can apply the usual “discrete” van
Kampen formula: see [Lar24, Theorem 3.7] for a version for 2-complexes of Noohi (and so also
discrete) groups or [Boul6, Chapter IV, §5], cf. also [Sti06]. It implies that

7_[iond(‘X" X) = ( *;:ond n‘{ond(X;), x;) scond (T, T))/H,

where H' is the normal condensed subgroup that for each S is generated by relations analogous
relations as in the statement, but where g € niond(e, x(e))(S), etc.

Now, passing to quasiseparated quotients and using niond(X;’, X)) = nft(Xl?, X;) (this is
Theorem 7.27) together with Proposition 7.47 and Corollary 7.49 yields the result.

We have us;d the following observation to get g « n‘ft(e, X(e)) as opposed to g being an
cond,gs

element of 7t (e, x(e)) or ni"nd(e, %(e)) in relation (1): although X" might not be normal, so
"% e, %(e)) might differ from 7¥'(e, %(e)), the maps n5™**%(3,), 7°"“*(3,) have profinite
groups as the targets and thus, factorize through the profinite completion of niond’qs(e, x(e)),

which is nft(e, X(e)) (cf. Proposition 7.28). As the topological normal closure of the image of

niond’qs(e, X(e))(x) inside nef(e, X(e) is the whole group (one uses the universal property of the

profinite completion to check this), the set of relations
{n]'(01)(@)en Bp) ()" |e € E, g e mi'(e, X(e)) }

is still in H™ and contains the original set of relations (i.e., a similarly-defined one where
g € 7" (e, %(e), as desired. °

7.52 Example. Let k be a separably closed field.

(1) Let C; and C; be normal curves over k with fixed closed points ¢; € C;. Let C = C L,
be the gluing of these curves along these closed points. Then

G,

=C‘2

d’ . -
T YB(C, o) = Té(CyL ) P (X, 05)
(2) Let C be the nodal curve over k obtained from P}{ by identifying 0 and 1. Then
cond,gs
T C,e)~Z.

For more computations involving the van Kampen formula (but for Noohi groups), see [Lar24].

7.53 Corollary (Kiinneth formula for the quasiseparated fundamental groups). Let k be a sepa-
rably closed field and let X and Y be k-schemes such that X, Y, and X X, Y satisfy the hypotheses of
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Notation 7.50. Let Z — X X, Y be a geometric point lying over geometric pointsx — X andy — Y.
IfY is proper or char(k) = 0, then the natural homomorphism of condensed groups

7_taiond,qs()( X, Y,Z) — n(l:ond,qS(X’ %) % Tciond,QS(Y’ 7)

is an isomorphism.

To prove this result, one can combine the van Kampen formula for 7% and the classical

Kiinneth formula for cht as in the proof of [Lar24, Proposition 3.29], but this would require one
to argue using the explicit relations appearing in the van Kampen theorem. To avoid it, it is
beneficial to first apply the classical van Kampen in the groupoid form and only compute the
fundamental groups at the very end. This is how we structure the proof below.

Proof of Corollary 7.53. Fix integral hypercovers vx ., vy . by normal schemes of X and Y. Their
product is again an integral hypercover of X x; Y by normal schemes. Apply [1¢(-) to these
diagrams and pass to colimits in Cond(Ani). The fixed geometric point Z points them. Then

1-truncate and apply peondas

1 (—) to both sides. We get a homomorphism of condensed groups

gs gs
L fyet L fyeét et

nl(ﬁno]lelg}p 7 X X Yyp), *) - m([%ggp H7 (X ) X (Y ), *)
Using [HP25, Proposition A.1], we can compute the colimits as colimits over the full subcategory
Ai‘; C A°P. Apply the usual Kiinneth formula for Ttit (c.f. [SGA 1, Exposé X, Corollaire 1.7 &
Exposé XII, Proposition 4.6] or [HHW24a, §4]), which implies that

ﬁft(Xm XYp) = ﬁ?t(Xm) X ﬁit(ym) >

to get an isomorphism

qs gs qs
7t1<[colim (X, X Y), *) = 7'c1< colim 1¢(X,,,), *) X Tcl( colim 18(v,,,), *) )

op op
m]eA52 [m]eASZ [m]eASZ

cond,gs

Now, using the equality 7] = 7'c‘iEt on normal schemes and arguing via the van Kampen

formula as in Theorem 7.51 to replace the fundamental groupoids by groups, we get that, e.g.,

qgs
. g d, _
i colim A06,0.) = 70000
<2

and similarly for Y and X x Y. Note that X%”, X3” (and similarly for Y-) might not be normal, but
in the van Kampen formula all maps from nion ‘% of (connected components) of those schemes
will always factor though a profinite group (by normality of X”,Y” and X” X Y"), so we were
allowed to replace Tciond by ﬁ‘ft even for those non-normal schemes in the above computation

(cf. similar argument appears in the proof of Theorem 7.51). This completes the proof. O

7.54 Corollary. Let K D k be an extension of separably closed fields, and let X be a k-scheme
satisfying the hypotheses of Notation 7.50. If char(k) = 0 or X is proper, then the projection Xg — X
induces an isomorphism

cond,gs . _cond,gs
P (Xg) = X))
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7.55 Remark. In the parlance of [Ked17], the property of schemes established in Corollary 7.54
could be called niond’qs -properness. As explained in Remark 7.14, before passing to quasiseparated
quotients, this is already false for X = Pllc.

7.56 Remark. In the context of anabelian geometry, it is sometimes beneficial to have a version
of the Kurosh subgroup theorem available in the category of groups where our fundamental
groups live, or at least its corollary: the characterization of maximal finite/compact/... subgroups
of a free product as a “vertex subgroup” (i.e., one of the free summands up to conjugation). See,

e.g., [Moc06]. Proving such a result for the proétale fundamental group seems rather tricky due to
cond,gs

the presence of Noohi completions. For 7t

, however, this can be done: see Proposition 7.57.

7.57 Proposition. Let X be a scheme and X a geometric point. Assume that there are profinite
groups (G;);e; and an integer r € N such that

MK, %) = P Gy #oP 27T

cond,gs
1
cond,gs
1

Let H be a compact topological groupand ¢ : H — 7 (X, x) a continuous homomorphism.

Then there exists an index i and an element g € 7 (X, x) such that

im(p) C gGig~" .
Proof. This follows follows from [MN76, Theorem 1]. O

7.58 Remark. We expect the assumptions of Proposition 7.57 to be satisfied, e.g., when X is a
(semistable) curve over a separably closed field k, with G; = nft(Xl?’, X;), where X = [, X7 is
the the normalization of X.

For n?t (or even Tclfroet), this is a classical computation using the van Kampen theorem when
X is semistable. See [Sti06, Example 5.5] in the case of T[? or [Lav18, Theorem 1.17] for Trlljroet.
With some care, this can be done for arbitrary curves, see [LYZ22, Theorem 2.27]. A similar

computation (using Theorem 7.51) should extend this to nion s

8 Noohi completion of the condensed fundamental group

Let X be a topologically noetherian scheme. The goal of this section is to recover the proétale
fundamental group n}fmet(X ,X) of [BS15, §7] from the condensed fundamental group niond(X ,%).
The main input needed for this is the observation that all weakly locally constant sheaves in the
sense of [BS15, Definition 7.3.1] can be recovered from niond(X ,X). We prove a stronger derived
version of that result in §8.1. In §8.2, we explain how to Noohi complete condensed groups and
show that the Noohi completion of ngond(X ,X) is indeed the proétale fundamental group. See
Theorem 8.17.

8.1 Recovering weakly locally constant sheaves

In this subsection, we explain how to recover weakly locally constant proétale sheaves on a
scheme X as representations of the condensed homotopy type. The following is a generalization
of [BS15, Definition 7.3.1] to sheaves of anima:
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8.1 Recollection. Recall that for a qcgs scheme X there is a canonical algebraic morphism
Sh(7my (X)) — X, induced by sending a clopen subset of 7y (X) to its preimage in X. Furthermore,
we say that F € X hryoit is locally weakly constant if there is a proétale cover {U; — X};; by qcgs
schemes such that each F|y, is in the image of the canonical algebraic morphism

Sh(1y(Uy)) e 2, yhop

i,et i,proét *

. hyp
V;’le write wLoc(X) C Xpmét for the full subcategory spanned by the locally weakly constant
sheaves.

We want to show that wLoc(X) is equivalent to the co-category of continuous functors from
19"4(X) into the following condensed subcategory of Cond(Ani).

8.2 Definition. We define the condensed co-category Ani"!* by the assignment
S ~ Sh(S)

for every profinite set S.” Similarly, we refer to the 0-truncated version of this condensed co-cat-
egory by Set"!,

8.3 Recollection. Let S be a profinite set, and write c:“g : PSh(S) — Cond(Ani) s for the left
Kan extension of the natural functor

Open(S) < Cond(Ani) g
along the Yoneda emebdding. Then the restriction

¢g: Sh(S) — Cond(Ani) g
is a fully faithful left exact left adjoint. See [Hai22, §3.2 & Corollary 4.9]. Moreover, this com-
parison functor is natural in S [Hai22, Lemma 3.16], hence induces a fully faithful functor of
condensed oo-categories

Ani"" & Cond(Ani).

8.4 Remark. The superscript ‘ult’ comes from the word ultrastructure. Any category with filtered
colimits and infinite products can be canonically upgraded to an ultracategory by equipping it
with the categorical ultrastructure, see [Lurl8, Example 1.3.8]. In [Lurl8, Construction 4.1.1]
Lurie explains how to regard ultracategories as condensed categories. Furthermore it follows
from [Lurl8, Theorem 3.4.4] that the image of Set equipped with the categorical ultrastructure
is precisely Set"!".

8.5 Recollection. By [Wol22, Corollary 1.2], precomposition with the localization functor
b: Gal(X) — B®MGal(X) = 1$"4(X) induces a fully faithful functor

b* : Fun®®(11%"(X), Cond(Ani)) —— Fun®®(Gal(X), Cond(Ani)) ~ X"

proét *

Cf. the proof of Proposition 3.38.

"The fact that Ani"!" satisfies descent for surjections of profinite sets follows from the proper basechange theorem.
See [Hai22, Theorem 0.5 & Example 1.28].

73



8.6 Theorem. Let X be a qcqs scheme. The composite fully faithful functor

(8.7) Fun®®(I10"(X), Ani"!t) «—— Fun®*(T1%"(X), Cond(Ani)) b, xhwp

proét

has image the full subcategory wLoc(X) of locally weakly constant sheaves.

The idea of the proof is to show it first in the case of w-contractible schemes, then conclude
by proétale hyperdescent.

8.8 Lemma. Let W be a w-contractible scheme. Then the fully faithful functor

Fun(1t,(W), Ani®lt) — WP

proét
has image wLoc(W).

Proof. Recall from Example 3.11 that since W is w-contractible, ITI"(W) ~ m,(W). Moreover,
since 7o(W) is a profinite set, the Yoneda lemma implies that

Fun®(my(W), Ani"t) ~ Ani"(1y(W)) ~ Sh(my(W))
and the given functor is identified with the functor

Sh(my(W)) & WP

proét

given by pullback along W — my(W). Therefore it lands in wLoc(W) by definition; it remains
to show surjectivity.
To show surjectivity, let F € wLoc(W). Then there is a proétale cover p : U — W such that

p*(F) is in the image of Sh(ny(U)) — U;lfoit. Since W is w-contractible, we can pick a section
s: W — U of p. Since the square

W —s my(W)

Sl lﬂo(s)

U —— Tfo(U)

commutes, we see that F = s*p*(F) is in the image of v*. O
Proof of Theorem 8.6. As we have a chain of fully faithful functors (8.7), we regard
Fun®®(TI2"(X), Ani")

as a full subcategory of X .- It remains to show that this full subcategory agrees with the full
subcategory wLoc(X). Slnce the assignment Y - I15"4(Y) is a hypercomplete proétale cosheaf,
the assignment

Y + Fun(I1<"(Y), Anit!t)

is in a fact a subsheaf of the proétale hypersheaf Y Y;lfoit. Furthermore, by definition, the

assignment
Y » wLoc(Y)

is subsheaf of the proétale hypersheaf Y — Y’ fpe .- Since w-contractible schemes form a basis for
the proétale topology, it suffices to see that they agree on w-contractibles, which is the content

of Lemma 8.8. O
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8.2 Recovering the proétale fundamental group

The goal of this subsection is to show that the Noohi completion of the condensed fundamen-
tal group recovers the proétale fundamental group. Since the proétale fundamental group is a
topological group, we first need to explain some technical points about the relationship between
topological groups and condensed groups.

8.9 Recollection. The canonical functor Grp(Top) — Cond(Grp) from topological groups to
condensed groups admits a left adjoint

(—)%P : Cond(Grp) — Grp(Top) .

Note, however, that in general it is not the restriction of the left adjoint “underlying topological
space” functor
(=)()gop : Cond(Set) — Top

to condensed groups, as the latter functor does not preserve products.

It turns out that (—)'°P can be described as the composite of (—=)()iop With the left adjoint of
the inclusion of topological groups into quasitopological groups.

8.10 Recollection. A quasitopological group is a topological space G with an abstract group
structure such that:

(1) The inversion operation G — G given by g — g~! is continuous.
(2) For each h € G, the translation maps G — G given by g — gh and g — hg are continuous.

The embedding Grp(Top) C qTopGrp of topological groups into quasitopological groups admits
a left adjoint
7 : qTopGrp — Grp(Top)

that moreover preserves the underlying abstract group and only affects the topology [Bral3,
Lemma 3.2 & Theorem 3.8].

While the functor (—)(x);p does not provide an adjoint between Cond(Grp) and Grp(Top),
its image still lands in qTopGrp. This is essentially because the condition of continuity of the
inversion and translation maps does not involve forming a product. That is, we have a functor

(=)(#)op : Cond(Grp) — qTopGrp .
Postcomposing with 7, we get a functor
70(=)(*)top - Cond(Grp) — Grp(Top) .
One can then quite directly verify the following:

8.11 Lemma (see [Mai25, Proposition 1.3.16] for details). The composite To(—)(*)op is left ad-
Jjoint to the “associated condensed group” functor. Visually,

To(=)(*)gop : Cond(Grp) = Grp(Top) : (-).

Said differently, (=)'°P =~ o(=)(*)top-
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8.12. It follows from this discussion that for G € Cond(Grp), the abstract group G(x) and the
underlying group of G*P coincide.

Before proceeding further, we provide a description of the category of G°P-sets purely in
terms of condensed mathematics.

8.13 Lemma. LetG be a condensed group with condensed classifying anima BG, i.e., the condensed
groupoid that sends an extremally disconnected set S to the one object groupoid with automorphisms
G(S). There is a natural equivalence of categories

Fun“®(BG, Set"!t) = G'"°P-Set

that is compatible with the forgetful functors to Set.

cts

Proof. We first prove the following: the category Fun“*(BG, Set"!!) is equivalent to the category
of pairs (M,a) where M ¢ Set and a: G — Aut(M) is a map of condensed groups. Here,
Aut(M) is the group of automorphisms of M equipped with the compact-open topology. A map
(M,a) —» (N, ) is given by a map of sets f : M — N such that the square

G —2% 5 Aut(M)

| |2

Aut(N) T) HomTop(M, N)

commutes (here Homr,, (M, N) is again given the compact-open topology). If this description
holds, the claim follows: by the adjunction between condensed sets and topological spaces and
Recollection 8.10, the homomorphisms « and 8 correspond to unique homomorphisms of qua-
sitopological groups o’ : G(*)iop — Aut(M) and B G(#)iop — Aut(N) making the square

G(¥)op —— Aut(M)

o lf*

Aut(N) T) HomTop(M, N)

commute. Again, by adjunction, Lemma 8.11, and (8.12), the homomorphisms «’ and 8’ corre-
spond to unique homomorphisms of topological groups o’ : G'°? — Aut(M) and 8" : G'°P —
Aut(N) making the square

gor — <, Aut(M)

ﬁ”l |-

Aut(N) T) Homrep(M, N)

commute. Thus the assignment

(M,oc: G- Aut(M)) = (M,a" 1 G — Aut(M))
defines an equivalence of categories
Fun“®(BG, Set'!t) =~ G'°P-Set
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as desired.
Now we prove that Fun“®(BG, Set"!") admits the above description. The fully faithful functor
Fun“®(BG, Set"!t) & Fun®®(BG, Cond(Set)) fits into a cartesian square

Fun“®(BG, Set'!t)y — =, Set

[ [

Fun“®(BG, Cond(Set)) —— Cond(Set),

where the horizontal arrows are given by pullback along * — BG. Indeed, this follows from the
fact that the functors

Fun“®(—, Set"!"), Fun®*(—, Cond(Set)) : Cond(Ani)°® — Cat,

are sheaves and % — BG is a cover in Cond(Ani). Now recall that by [Wol22, Corollary 3.20], for
a condensed set A, there is a natural equivalence of categories

Fun®(A, Cond(Set)) ~ Cond(Set) JA -

Using this combined with [HP25, Proposition A.1] and applying Fun®(—, Cond(Set)) to the
Cech nerve of * — BG, we obtain an equivalence

Fun®®(BG, Cond(Set)) ~ lim (Cond(Set) = Cond(Set) § Cond(Set) /ch) )

Explicitly unwinding the descent data, we see that Fun“®(BG, Cond(Set)) is equivalent to
the usual category of condensed sets with an action by the condensed group G. In other words,
its objects are condensed sets A together with a map G — Aut(A) of condensed groups and the
maps are defined as above. Here Aut(A) is the maximal condensed subgroup of the condensed
monoid Hom(A, A) given by the internal hom in Cond(Set). Thus, the proof will be complete if
for a set M, we can show that there is a canonical isomorphism

Aut(M) = Aut(M) .
For this, we observe that we have a canonical isomorphism
Hom(M, M) = Homrep(M, M),
under which the corresponding condensed subgroups of automorphisms agree. This completes
the proof. O
In order to prove the main result of this section, we recall a bit about Noohi groups.

8.14 Recollection [BS15, §7.1]. For a topological group G, let F; : G-Set — Set denote the
forgetful functor from the category of sets equipped with a continuous G-action to the category
of sets. We say G is Noohi if the canonical continuous map

G- Aut(FG)

is a homeomorphism of groups. Here, Aut(Fg) is topologized using the compact-open topology
on groups Aut(Fg(M)) for M € G-Set. We write GrpNOOhl C Grp(Top) for the full subcategory
spanned by the Noohi groups.
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Noohi groups are useful when one wants to generalize Grothendieck’s Galois theory to allow
infinite fibers (cf. the “infinite Galois theory” of [BS15, §7.2]). This formalism was used to define
the proétale fundamental group of a scheme in §7.4 of loc. cit.. For any scheme X with locally
finitely many irreducible components (this assumption suffices by [BS15, Remark 7.3.11]) and
geometric point X — X, the group Tl:ll)roet(X , %) is Noohi. Similarly, the fundamental group of de
Jong in rigid geometry [dJon95] and its later generalizations [ALY22; ALY23] are all Noohi.

Noohi groups can also be characterized in purely topological terms as Hausdorff, Raikov
complete groups such that open subgroups form a fundamental system of neighborhoods of 1.

The inclusion Grp"°™ ¢ Grp(Top) admits a left adjoint (—)N°°i, called Noohi completion,
given by

G- Aut(FG) .

See [Lar24, §2] for this and some other properties of Noohi groups and Noohi completion.
We now extend Noohi completion to condensed groups.

8.15 Definition. Let G € Cond(Grp). The Noohi completion of G is the Noohi group

GNoohi = (Gtop)NOOhi .

8.16 Remark. For a condensed group G, one can also define a version of Noohi completion
directly as a condensed group without passing through (—)'. More precisely one can show that
GNoohi coincides with the condensed group defined by the assignment

r*
S - Aut(FunC‘S(BG,Setu“) — > Set — Sh(S)).

We do not need this observation in this article.
We conclude by proving the main result of this section.

8.17 Theorem. Let X be a qcgs scheme with finitely many irreducible components® and x — X a
geometric point. Then there is a natural isomorphism

niond(X’ J-C)Noohi ~ ﬁll)rOEt(X, %).

Proof. Since X has finitely many irreducible components, by Corollary 4.19 we may assume that
X, and therefore nggnd(x ), is connected. It follows from Theorem 8.6 that we have a chain of
natural equivalences

Fun®*(Br"(X, x), Set!!) > Fun®*(I1<°"(X), Set"!)
~ Fun®“(I1"4(X), Set"!t)
~ wLoc(X) <
~ (X, %)-Set
that are compatible with the forgetful functors to Set. Here, the last equivalence follows from

the definition of Tcﬁ)mét(X , %) in [BS15, Definition 7.4.2] combined with Lemmas 7.3.9 and 7.4.1
in loc. cit.. Thus Lemma 8.13 shows that there is a natural equivalence

TCiond(X; x)tOP-Set ~ n?rOét(X, X)-Set .

In particular, both groups have the same Noohi completion. Since nfrOét(X , X) is Noohi complete

[BS15, Theorem 7.2.5], the claim follows. O

8This is equivalent to being qcgs and having locally finitely many irreducible components.
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Appendices

A Rings of continuous functions & Cech-Stone compactifi-
cation
by Bogdan Zavyalov
The main goal of this section is to provide the crucial input for the computation of the
condensed shape of rings of continuous functions in §4.3. Namely, we give a self-contained
account for the identification (see Theorem A.30 below) of the Cech-Stone compactification of
a topological space X with the maximal spectrum of the ring of continuous functions on X.
This identification has already been established in [DO71] using the notion of pm-ring. In
this appendix, we follow the ideas already present in [DO71]. We do not claim originality of any
results in this appendix. Instead, we hope that this appendix gives a self-contained and reader-
friendly exposition of some ideas from [DO71] and [GJ76]. See also [Vec92; Vec94; Vec96].
Throughout this appendix, we denote by R (resp., C) the topological ring of real numbers
(resp. complex numbers) with the Euclidean topology. For a topological space X, we denote by

C(X,R) (resp., C(X, C)) the ring of real-valued (resp., complex-valued) continuous functions on
X.

A.1 Main constructions

The main goal of this subsection is to introduce some constructions that will be used in the rest
of this appendix. We also study their basic properties.

A.1 Construction. Let X be a topological space.

(1) For each point x € X, we define the evaluation functional ev,, : C(X,R) — R by the formula
evy(f) = f(x).

(2) We define the map
tx : X = Spec(C(X,R))

to be the unique map that sends each point x € X to ker(ev,.).
A.2 Remark. The map iy is clearly natural in X.

For our later convenience, we record some basic properties of ty.
A.3 Lemma. Let X be a topological space.

(1) The natural map 1y : X — Spec(C(X,R)) is continuous;
(2) the image of 1x(X) C Spec(C(X, R)) is a dense subset;
(3) the map ix factors through MSpec(C(X,R)).

Proof. In order to see the first claim, it suffices to show that l;(l(D( f)) is an open subset of X for

every f € C(X,R). This follows immediately from the formula ' (D(f)) = {x € X | f(x) # 0}
and the assumption that f is continuous.
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Now we prove the second claim. Let Z := V(I) C Spec(C(X, R)) be a closed subset containing
x(X). Then the construction of ¢y implies that, for every f € I, we have 0 = ev,.(f) = f(x) for
all x € X. Thus I = 0, and so we conclude that Z = V(0) = Spec(C(X, R)).

To justify the last claim, it is enough to prove that ker(ev,) is a maximal ideal for every x € X.
For this, it suffices to show that ev, is surjective. Fix a constant ¢ € R and denote by c the
corresponding constant function on X. Then the surjectivity of ev, follows immediately from
the observation that ev,(c) = c. O

A.4 Remark. In what follows, we also denote by tx the restriction iy : X — MSpec(C(X , R)).

Later in this appendix we show that if X is a compact Hausdorff space, then iy is a homeo-
morphism. See Theorem A.30.

A.5 Warning. The map ty is neither injective nor surjective for a general topological space X.

A.2 pm-rings

In this subsection, we introduce the notion of pm-rings following [DO71]. Then we show that
the natural inclusion MSpec(A) & Spec(A) admits a continuous retraction for a pm-ring A.
As a consequence, we deduce that MSpec(A) is a compact Hausdorff space for any pm-ring A.
We use the results of this subsection to relate the Cech-Stone compactification of an arbitrary
topological space X to the maximal spectrum of the ring of continuous functions on X.

A.6 Definition [DO71]. A ring A is a pm-ring if every prime ideal p C A is contained in a
unique maximal ideal p C m), C A.

A.7 Definition. For a pm-ring A, we define the retract map r, : Spec(A) — MSpec(A) as the
unique map that sends a point x to its unique closed specialization (equivalently, it sends each
prime ideal p to the unique maximal ideal my, containing p). When there is no possibility of
confusion, we will denote the map r4 simply by r.

A.8 Remark. Below, we present a proof that r4 is always continuous for a pm-ring A. This
beautiful proof is due to de Marco and Orsatti. However, we want to emphasize that, a priori, it
is absolutely not clear whether the map r4 has to be continuous or not. In fact, the author finds
it quite surprising and is not aware of any one-line proof of this fact.

A.9 Theorem [DO71, Theorem 1.2]. Let A be a pm-ring. Then r : Spec(A) — MSpec(A) is a
continuous retraction of the natural embedding t : MSpec(A) < Spec(A).

In fact, [DO71, Theorem 1.2] shows that A is a pm-ring if and only if : admits a continuous
retract (and r is the unique continuous retract in this case). However, since we never need the
other direction and it is significantly easier, we decided not to include it in this exposition.

Proof. Throughout this proof, we denote by Vg,e.(I) C Spec(A) the vanishing locus of an ideal
inside Spec(A), and by Viax (I) := Vgpec(I) NMSpec(A) the vanishing locus of I inside MSpec(A).

By construction, we know that rot = id. So the only thing we really need to show is that the
map r is continuous. We fix a closed subset Z C MSpec(A) and define

I::mm and J = ﬂ y.

meZ per‘l )
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For the purpose of proving continuity of r, it is enough to show that r~1(Z) = Vgpec(J).
Clearly, r~1(Z) C Vgpec(J). Therefore, after unravelling all the definitions, we see that it suffices
to show that, for any prime ideal p C A such thatJ C p, we have r(p) € Z.

Step 1: We show Z = Vg (I). Since Z is closed, we know that Z = V4 (K) for some ideal
K C A. By construction, for any m € Z, we have K C m. In particular, K C I = ﬂmeZ m.

Thus, Vyax(I) C Vyax(K) = Z. On the other hand, the definition of I implies that Z C Vi (I).
Therefore, we conclude that

VMax(I) c VMax(K) =ZcC VMax(I) .

This implies that Vi, (I) = Z.

Now we set M := UmeZ m. We note that 1 € M, so M # A. We warn the reader that the set
M is not generally an ideal in A.

Step 2: Let p C M be a prime ideal in A. Then r(p) € Z. Since p C M and I = ﬂmeZ m, we
conclude that p + I € M # A. Thus, we can find a maximal ideal n C A such that

pCp+IcCn.

Therefore, r(p) = n. Since I C n, Step 1 ensures that n € Z. This shows that r(p) € Z.

Step 3: Let J C p be a prime ideal in A. Then r(p) € Z. Since each prime ideal is contained
in a unique maximal ideal, it suffices to find a prime ideal q C p such that ¢ C M; then Step 2
implies that r(p) = r(q) € Z.

Now we choose any t € Axpand s € A~ M. Then ts # 0 since otherwise it would imply that

teﬂm=Jcp.

meZ

Hence, the multiplicative system
S={ts|teA~pandse A\M}

does not contain 0. Therefore, the localization A[S™!] is nonzero. Thus, any maximal ideal in
A[S~!] defines a prime ideal q C A disjoint from S. Since 1 € A~ p and 1 € A~ M, we conclude
that ¢ C p N M, finishing the proof. O

A.10 Corollary. Let A be a pm-ring. Then MSpec(A) is a compact Hausdorff space.

Proof. Theorem A.9 implies that  : Spec(4A) — MSpec(A) is a continuous surjection. Since
Spec(A) is quasicompact and images of quasicompact spaces are quasicompact, MSpec(A) is
seen to be quasicompact.

Now we show that MSpec(A) is Hausdorff. First, [STK, Tag 0904] implies that it suffices to
show that, for any two closed points x,y € Spec(A), there does not exist a point z € Spec(A)
which specializes to both x and y. This follows immediately from the fact that every point of
Spec(A) specializes to a unique closed point. O

A.11 Definition. Let f : A — Bbe a homomorphism between pm-rings. We define the induced
map of maximal spectra MSpec(f) : MSpec(B) — MSpec(A) as the composition

Spec(f)
—_—

MSpec(B) —=2— Spec(B) Spec(A) —A— MSpec(A).
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A.12 Warning. In general, for a ring homomorphism A — B, the induced map of spectra
Spec(f) : Spec(B) — Spec(A) does not send MSpec(B) to MSpec(A). This does not even hold for
a general homomorphism of pm-rings. Indeed, consider a rank 2 valuation ring V' with fraction
field K and a rank-1 localization ©. Then the map Spec(©) — Spec(V), induced by the inclusion
V C 0O, sends the closed point of Spec(O) to a non-closed point of Spec(V).

A.3 Rings of continuous functions

The main goal of this section is to show that the rings of continuous functions C(X,R) and
C(X, C) are pm-rings for any topological space X. This will be the crucial ingredient in showing
that the Cech-Stone compactification (X) is homeomorphic to MSpec(C(X, R)).

We do not claim originality of any results of this subsection. In fact, our presentation that
C(X,R) is a pm-ring follows [GJ76, Theorem 2.11] quite closely. The case of C(X, C) seems to be
missing in [GJ76].

Throughout the section, we fix a topological space X.

A.13 Definition. Let f € C(X,R) be a continuous function. Its vanishing locus is the set
Vx(f)={xeX|f(x)=0}.
A.14 Definition. For a subset S C C(X, R), the collection of its zero sets is the subset
Vx[S]:={Vx(f) | f € S} C Sub(X)

of the set of all vanishing loci of elements in S.° For brevity, we put Vx[X] := Vx[C(X, R)] for
the set of all vanishing loci of continuous functions on X.

A.15 Lemma [GJ76, Theorem 2.3]. LetI C C(X,R) be an ideal and let Z,,Z, € Vx[I]. Then
(1) Z,nZ; e VxlI];
(2) ifZ e Vx[X]and Z, C Z, then Z € Vx|[I].

Proof. Let Z; = Vx(f1), Z, = Vx(f,), and Z = Vx(f) for f1,f, € I and f € C(X,R). For the
first claim, note that

Z1 0 Zy = Vx(f1) N Vx(f2) = Vx(f + f3) € Vx[I].
The second claim follows immediately from the observation that

Z =Z1VZ =Vx(f1) UVx(f) = Vx(f1f) € VxlI]. O
A.16 Definition. AnidealI C C(X,R)is a zs-ideal if Vx(f) € Vx[I]implies f € I.

A.17 Remark. Often, zs-ideals are called z-ideals.

A.18 Theorem [GJ76, Theorem 2.5]. Let m C C(X,R) be a maximal ideal. Then m is a zs-ideal.

9We denote by Sub(X) the set of all subsets of X.
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Proof. We denote by I;, C C(X, R) the subset of continuous functions whose vanishing locus is
equal to a vanishing locus of a function in m, i.e.,

(A.19) Iy ={f € C(X,R) | Vx(f) € Vx[ml}.

Now Lemma A.15 implies that I, is an ideal. We pick continuous functions f, g € I, and
h e C(X,R) and wish to show that f + g € I,;, and fh € I,;,. The former claim follows from the
observation Vx(f + g) D Vx(f) N Vx(g) and Lemma A.15, while the latter claim follows from
the observation Vy(fh) D Vx(f) and Lemma A.15.

Now Equation (A.19) implies that, for the purpose of showing that m is a zs-ideal, it suffices
to show that m = I;,. Clearly, we have m C I,;,. Therefore, the fact that m is a maximal ideal
implies that, in order to show that m = I,,, it suffices to show that 1 ¢ I,,. This is equivalent to
showing that @ ¢ Vx[m]. For this note that any f € m is not invertible, therefore @ # Vx(f).
This finishes the proof. O

A.20 Lemma. LetI,J C C(X,R) be two zs-ideals. Then I is a radical ideal and I N J is a zs-ideal.

Proof. We start with the first claim. Suppose f € rad(I), so f" € I for some n. Then we note that
Vx(f) = Vx(f™). So the definition of a zs-ideal implies that f € I. In other words, I is radical.

Now we deal with the second claim. We first claim that Vy[INJ] = Vx[I|NVx[J]. We always
have an inclusion Vx[INJ] C Vx[I]NVx[J], so it suffices to show that Vx[I|NnVx[J] C Vx[INJ].
Pick Z € Vx[I] n Vx[J]. By definition, this means that there are elements f € I and g € J such
that Z = Vx(f) = Vx(g). Since J is a zs-ideal, it implies that f e J. Therefore, f € I N J and,
hence, Z € Vx[I nJ].

Now let f € C(X, R) be a continuous function such that Vy(f) € Vx[I nJ] = Vx[I] N Vx[J].
Then we use the fact that both I and J are zs-ideals to conclude that f e InJ,ie,INnJisa
zs-ideal. O

A.21 Remark. Lemma A.20 implies that the ideal (idg) € C(R, R) is not a zs-ideal.

A.22 Lemma [GJ76, Theorem 2.9]. LetI C C(X,R) be a zs-ideal. Then the following are equiva-
lent:

(1) TheidealI is prime.
(2) Theideal I contains a prime ideal.
(3) Forany f,g € C(X,R) such that fg =0, wehave f e [org e L.

(4) Forevery f € C(X,R), there is a subset Z C X such that Z € Vx[I] and f|; does not change
its sign.

Proof. The implications (1) = (2) and (2) = (3) are trivial.
Now we show (3) = (4). We start by considering the continuous functions f* := max(f, 0)
and f~ := min(f, 0). Then clearly we have

fr-fm=o,
sowe have ft* eI or f~ eI. Suppose f* e I (the other case is similar), then we can choose

Z={xeX | f(x) <0} = Vx(f*) e VxlI] .
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Now we show (4) = (1). We pick two continuous functions f,g € C(X,R) such that fg e I
and wish to show that f € I or g € I. For this, we consider the continuous function h = |f| —|g|.
Our assumption implies that there is a zero set Z € Vx[I] such that k| is, say, nonnegative (the
other case is similar). Note that if f(x) = 0 and x € Z, then h(x) = —|g(x)| > 0. Hence, h(x) =
g(x) = 0 for such x € X. So we conclude that Z N Vx(fg) = Zn (Vx(f) U Vx(g)) = Z N Vx(g).
Therefore, we see that Vx(g) € Vx[I] by virtue of Lemma A.15 and the following sequence of
inclusions:

Vx(g) D ZNnVx(g) =ZnVx(fg)

Therefore, we conclude that g € I since I is a zs-ideal. O

We are almost ready to show that C(X, R) is a pm-ring. For the proof, we need the following
result from commutative algebra.

A.23 Lemma. Let R be a ring and let p;,p, C R be prime ideals such that neither of them is
contained in the other. Then p1 N p, is not a prime ideal.

Proof. Chooset € p;j~p,ands e p,\p;.Thenst e pyNnp,buts & p;Np,andt & pyNp,. O

A.24 Theorem [GJ76, Theorem 2.11]. For any topological space X, the ring C(X, R) is a pm-ring.
Hence MSpec(C(X, R)) is a compact Hausdorff topological space.

Proof. Note that the second claim follows from the first and Corollary A.10. For the first, since
every prime ideal p C C(X,R) is contained in some maximal ideal, so it suffices to show that
p cannot be contained in two different maximal ideals m; and m,. We set I := m; N m,. Then
Theorem A.18 and Lemma A.20 imply that I is a zs-ideal. By construction, we have an inclu-
sion p C I. Therefore, Lemma A.22 ensures that I is a prime ideal. However, this contradicts
Lemma A.23. Hence, there is only one maximal ideal containing p. O

We now prove that that C(X, C) is a pm-ring. We need some preparatory lemmas.
A.25 Lemma. The canonical map C(X,R) ®g C - C(X, C) is an isomorphism.

Proof. First, we note that the assertion is equivalent to showing that the canonical map C(X, R)&®
i-C(X,R) » C(X,C) is an isomorphism. In other words, we need to show that any continuous
function f € C(X, C) can be uniquely written as f = g +i- h with g, h € C(X, R). Uniqueness is
clear. To see existence, we note that f = Re(f) + i - Im(f). O

A.26 Lemma. The canonical map Spec(C(X, C)) — Spec(C(X, R)) restricts to a bijection
¢ : MSpec(C(X,C)) - MSpec(C(X,R)).

Proof. By Lemma A.25, C(X,R) - C(X, C) is a finite ring extension and thus Spec(C(X, C)) —
Spec(C(X, R)) maps closed points to closed points. To show that it restricts to a bijection on
closed points, it suffices to see that for every maximal ideal m C C(X, R) with residue field x(m),
the tensor product x(m) ®c(x ry C(X, C) is a field. By Lemma A.25, this is equivalent to showing
that x(m) ®g Cis a field. For this it suffices to show that the equation X?+1 = 0 has no solutions
in x(m). In other words, we need to show that there are no continuous functions f € C(X,R)
and g € m such that f2 = —1 + g. Suppose that such functions exist. Then we note that g is
not an invertible function since it lies in a maximal ideal. Therefore, there is a point x € X such
that g(x) = 0. Thus, we see that f(x)?> = —1 4+ g(x) = —1. Contradiction, so no such functions
exist. O
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A.27 Corollary. Forany topological space X, the ring C(X, C) is a pm-ring. Hence MSpec(C(X, C))
is a compact Hausdorff topological space.

Proof. Note that the second claim follows form the first and Corollary A.10. For the first, let
B C C(X,C) be a prime ideal and let M C C(X,C) be a maximal ideal containing 8. We
put p := P N C(X,R) and we set m C C(X, R) to be the unique maximal ideal containing p.
Since Spec(C(X, C)) — Spec(C(X,R)) is a finite morphism (see Lemma A.25), it sends closed
points to closed points. So we conclude that It N C(X,R) = m. Thus the claim follows from
Lemma A.26. O

A.28 Corollary. The canonical map c: MSpec(C(X,C)) —» MSpec(C(X,R)) is a homeomor-
phism.

Proof. By Theorem A.24 and Corollary A.27 the source and target are both compact Hausdorff
spaces, so the claim follows from Lemma A.26. O

A.4 Cech-Stone compactification via algebraic geometry

In this subsection, we show that, for any topological space X, the compact Hausdorff space
MSpec(C(X, R)) satisfies the universal property of the Cech-Stone compactification of X.

A.29 Definition. The Cech-Stone compactification of a topological space X is a pair (8(X), ix) of
a compact Hausdorff space (X) and a continuous map iy : X — B(X) such that, for every other
compact Hausdorff space Y with a continuous map f : X — Y, there is a unique continuous

map B(f) : B(X) — Y satisfying f = B(f)oiy.

We recall (see Construction A.1) that, for every topological space X, we have the natural map
tx © X = MSpec(C(X, R)). We also write iyg, ¢ : X — MSpec(C(X, C)) for the composition of
tx followed by the inverse of ¢ : MSpec(C(X,R)) — MSpec(C(X, C)). Our goal is to show that

both (MSpec(C(X ,R)), lX) and (MSpec(C(X ,C)), lX®RC) are Cech-Stone compactifications of
X.

A.30 Theorem. Let X be a compact Hausdorff space. Then all maps in the commutative triangle

x

X MSpec(C(X, R))

IX®RC l /
c

MSpec(C(X, C))

are homeomorphisms.

Proof. The diagram commutes by construction and c is a homeomorphism by Corollary A.28. It
thus suffices to show that ¢y is a homeomorphism.

Step 1: 1y is injective. To show injectivity of ty, it suffices to show that any two different points
X,y € X can be separated by a continuous function f : X — R. More precisely, we need to find
a continuous function f : X — R such that f(x) = 0 and f(y) # 0. Such a function exists by
Urysohn’s Lemma [Mun00, Theorem 33.1].

Step 2: iy has dense image. This follows directly from Lemma A.3.

Step 3: 1y is a homeomorphism. Since X is quasi-compact, we conclude that its image tx(X)
is also quasi-compact. Since MSpec(C(X, R)) is Hausdorff (see Theorem A.24), we conclude
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that 1y (X) is closed. Since tx(X) € MSpec(C(X, R)) is dense, we conclude that iy must be sur-
jective. Therefore, ty is a bijective continuous map between compact Hausdorff spaces (see
Theorem A.24), so it is a homeomorphism in virtue of [STK, Tag 08YE]. O

A.31Lemma. Let f: X — Y be a continuous map of topological spaces. Then there is a unique
continuous map f : MSpec(C(X,R)) — MSpec(C(Y, R)) that makes the square

X ! Y

MSpec(C(X, R)) o > MSpec(C(Y,R))

commute.

Proof. First, we note that ty(X) C MSpec(C(X,R)) is dense by Lemma A.3. Therefore, f is
unique if it exists. For the existence, we denote by f*: C(Y,R) — C(X, R) the natural pullback
homomorphism. Then f = MSpec(f*) does the job (see Definition A.11 and Theorem A.24). [

A.32 Theorem. Let X be a topological space, Y a compact Hausdorff space, and f : X — Y a
continuous map. Then there is a unique continuous map f : MSpec(C(X,R)) — Y that makes
the triangle

f

X ——Y
."J
Lxl ~
MSpec(C(X, R))
commute.
Proof. This follows immediately from Theorem A.30 and Lemma A.31. O

A.33 Corollary. Let X be a topological space. Then both
(MSpec(C(X,R)),1x)  and (MSpec(C(X, ©)), ixgyc)

are Cech-Stone compactifications of X.

Proof. Combine Corollary A.28 and Theorem A.32. O

B A profinite analogue of Quillen’s Theorem B

The goal of this appendix is to prove Theorem B.7, an analogue of Quillen’s Theorem B after
completion at a set of primes. Most of the material here is a part of the sixth author’s thesis
[Wol25, §7.3]. Nevertheless, here the main result is formulated slightly more generally and the
exposition was changed to make it more readable for those less familiar with the theory of
internal higher categories developed by the fifth and sixth authors.
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B.1 Quillen’s Theorem B

Given a functor of co-categories f : € — D, Quillen’s Theorem B [Qui73, Theorem B] gives a
way of calculating the homotopy fiber of the induced map of classifying anima Bf : BC — BD.
We begin this appendix by giving a short and model-independent proof of Theorem B that is
easier to generalize than Quillen’s original argument.

B.1 Theorem (Quillen’s Theorem B). Let f : C — D be a functor of oo-categories such that for
anyd — d’ e D the induced map
BC’/d s B(:’/d/

is an equivalence. Then for any d € D, the induced commutative square of anima

BC;y — BC

| J

*ﬁBﬂ/d —— BD

is cartesian.
The proof rests on the following observation:

B.2 Proposition. Let p: F — D be a left fibration with corresponding straightened functor
p: D — Ani Ifforeach maps: d — d’' in D, the induced map p(s) is an equivalence, then for
each d € D, the square

F4 — BF

l 1BP

% T) BD
is cartesian.

Proof. By assumption, p: D — Ani factors through the unit map D — BD. Pulling back the
universal left fibration, we thus get a diagram

?d F F! Anl*/

I
p

* D BD Ani

d \_/7
p

in which all squares are cartesian. Note that since left fibrations are conservative and B2 is an
anima, ' is an anima. Since B : Cat,, — Ani is locally cartesian (see (5.3)), by applying B to
the middle and left-hand squares, we get another diagram

Fa BF ——— 7'
N J
[ =]
* BD —— BD
d id
in which all squares are cartesian, completing the proof. O
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B.3 Remark. The assumptions of Proposition B.2 are satisfied whenever the left fibration p is
additionally a right fibration, i.e., a Kan fibration.

We now need to build the correct left fibration to which we can apply Proposition B.2. For
this we need the following.

B.4 Notation. Let D be an co-category. We write Cocart(D) C Cat,, /5 for the subcategory
with objects cocartesian fibrations p: ¥ — 2 and morphisms the cocartesian functors. We
write

LFib(D) c Cocart(D)
for the full subcategory spanned by the left fibrations. Note that LFib(2D) is also a full subcategory
of Cat,, /p.

B.5 Recollection. For an oo-category D, the inclusion Fun(?, Ani) < Fun(D, Cat.) ad-
mits a left adjoint given by postcomposition with B: Cat,, — Ani. Under the straightening-
unstraightening equivalence, this corresponds to a left adjoint of the inclusion

LFib(D) < Cocart(D) .

Explicitly, this adjoint sends a cocartesian fibration p: 2 — D to the unique left fibration
L(p): ¥ — D that fits in a commutative triangle

pP— S F

NS

>

where the functor ¢ is initial. Indeed, such a factorization exists because left fibrations are the
right class in the initial-left fibration factorization system, see, e.g., [Mar21, § 4.1]. This also
implies that for any left fibration q : G — D, there is a natural equivalence

Mapcocarn(n) (P @ = Mapeye (P> @) = Mapy i) (L(P), @) -

Here, left-hand equivalence holds since for left fibrations every edge is cocartesian. The right-
hand equivalence follows from the fact that the left fibrations are the right class of a factorization
system [HTT, Lemma 5.2.8.19].

In order to prove Theorem B.1, we fix some notation regarding oriented fiber products of
co-categories.

B.6 Recollection. Let f: C — D be a functor of co-categories. We consider the oriented fiber
product (also called comma co-category) € X4, D defined via the pullback

€ Xp D —— Fun([1], D)

.
l l(evo,evl)

CXD —— DXD
ledz)
in Cat,,. Note that by the universal property of the pullback, the functors (ide, f): € - € X D

and

f id(
¢ — D —— Fun([1],D)
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induce a functor j : € - Xy D. By [HTT, Corollary 2.4.7.12], the projection pr, : €XpD — D
is a cocartesian fibration. The cocartesian fibration pr, classifies the functor

D - Cat, , d»—>(:’/d.
Furthermore, f factors as
c—L.expp 22 p,
and j admits a right adjoint given by projecting to the first factor.

Proof of Theorem B.1. We apply the left adjoint L of Recollection B.5 to the cocartesian fibration
pr,: CXpD — D.Our assumptions precisely say that the resulting left fibration L(pr)): ¥ - D
satisfies the assumptions of Proposition B.2. Thus we get a commutative diagram

BE 4 Be —L B(CXp D) -2 BF
l le lBL(prz)
* =~ BD g -0 BD BD,

where the outer square is cartesian. Furthermore, since B inverts adjoints and initial functors
(see, e.g., [CJ24, Corollary 2.11(4) & Remark 2.20]), the right square is cartesian. Thus the left
square is cartesian, as desired. O

B.2 Profinite Theorem B

The goal of this subsection is to prove a variant of Quillen’s Theorem B for profinite categories
following the general strategy of §B.1. The main ingredient of the proof of Theorem B.1 was the
straightening-unstraightening equivalence. However profinite categories are not well-behaved
enough to admit a full straightening-unstraightening equivalence. The solution is to embed
profinite categories into condensed categories, where we have a straightening-unstraightening
equivalence thanks to [Mar22, Theorem 6.3.1]. The precise theorem we aim to prove in this
subsection is the following:

B.7 Theorem. Let X be a nonempty set of prime numbers.
Let f: C — D be a map in Cat(Pro(Ani,)) such that for any map d — d’ in D the map of
condensed anima

Bcond(e/d) N Bcond(e/d,)

becomes an equivalence after X-completion. Then, for all d € D, the induced map
Bcond(e/d) N ﬁbd(Bcondf)
becomes an equivalence after X-completion.

As mentioned above, straightening-unstraightening plays a crucial role in our proof. Thus,
we begin by defining cocartesian fibrations of condensed co-categories.

B.8 Definition. Let C be a condensed co-category.

(1) A functor p: P — C of condensed oo-categories is a cocartesian fibration if for each S €
Pro(Setg,), the induced functor p(S): P(S) — €(S) is a cocartesian fibration and, fur-
thermore, for each map a: T — S in Pro(Setg,), the functor a* : P(S) — P(T) sends
p(S)-cocartesian morphisms to p(T)-cocartesian morphisms.
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(2) A cocartesian fibration p: P — Cis a left fibration if for each S € Pro(Setg,), the induced
functor p(S) : P(S) — C(S) is a left fibration.

cts

(3) We write Cocart (C) for the subcategory of Cond(Cat,,) e with objects the cocartesian
fibrations and morphisms the functors f : P — Q over € such that for every S € Pro(Setg,,),
the functor f(S) preserves cocartesian morphisms. We write LFithS((:’) C Cocart“®(€) for

the full subcategory spanned by the cocartesian fibrations.

B.9 Remark. Let us denote by Fun“**"([1], Cat,,) the subcategory of Fun([1], Cat,,) with
objects cocartesian fibrations and a morphism from p: ? — Cto p’: P’ - €' is a square
squares

Pt

pl lp’
C— ¢

such that f sends p-cocartesian morphisms to p’-cocartesian morphisms. Then combining
[GHN17, Theorem 4.5] and [HA, Proposition 7.3.2.6] shows that the inclusion

Funcocart([l]’ Catoo) [SES Fun([l], Catoo)

is a right adjoint. In particular, the inclusion preserves limits.

Let p: P — € be a functor of condensed co-categories. The closure of Fun®*"([1], Cat,,)
under limits in Fun([1], Cat,,) shows that if p is a cocartesian fibration, then any map of con-
densed anima s : B — A, the functor s* in the square

Fun®®(4, ) —~— Fun“®(B, P)

n| B

Fun®®(4, @) — Fun®®(B, )

sends p(A)-cocartesian morphisms to p(B)-cocartesian morphisms. Thus, using [Mar22, Propo-
sition 3.17], it follows that our definition of cocartesian fibration agrees with the definition given
in [Mar22] in the case B = Cond(Ani).

B.10 Remark. By Remark 6.4, a functor of condensed co-categories p : ¥ — Cis aleft fibration
in the sense of Definition B.8 if and only if p°P is a right fibration in the sense of Definition 6.2.
Furthermore, if # — € is a left fibration and ? — € is a cocartesian fibration, then every functor
[ P — F of condensed co-categories over € is a map in Cocart™(€).

For the condensed version of straighetning-unstraightening, we need to consider the con-
densed oo-category of condensed co-categories:

B.11 Definition. We write Cond(Cat,,) for the condensed co-category given by the assignment
Pro(Setg,)” > S — Cat(Cond(Ani) /s) -

B.12 Theorem ([Mar22, Theorem 6.3.1] and [Mar21, Theorem 4.5.1]). There is an natural equiv-
alence of co-categories
Cocart®(€) ~ Fun“®(¢, Cond(Cat,,))

Moreover, this equivalence restricts to a natural equivalence

LFib®(€) ~ Fun®®(€, Cond(Ani)) .
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We also have the following analogue of Recollection B.5 for condensed co-categories:

B.13 Observation. Recall that the inclusion Cond(Ani) & Cond(Cat,,) admits a left adjoint
Bcnd : Cond(Cat,,) — Cond(Ani). It is easy to see that both of these functors are compatible
with basechange and therefore lift to an adjunction of condensed co-categories

(: Cond(Ani) 2 Cond(Cat,,) : B

i.e., an adjunction in the (o0, 2)-category of condensed co-categories. See also [MW24, Defini-
tion 3.1.1 and Proposition 3.2.14]. Thus the induced functor

Fun“®(€, Cond(Ani)) — Fun““(€, Cond(Cat,,))

admits a left adjoint given by postcomposition with B4,
Under the straightening-unstraightening equivalence of Theorem B.12, this corresponds to a left
adjoint L of the inclusion

LFib™®(€) & Cocart®(C).

Since left fibrations of condensed categories are the right class in the initial-left fibration
factorization systems, as in Recollection B.5, it follows from [HTT, Lemma 5.2.8.19] that the left
adjoint is given by factoring  — € into an initial functor followed by a left fibration.

To follow the strategy outlined in §B.1, we need a version of Proposition B.2. Now another
complication enters. Unlike in §B.1, the maps B°"d(@ /d) = Beond(@ /d’) are not assumed to
be equivalences on the nose, but only after -completion. Thus, we also need an analogue of
Proposition B.2 that works up to completion. We prove the following statement, which is a
variant of [MN20, Corollary 5.4]:

B.14 Proposition. Let X be an co-category with colimits and let L: Cond(Ani) — X be a
colimit-preserving functor. Let C be a condensed co-category and p . & — C a left fibration of
condensed oo-categories corresponding via Theorem B.12 to a functor of condensed co-categories
p: € - Cond(Ani). Assume that for each profinite set S, the functor

e(S) LON Cond(Ani),; —— Cond(Ani) L .x

sends all morphisms to equivalences. Then for everyd : S — C, the induced map
p(d) .S Xe F-S XpBeond @ Bcond?
becomes an equivalence after applying L.

B.15 Recollection. For the proof of the Proposition B.14, we recall that a functor of condensed
oo-categories f : F — Cis a Kan fibration if it is both a left and right fibration. Equivalently, f
is Kan fibration if any of the following equivalent conditions is satisfied:

(1) For any S € Pro(Setg, ), the functor f(S) is a Kan fibration.

(2) The functor f is right orthogonal to all maps of the form S X {¢} — S X [n], where S €
Pro(Setg,), n € N, and ¢ € {0, n}.

Indeed, this follows immediately from Remark 6.4 and [Mar21, Lemma 4.1.2].
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Proof of Proposition B.14. We work in the co-category

Cond(Ani), := Fun(A°P, Cond(Ani))

of simplicial objects in Cond(Ani). We factor S — Cas S ST i) € where i is contained in the
smallest saturated class in (Cond(Ani),) /e containing all maps of the form

{&§xS ———— [n] xS

~

where n € N, € € {0,n}, and S € Pro(Setg, ), and f is right orthogonal to these maps. It follows
from Recollection B.15 that f is a Kan fibration. Since Kan fibrations are levelwise Kan fibrations,
it follows from Remark B.3 that the natural map

Bcond(s Xe ?) — S Xpeonde Bcond?

is an equivalence Thus it suffices to see that the induced map S Xe & — T Xe F becomes an
equivalence after applying LoB°d,

We note that, by the universality of colimits in Cond(Ani),, the class M ofallmapss: A — B
in (Cond(Ani),) /¢, that have the property that

L COlionp(A Xe ?) - L COhonp(B Xe ?)

is an equivalence is a saturated class in the sense of [Mar21, Definition 2.5.5]. To see that i
is contained in M, it therefore suffices to check this for the maps {e} X S — [n] X S, where
S € Pro(Setg, ) and € € {0, n}. Note that since the pulled back functor ([n] X S) Xe F — [n] X S is
again a left fibration and the pullback of a final functor along a left fibration is final [Mar21, Proof
of Proposition 4.4.7], the induced funtor ({n} X S) X F — ([n] X S) Xe F is final. In particular,

BN (({n} x S) X¢ F) — BOM(([n] X S) X¢ F)

is an equivalence, so {n}xS — [n] xS is in M. Furthermore, under this equivalence, the induced
map
({0} x S) Xe F — BM(([n] x S) Xe F)

is identified with the map ({0} X S) X F — ({n} X S) Xe F induced by 0 — n in [n] (see
Lemma B.16 and Remark B.17 below). This map is an L-equivalence by assumption. Therefore,
i is contained in M, which completes the proof. O

B.16 Lemma. Let p: F — C be a left fibration of condensed oo-categories with straightened
functor p : € - Cond(Ani). Then for any morphism « in C(S) for some S € Pro(Setg,,), given by
a: [1]X S — €, the map p(a) in Cond(Ani) g is given by composing

({0} x S) Xe F = BOMY(([1] X S) Xe F)

with the inverse of the equivalence ({1} X S) Xe F = BM(([1] X S) Xe F).
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Proof. By pulling back along o we may assume that « is the identity. Also we have an equivalence
LFib™([1] X S) ~ Fun“®([1] x S, Cond(Ani)) ~ Fun([1], Cond(Ani) /s) -

Now observe that p(cr) can be computed asev;(e : constevy p — p), where ¢ denotes the counit
of the adjunction const : Cond(Ani) s 2 Fun([1], Cond(Ani)/s) : ev,. Translating to the fibra-
tional perspective via Theorem B.12, we obtain a rectangle

{1} X Fop —— Fo Xqojxs ([1]1 X S) = [1] X Fg

p(oc)l i ls

Fyyy - F
| |
{1} xS [1]x S

and we are done once we see that the composite Fyp, — Fig Xgoixs ([1] X S) — F is identified
with the inclusion Fyp — F after applying B°d, But this is clear, since the two inclusions
{i} X Foy < [1] X Fy,1 = 0,1, are identified after applying B°"d and the composite

{0} x Fy < [1] X Fpy = F
yields the inclusion Fy5 — F by construction. O
B.17 Remark. In the situation of Lemma B.16, we may more generally consider a map
a: [n]xS—>¢C
corresponding to a composable sequence of n arrows in C(S). Let us denote by j : [1] — [n] the

map that sends 0 to 0 and 1 to n. We then get a commutative diagram

({0} x S) Xe F —— BOM(([1] X S) X F) e—— ({1}XS) Xe F

H | |

{0} x S) Xe F —— BOM(([n] X S) X F) —— (n}xS)Xe F

where the middle vertical map is induced by j. Since left fibrations are smooth [Mar21, Propo-
sition 4.4.7], the right horizontal maps are equivalences and thus also the vertical map in the
middle is an equivalence. It follows that the composite of the lower left map with the inverse of
the lower right map is equivalent to p applied to the composite of the n arrows determined by a.

One difference between Proposition B.14 and Theorem B.7 is that in the former we consider
fibers over general profinite sets S, while in the latter we only look at fibers over points. To reduce
from profinite sets to points, we use the following observation:

B.18 Lemma. Let X be a nonempty set of prime numbers. Consider a cartesian square
B— A
[* ]
T — S
in Cond(Ani) such that A is the colimit of a diagram A°® — Pro(Ani,) — Cond(Ani) and

S,T € Pro(Aniy). Then this square remains cartesian after Z-completion.
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Proof. Since Cond(Ani) is an co-topos, geometric realizations are universal in Cond(Ani). By
[Hai24, Example 1.9 and Corollary 1.13], geometric realizations are also universal in Pro(Aniy).
Thus we may assume that A € Pro(Ani,). Since the functor Pro(Ani,) - Cond(Ani) is fully
faithful, the composite

()%
Pro(Ani,) —— Cond(Ani) —= Pro(Aniy)

agrees with the Z-completion functor (—)’Z\ : Pro(Ani,) — Pro(Aniy). The claim now follows
from the fact that Z-completion is locally cartesian [HHW24b, Proposition 3.18]. O

B.19. Let f: C — D be a functor of condensed co-categories. We now consider the condensed
co-category € Xy, D defined via the pullback square

CXp D —— Fun®™([1], D)

a
l l(evo-evl)

CXD — DxD
fxidp

as in Recollection B.6. By by [HTT, Corollary 2.4.7.12], the projection pr, : € XpD - Disa
cocartesian fibration of condensed co-categories.

For sake of completeness we verify the following two facts which we have already used
for ordinary oo-categories in the proof of Theorem B.1. First recall that by unstraightening the

cocartesian fibration of condensed co-categories ev : Funcond([l], ©) — G, one sees that over-
categories of condensed co-categories are functorial.

B.20 Proposition. Let f : C — D bea functor of condensed co-categories and consider the natural
cocartesian fibration pr, : C X9 D — D. Then for every profinite set S and morphism d — d’ in
D(S), the induced functor on fibers is the canonical functor

C’)/d =CXqp D/d — GXD'_D/d/ = C’/d,
in Cond(Cat,,) /s induced by the slice functoriality D ;g — D gr.
Proof. We observe that the pullback square

CXp D —— Fun®([1], D)

l - l(evo,evl)

CXD —— DxD
ledD

is in fact a pullback square in Cocart“®(D). Under the equivalence of Theorem B.12, it therefore

corresponds to a cartesian square of functors D — Cond(Cat,,)

CXpD —— Dy

| l

const(C) T) const(D)

which proves the claim. O

94


http://www.math.ias.edu/~lurie/papers/HTT.pdf#theorem.2.4.7.12

B.21 Lemma. For any functor of condensed co-categories f : C — D, the functor j: € — CXpD
is a fully faithful left adjoint.

Proof. The functor j sits inside the commutative diagram

f

e—*1
jl - lconst
CXp D —— Fun®([1], D)
|- [

C———— D

in which all squares are cartesian. Since const is the fully faithful left adjoint of ev, the proof of
[MW24, Lemma 6.3.9] shows that j is also a fully faithful left adjoint. O

Proof of Theorem B.7. We factor f as
e —L.exy,p 220

and apply the left adjoint of Observation B.13 to the cocartesian fibration pr,. The resulting left
fibration p : ¥ — @ classifies the functor

Bcondoﬁ'r2 : € » Cond(Ani)

and is given by factoring

C%kyD s 7 L, e,

where ¢ is initial and p is a left fibration. Here, pr, is the unstraightened functor of pr,.
We now apply Proposition B.14 to the left fibration p, with L the Z-completion functor

(-)3 : Cond(Ani) - Pro(Aniy) .

Thus we have to verify that for any S € Pro(Setg,) and any map o : d — d’ € C(S), the induced
map Bcondﬁrz(oc) becomes an equivalence after Z-completion. By construction pr,(d) is defined
via a cartesian square

pi,(d) — €%p D
[
STD

and similarly for pt,(d’). It follows that both pt,(d) and pt,(d’) are in Cat(Pro(Ani,)) since the
latter is closed under limits in Cond(Cat,,). It follows that for any point s : % — S the cartesian
square

Bcondlﬁ‘z(dos) Bcondfﬁ'z(d)

|- l

-
% < S
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satisfies the assumptions of Lemma B.18, since B is the geometric realization of the corre-
sponding simplicial object. Thus it remains cartesian after X-completion (also the same holds for
d’ instead of d). By [SAG, Theorem E.3.6.1], equivalences in Pro(Aniy ) can be checked fiberwise.
Thus we may thus reduce to the case where S = *. But in this case Bcondp~r2(a) is by construction
the map

Bcond(e/d) — Bcond(e/d’) ,

which becomes an equivalence after X-completion by assumption. Thus, Proposition B.14 shows
that in the commutative diagram

cond ; cont
Bcond e/d Bcond e B J Bcond ( e ;2@ 2)) Beond, Bcondfrr

j ‘Bcondf BcondL(prz)

~ d R d d
% o~ Beon D/d y Beond - Beond gy |

the outer square is cartesian. Since B°" inverts left adjoints and initial functors of condensed
oo-categories, the claim follows. O

C Galois groups of function fields
It is well-known that there is an isomorphism of profinite groups
/F\I'C [ad Galc(T)

between the free profinite group on the underlying set of C and the absolute Galois group of the
function field C(T). See [Dou64; HI00]. Moreover, it seems to be folklore that this isomorphism
can be chosen so that the free profinite group generated by an element a € C corresponds to a
decomposition group of the prime (T — a). See [Jar95, §1.8]. The purpose of this appendix is to
record a proof of this folklore statement. This was also implicitly shown in [KN71], and we do
not claim originality of any of the results in this appendix.

C.1 Notation. Throughout this section we fix an algebraic closure K of the function field C(T).
We write Galg(ry :== Gal(K/C(T)).

C.2 Recollection. Write C[T] C K for the integral closure of C[T] in K. For any a € C a choice

of prime ideal @ in C[T] lying over (T — a) then determines a decomposition group Dz C Galg(r.
Moreover, if @’ is another choice of prime above (T — a), then Dy is conjugate to Dg.

Our goal is to prove the following result, which is a slight refinement of [Dou64, Theorem 2]
forC =C.

C.3 Theorem. There is an isomorphism of profinite groups
/P\‘I'C - Galc(t)
such that for each a € C the image of Z(a) under this isomorphism is the decomposition group Dajq

of a prime a lying over (T — a).
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C.4 Definition. Let M be a set. Write X for the system of finite subsets S C M partially ordered
by inclusion. Let ((Gg)ges» (pg)ScT) be an inverse system of profinite groups with limit Gy, :=
limg.s Gg and write p? : Gy — Gg for the canonical projection. Let N be either the whole of
M, or an element of =.

(1) We say that a function ¢ : N — Gy is adapted if pg (¢(n)) = 1 for all finite subsets S C N
andalln ¢ S.

(2) We say that a function ¢ : N — Gy is an adapted basis if ¢ is adapted and if the map
Fry — Gy induced by ¢ is an isomorphism.

(3) We say that a system B = (Bg)ses of sets of functions By C Hom(S, Gg) is a system of
adapted bases if the following conditions hold.

(a) Foreach S € ¥, By € Hom(S, Gs) = [ [ Gs is a nonempty closed subset consisting of
adapted bases.

T
.. ® P .
(b) Foreach S C T € %, and each ¢ € By, the restrictionS C T — Gy = Gg is an element
Of Bs.

C.5 Proposition. Let M be a set. Write Z for the poset of finite subsets S C M partially ordered by
inclusion. Let ((Gg)ses, (pg)SCT) be an inverse system of profinite groups with limit G := limg.s Gg
and write pg’l . Gyt — Gg for the canonical projection. Let B be a system of adapted bases. If all

the transition maps pg : Gr — Gy are surjective, then there exists an adapted basis M — G, such
that for each S € %, the restriction

ps'
SCM—)GM—)GS

is a basis contained in Bg.

Proof. In [Dou64, Theorem 1], Douady proved the above claim in the case where 3B is the system
of adapted bases consisting of By the set of all adapted bases S — Gg. However, the argument he
gives actually only uses the axiomatic of a general system of adapted bases in the above sense. [

We will use the following lemma:

C.6 Lemma. Let G be a profinite group and let H,H' C G be closed subgroups. Leta: G — G’
be a homomorphism of profinite groups. Let

M :={geGla(g Ha(H)a(g) = a(H")}.
Then M is closed in G.
Proof. We first consider the set

M ={geG|algHa(H)a(g) Cc a(H")}.

For h € H, write
M} ={g<G|a(ghg) € a(H)}.
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This is preimage of a(H') C G’ under the continuous map G — G’ that sends g to a(g~'hg).
Since a(H") C G’ is closed it follows that M, is closed. Since

M = ﬂ M)
heH

it follows that M’ is closed. Now note that the same argument shows that
M" :={g e Gla(@aH)a(g)™" C a(H)}
is closed. Thus M = M’ n M"' is closed. O

Proof of Theorem C.3. Our choice of algebraic closure yields an isomorphism

Galc(T) = ch%}qite 7'[f$t(A1 NS, 7’7) .
Letuswrite Gg = 7'1:‘i3t(A1 S, 7). We want to apply Proposition C.5 to this inverse systems of groups
and the system of adapted bases Bg that consists of those maps ¢ : S — Gg that are adapted
bases and for any s € S, the subgroup Z(¢(s)) is (conjugate to) a decomposition group at s. To see
that (Bg)g is a system of adapted bases, we need to show that the conditions Definition C.4-(3.a)
and Definition C.4-(3.b) are satisfied. It is clear that (3.b) is satisfied, so we only check (3.a).
We start by verifying that By € Hom(S, Gy) is closed. To this end, note that the larger subset
Bg“ C Hom(S, Gy), consisting of all adapted bases is closed, see the beginning of the proof of
[Sza09, Proposition 3.4.9]. To conclude, it suffices to see that for all s € S the subset X5 C Gg,
consisting of those o € Gg with the property that Z(0) is a decomposition group at s, is closed.
Indeed, in this case
BS = 3;11 N st C HOm(S, Gs) = H GS .
seS S

is seen to be an intersection of closed subsets, hence itself closed. Fix one decomposition group
D; at 5. Since Dy ~ Z, the subset N C D, of elements that topologically generate Dy is closed.
Now observe that X agrees with the image of the continuous map

NXGs — Gs; (n,8)~ g 'ng

and is therefore closed, since the domain is compact. Finally, we need to check that Bg # @.
Choose a point x € C~ S and an étale path o : 7 w x and consider the isomorphism

P mPCNS, 0N = AL S, x) = (AL~ S, 7)

obtained from the Riemann existence theorem and conjugation with «~!. Recall that Tttfp (C~S,x)
is freely generated by simple loops y, at x around s, that do not loop around other points in S.
Then (s — ¥(y,)) is clearly an adapted basis and furthermore (y,) generates a decomposition
group at s. Thus (s = P(ys)) € Bs.

By applying Proposition C.5, we obtain an isomorphism ¢ : Fre = Galg(ry with the property
that for all finite subsets S C Cand a € S, (pgo(p)(a) generates a decomposition group at a in
Gg. We now show that ¢(a) generates a decomposition group at a in Galg(r) for any a € C. To
this end, fix one decomposition group D, C Galg(r) of a. By the above, for every finite subset
S C C there exists some g € Galgr) such that Z(¢(a)) = g7'D,4g in Gg. Now by Lemma C.6 the
set Cg of all such g is closed. Therefore [ s Cs = limg Cy is nonempty as a cofiltered limit of
nonempty compact Hausdorff spaces. By construction, any element g € [ s Cs has the property

that i(qo(a)) = g~'D,g holds after projecting to Gg simultaneously for all S C C finite. Since
both D, and Z(¢(a)) are closed subgroups of Galg(ry = limgcc finite Gs, this shows that indeed

g7 1D,g = Z(¢(a)). In particular, p(a) generates a decomposition group as desired. O
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