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Abstract

These notes explain some descent results for co-categories of sheaves on compact Haus-
dorff spaces and derive some consequences. Specifically, given a compactly assembled co-cat-
egory &, we show that the functor sending a locally compact Hausdorff space X to the co-cat-
egory Sh**(X; &) of Postnikov complete E-valued sheaves on X satisfies descent for proper
surjections. This implies proper descent for left complete derived co-categories and that the
functor Sh”™(—; &) is a sheaf on the category of compact Hausdorff spaces equipped with the
topology of finite jointly surjective families. Using this, we explain how to embed Postnikov
complete sheaves on a locally compact Hausdorff space into condensed objects. This implies
that the condensed and sheaf cohomologies of a locally compact Hausdorff space agree.
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0 Introduction

The first goal of these notes is to explain some descent results for co-categories of sheaves on
locally compact Hausdorff spaces. Our motivation comes from condensed/pyknotic mathemat-
ics developed by Clausen-Scholze [20; 21; 22; 23], in our joint work with Barwick [2, Chapter
13; 3], and in Lurie’s work on ultracategories [17; 18, Chapter 4]. Write Comp for the cate-
gory of compact Hausdorff spaces. The category Comp has a Grothendieck topology where the
covering families are finite families of jointly surjective maps. Because of the simplicity of the
Grothendieck topology, the sheaf condition is very explicit: a presheaf on Comp is a sheaf if
and only if it carries finite disjoint unions of compact Hausdorff spaces to finite products and
satisfies descent for surjections.
Our first goal is to answer the following question:

0.1 Question. Is the functor Sh: Comp®® — Cat,, that assigns a compact Hausdorff space K
the co-category Sh(K) of sheaves of spaces on K a sheaf with respect to this topology?

Perhaps surprisingly, the answer to Question 0.1 is negative (see Corollary 2.18). Moreover, if one
replaces sheaves by hypersheaves, the answer to Question 0.1 is still negative. The reason for this
failure of descent is that every compact Hausdorff space admits a surjection from a profinite set,
and the co-category of sheaves on a profinite set satisfies a strong completeness property which
the oo-category of (hyper)sheaves on a general compact Hausdorff space does not satisfy. So it is
not reasonable to ask for the co-category of sheaves on a general compact Hausdorff spaces to
be expressible as a limit of co-categories satisfying this completeness property.

0.1 Postnikov completion

Since this completeness property is central to these notes, before stating the main results, let us
briefly introduce it. See §1.2 for more details.

0.2 Definition. Let X be a topological space. The Postnikov completion of the co-category of
sheaves of spaces on on X is the inverse limit

T<n+1 T<n-1

ShP™(X) = lim< o 0 Sh(X) cpi BRI Sh(X), =2 ... >

of the co-categories of sheaves of n-truncated spaces along the truncation functors.
Objects of ShPOSt(X ) are towers
> Fy > F, > > F

where F,, is an sheaf of n-truncated spaces on X such that 1., F;,;; = F,,. There is a natural left
adjoint Sh(X) — ShpOSt(X ) sending a sheaf F to its Postnikov tower {1, F},. We say that Sh(X)
is Postnikov complete if this functor Sh(X) — ShP**'(X) is an equivalence.

0.3 Example. The co-topos of sheaves on a profinite set is Postnikov complete. On the other
hand, the co-topos of sheaves on the Hilbert cube ., [0, 1] is not Postnikov complete.

For a presentable co-category &£, we write ShP**'(X; &) for the tensor product Sh"'(X) Q€.
With stable coefficients this recovers the left-complete derived co-category of sheaves:



0.4 Example. Let X be a topological space and let R be a ring. Write D(X; R) for the derived
oco-category of the abelian category of sheaves of R-modules on X. Then Sh***'(X; D(R)) is the
left completion of D(X; R) with respect to the standard t-structure.! That is, Sh”*'(X; D(R)) is the
limit of the diagram of co-categories

- DX R)apy — DX R)<y — o

along the truncation functors with respect to the standard t-structure.

0.2 Descent for Postnikov complete sheaves

The following is the main descent result of these notes. Note that all compactly generated co-cat-
egories are compactly assembled (see Recollection 1.10).

0.5 Theorem (Corollary 2.8). Let € be a compactly assembled co-category. Then for every proper
surjection of locally compact Hausdorff spaces p : X - Y, natural functor

il

pry
Sh**(Y; &) — lim ( SO €) = s xy X3 8) & - )
pr;

is an equivalence in Cat,. Consequently, the functor ShP*'(—; &) Comp® — Cat,, is a hyper-
sheaf of co-categories on the site of compact Hausdorff spaces.

0.6 Example. Let R be a ring. Then the functor D(—;R) : Comp®® — Cat,, carrying a compact
Hausdorff space to its left complete derived co-category is a hypersheaf. Hence the functor

D(—;R) < : Comp® — Cat,,

that sends a compact Hausdorff space K to its bounded-above derived co-category? is also a
hypersheaf of co-categories.

Passing to global sections shows that sheaf cohomology also satisfies proper descent.

0.7 Corollary. Let R be a connective E,-ring spectrum and M a bounded-above left R-module
spectrum. The functor
RTgheat(— M) : Comp®” - LMod(R)

is a hypersheaf.

Note that if R is an ordinary ring, then the co-category LMod(R) is the derived co-category D(R).

0.3 The comparison between sheaf and condensed cohomology

Part of our motivation for proving Theorem 0.5 is that it has a number of consequences. One
application is a generalization of work of Dyckhoff and Clausen—Scholze that compares sheaf
cohomology with condensed cohomology. Let X be a locally compact Hausdorff space. We can
also regard X as an object of the co-category Sh(Comp) via the restricted Yoneda embedding.

1We use homological indexing for our t-structures.
2What we write as D(K; R) ., is often written as D*(K; R).



Dyckhoff [7, Theorem 3.11; 8] and Clausen-Scholze [23, Theorem 3.2] showed that if A is an
abelian group, and X is compact then there is an isomorphism

H:heaf(X;A) = Hjond(X;A)

from the sheaf cohomology of X to the cohomology of X regarded as an object Sh(Comp).

We extend this result in two directions: to locally compact Hausdorff spaces and to very
general coefficients. The comparison map between sheaf and condensed cohomology is induced
by a natural geometric morphism

¢x,x - Sh(Comp),x — Sh(X)
given by sending a sheaf G : Comp”® — Spc to the sheaf on X defined by
¢x,+(G)(U) = MaPgy comp) (U O) -

(See §3.2 for details.)

Since cohomology is computed by derived global sections, to show that the sheaf and con-
densed cohomologies of X agree, it suffices to show that cy is fully faithful. Again, this is generally
only true after Postnikov completion (see Warnings 4.16 and 4.19).

0.8 Proposition (Corollary 4.11). Let X be a locally compact Hausdorff space and let £ be a
compactly assembled co-category. Then the pullback functor

¢*Post : ShP'(X; £) - ShP*(Comp /x> E)
is fully faithful.
Proposition 0.8 implies, for example:

0.9 Corollary (Corollary 4.12). Let X be locally compact Hausdorff space. Let R be a connective
E,-ring spectrum and let M be a bounded-above left R-module spectrum. Then the natural map

Rrsheaf(X; M) - chond(X; M)
is an equivalence in the co-category LMod(R) of left R-module spectra.
As a consequence, the condensed, singular, and sheaf cohomologies of a topological space ad-
mitting a locally finite CW structure all agree (see Remark 4.13 and (4.14)).

0.4 Linear overview

We imagine that the reader might be interested in condensed/pyknotic mathematics but not
necessarily familiar with all of the intricacies about the theory of co-topoi. With this in mind, in
§1, we review the basics of hypercomplete and Postnikov complete co-topoi; the familiar reader
can safely skip this section. Section 2 proves Theorem 0.5 and derives some consequences in
shape theory. In § 3, we construct the comparison geometric morphism

¢, : Sh(Comp /L) — Sh(L)

and record its basic properties. Section 4 is dedicated to proving Proposition 0.8.
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1 Background

Recall the following fundamental results about the co-category of spaces.

(1) Whitehead’s Theorem: Amap f : X — Y of spaces is an equivalence if and only if f induces
a bijection on connected components and isomorphisms on homotopy groups at each base-
point. Said differently, f is an equivalence if and only if for each n > 0, the induced map on
n-truncations 1<, (f) : 1<,(X) = 1<,(Y) is an equivalence.

(2) Convergence of Postnikov towers: Every space X is the limit of its Postnikov tower. That is, the
the natural map X — lim,> 7<,(X) is an equivalence.

The statement of Whitehead’s Theorem and the convergence of Postnikov towers make can be
formulated in an arbitrary co-topos. However, even for the co-topos of sheaves on a compact
Hausdorff space, neither result need hold (see Example 2.15). The purpose of this section is
to review two completion procedures (hypercompletion and Postnikov completion) that force
Whitehead’s Theorem to hold and Postnikov towers to converge, respectively. In the higher-
categorical world, these give rise to three natural ‘sheaf theories’ (sheaves, hypersheaves, and
Postnikov complete sheaves) extending the classical theory of sheaves on a topological space.
They all have the same truncated objects, so the subtle differences between these theories only
appears when considering ‘unbounded’ objects.

Subsection 1.1 reviews the basics of hypercompleteness; in the process, we set some no-
tation. In § 1.2 we review Postnikov completeness. In § 1.3, we recall the basic setup of con-
densed/pyknotic mathematics.

1.1 Hypercompleteness

In this subsection, we set up some notation and review the basics of hypercompletions of co-
topoi. We refer the reader unfamiliar with hypercomplete objects and hypercompletion to [HTT,
§§6.5.2-6.5.4], [2, §3.11], or [11, §1.2] for further reading on the subject.

1.1 Notation. Write Spc for the co-category of spaces and Cat,, for the co-category of co-cate-
gories.

1.2 Notation. Let C be an co-site and £ a presentable co-category. We write
PSh(G; €) := Fun(C, &)

for the oo-category of £-valued presheaves on C. We write Sh(C; ) C PSh(C; &) for the full
subcategory spanned by £-valued sheaves. When € = Spc, we simply write

PSh(C) := PSh(C; Spc) and Sh(€) := Sh(€; Spc) .


http://www.math.ias.edu/~lurie/papers/HTT.pdf#subsection.6.5.2
http://www.math.ias.edu/~lurie/papers/HTT.pdf#subsection.6.5.4

1.3. The oo-categories PSh(C; €) and Sh(C; &) are naturally identified with the tensor products
of presentable co-categories PSh(C) ® & and Sh(C) ® & [SAG, Remark 1.3.1.6 & Proposition
1.3.1.7].

1.4 Notation. Let X be a topological space. We write Open(X) the poset of open subsets of X,
ordered by inclusion. We regard Open(X) as a site with the covering families given by open
covers. We write

PSh(X; €) := PSh(Open(X); &) and Sh(X; &) := Sh(Open(X); £) .

1.5 Notation. Let & be a presentable co-category and f, : X — Y a geometric morphism of
oo-topoi. For simplicity, we also denote the tensor product f, @ E: X ® € - Y ® £ by f,.

1.6 Recollection (hypercompleteness). Let X be an co-topos. The co-category of hypercomplete
objects of X is the full subcategory X’™P c X spanned by those objects that are local with respect
to the co-connected morphisms. The inclusion X™P ¢ X admits a left exact left adjoint; hence
XPYP is also an co-topos.

As the name suggests, X™P can also be identified as the full subcategory of X spanned by
those objects that satisfy descent for hypercovers; see [HTT, Corollary 6.5.3.13; 6, §1; 24, Corollary
3.4.7].

1.7 Notation. Let X be an co-toposand n > 0 an integer. Write X', C X for the full subcategory
spanned by the n-truncated objects, and write 1, : X — X, for the left adjoint to the inclusion.

1.8 Remark. For each integer n > 0, the inclusion XYP o X restricts to an equivalence
x hYP)Sn = X, on subcategories of n-truncated objects [HTT, Lemma 6.5.2.9]. As a conse-
quence, given an integer n > 0 and presentable n-category &, we have YWP ® £ ~ X ® & [HA,
Example 4.8.1.22]. In particular, every sheaf of sets is hypercomplete.

1.9 Notation. Let C be a site and & a presentable co-category. We write Shhyp(e) := Sh(@)P
and
ShPe; &) == sh™Pe)® €.

We refer to objects of Shhyp(e; &) as &-valued hypersheaves. We use analogous notation for hy-
persheaves on a topological space.

For reasonable coefficients, hypersheaves on a topological space can be identified very ex-
plicitly.

1.10 Recollection (compactly assembled co-categories). A presentable co-category & is com-
pactly assembled if € is a retract of a compactly generated co-category regarded as an object of
the co-category Pr" of presentable co-categories and left adjoints [SAG, Definition 21.1.2.1 &
Theorem 21.1.2.18]. A stable presentable co-category & is compactly assembled if and only if € is
dualizable in the symmetric monoidal co-category PrSLt of stable presentable co-categories and
left adjoints [SAG, Proposition D.7.3.1].

1.11 Remark. Let X be a topological space and £ a compactly assembled co-category. Then the
subcategory

Sh™P(X; &) c Sh(X; &)

is the localization obtained by inverting all morphisms that induce equivalences on stalks [HA,
Lemma A.3.9; 10, Lemma 2.11].


http://www.math.ias.edu/~lurie/papers/SAG-rootfile.pdf#theorem.1.3.1.6
http://www.math.ias.edu/~lurie/papers/SAG-rootfile.pdf#theorem.1.3.1.7
http://www.math.ias.edu/~lurie/papers/SAG-rootfile.pdf#theorem.1.3.1.7
http://www.math.ias.edu/~lurie/papers/HTT.pdf#theorem.6.5.3.13
http://www.math.ias.edu/~lurie/papers/HTT.pdf#theorem.6.5.2.9
http://www.math.ias.edu/~lurie/papers/HA.pdf#theorem.4.8.1.22
http://www.math.ias.edu/~lurie/papers/SAG-rootfile.pdf#theorem.21.1.2.1
http://www.math.ias.edu/~lurie/papers/SAG-rootfile.pdf#theorem.21.1.2.18
http://www.math.ias.edu/~lurie/papers/SAG-rootfile.pdf#theorem.D.7.3.1
http://www.math.ias.edu/~lurie/papers/HA.pdf#atheorem.A.3.9

1.12 Notation. Write LTop _, for the co-category with objects co-topoi and morphisms left exact
left adjoints.

1.13. We repeatedly use the fact that the forgetful functor LTop , — Cat,, preserves limits
[HTT, Proposition 6.3.2.3].

1.14. Hypercompletion defines a functor (—)"P : LTop_, — LTop_ left adjoint to the inclusion
of hypercomplete co-topoi into LTop.

1.2 Postnikov completeness

In this subsection, we review the basics of Postnikov completions of co-topoi. We refer the unfamil-
iar reader to [HTT, §5.5.6; SAG, §§A.7.2 & A.7.2; 2, §3.2] for more background. The co-category
of spaces actually satisfies a stronger property than the requirement that every object be the limit
of its Postnikov tower: the entire co-category can be recovered as the limit of the subcategories of
n-truncated spaces along the truncation functors. This is the property that we want to generalize
to arbitrary co-topoi.

1.15 Definition. Let XX be an co-topos. The Postnikov completion of X is the limit

. T< T<o
oSt ,— hm( o — Xepyr = Xep —  — X )

formed in Cat,. Thus objects of P are given by towers
e Vn+1 - Vn = VO
in X', where V, is n-truncated and the map V,,,.; — V,, exhibits V,, as the n-truncation of V, ;.

1.16. The Posnikov completion X Post jg also an oo-topos. Moreover, there is a natural left exact
left adjoint t* : X — APt defined by sending an object to its Postnikov tower:

t*(U) = {t<n Ulnzo -

See [SAG, Theorem A.7.2.4]. The right adjoint ¢, : XP*' — X sends a tower {V,},,5 to the limit
lim,5( V,, formed in X [SAG, Remark A.7.3.6].

1.17 Observation. The functor t*: X — XP°! is fully faithful if and only if for each object
U € X, the natural map U — lim,>qT<, U is an equivalence. That is, t* if fully faithful if and
only if every object of XX is the limit of its Postnikov tower.

1.18 Remark. For each integer n > 0, the functor t* : X' — XP%! restricts to an equivalence
Xy = (XPY, [SAG, Corollary A.7.3.8]. Moreover, given an integer n > 0 and presentable
n-category &, we have

AP QExAMPREXA®E.

1.19 Warning. The right adjoint ¢, : APt — X is fully faithful if and only if XPYP = Post,

1.20 Definition. We say that an co-topos XX is Postnikov complete if the functor t* : X — QPO
is an equivalence of co-categories.


http://www.math.ias.edu/~lurie/papers/HTT.pdf#theorem.6.3.2.3
http://www.math.ias.edu/~lurie/papers/HTT.pdf#subsection.5.5.6
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http://www.math.ias.edu/~lurie/papers/SAG-rootfile.pdf#theorem.A.7.3.8

1.21 Remark. The natural geometric morphism X™P < X induces an equivalence
( xhyp)post ~y qrbost

Moreover, if X is Postnikov complete, then X is hypercomplete. However, the converse is false
(see Example 2.15).

1.22 Observation. Let XX be an co-topos. Then XX is Postnikov complete if and only if the push-
forward ¢, : APt — X is conservative and the pullback ¢* is fully faithful. From the explicit
descriptions of t* and t,,, we see that X is Postnikov complete if and only if the following condi-
tions are satisfied:

(1.22.1) For each U € X, the natural map U — lim,5( 1<, U is an equivalence.

(1.22.2) For each integer n > 0, the functor t, : XP%! — X commutes with n-truncation.
See also [HTT, Proposition 5.5.6.26].

1.23 Warning. As far as we are aware, it is not known if there exists an co-topos XX such that
every object of X is the limit of its Postnikov tower, but XX is not Postnikov complete.

1.24 Notation. Write LTopg: e LTop_, for the full subcategory spanned by the Postnikov
complete co-topoi.

1.25. Postnikov completion defines a functor
(—)Pst: LTop_ — LTopE::St

which is left adjoint to the inclusion [SAG, Corollary A.7.2.6]. The functor (—)P°! is also a right
adjoint [SAG, Corollary A.7.2.7]. Hence the full subcategory LTop?>*" ¢ LTop__ is closed under

[se]
limits. As a consequence of (1.13), the forgetful functor LTopEgSt — Cat,, preserves limits.

To prove Theorem 0.5, use the following reformulation of what it means for a diagram of
Postnikov complete co-topoi to be a limit diagram:

1.26 Lemma. Let J be an co-category and X, : 7 — LTop__ a diagram of co-topoi. The following
are equivalent:

(1.26.1) For each integer n > 0, the diagram (X.)<, : 79 — Cat,, is a limit diagram.

(1.26.2) The diagram of Postnikov complete co-topoi X post. ga Cat,, is a limit diagram.

Proof. By the definition of Postnikov completion and the fact that limits commute, we see that
(1.26.1)= (1.26.2). To prove that (1.26.2) = (1.26.1), tensor the limit diagram B I RN Cat,,
with Spe_, and apply [10, Lemma 2.15]. O

We finish this subsection with some examples of Postnikov complete co-topoi from topology.

1.27 Notation. Let C be an oo-site and &€ a presentable co-category. Write ShpOSt(G) := Sh(@)Post
and
ShP(e; &) == ShP™' (@) ® € .

We refer to objects of S (@; &) as Postnikov complete sheaves on C.> We use analogous notation
for Postnikov complete sheaves on a topological space.

hpost

3Since ShpOSt((?; &) is not generally a subcategory of Sh(C; £), this is slightly abusive.


http://www.math.ias.edu/~lurie/papers/HTT.pdf#theorem.5.5.6.26
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1.28 Example. Let S be a profinite set. Since S is 0-dimensional, by [HTT, Corollary 7.2.1.10,
Theorem 7.2.3.6, & Remark 7.2.4.18] the oco-topos Sh(S) is Postnikov complete.

1.29 Example [13]. Let X be a topological space. If X admits a CW structure, then the co-topos
Sh(X) is Postnikov complete.

For hypersheaves and Postnikov complete sheaves, pullbacks along surjections are conserva-
tive:

1.30 Observation. Let p: X - Y be a surjection of topological spaces. Since Shhyp(Y) has
enough points and the points of Shhyp(Y) are in natural bijection with the underlying set of Y,
the pullback functor

p P : sh™P(Y) - Sh™P(X)

is conservative. In particular, the functor p* : Sh(Y) — Sh(X) is conservative when restricted to
the subcategory of truncated objects. Hence p*Post : ShpOSI(Y) - ShpOSt(X ) is also conservative.

1.3 Condensed/pyknotic mathematics

In this subsection, we briefly recall the formalism of condensed/pyknotic mathematics. We refer
the reader to [2, §13.3; 3; 5; 20; 21; 22, Lecture I; 23] for more details and motivation.

1.31 Notation. Write Top for the category of topological spaces and Comp C Top for the full
subcategory spanned by the compact Hausdorff spaces. We regard Comp as a site where the
covering families are finite families of jointly surjective maps.

1.32 Remark (set theory). Since Comp is a large category, one has to be careful about talking
about sheaves on Comp. To do this, we adopt the set-theoretic conventions of [2, §13.3; 3]; this
uses universes to deal with the set theory. Clausen and Scholze [23] use alternative set-theoretic
foundations that avoid using universes. This minor difference is only in the set theory and does
not affect any arguments in an essential way, so we will not mention it again.

In this setting, the sheaf condition is particularly easy to formulate:

1.33 Observation. Let D be an co-category. A presheaf F : Comp® — D is a sheaf if and only
if the following conditions are satisfied:

(1.33.1) The functor F preserves finite products. That is, F carries finite coproducts of compact
Hausdorff spaces to finite products in D.

(1.33.2) For every surjection of compact Hausdorff spaces p : X - Y, the augmented cosimpli-
cial diagram

F(Y) 2, FX) 2 FXxyX) = -

—

Il

obtained by applying F to the Cech nerve of p exhibits F(Y) as the limit of its restriction
toACA,.

See [SAG, Proposition A.3.3.1].

1.34. Every representable presheaf on Comp is a sheaf. Moreover, the topology on Comp is
designed exactly so that the Yoneda embedding Comp < Sh(Comp) preserves finite coproducts
and carries surjections to effective epimorphisms.
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1.35 Notation. Write Extr C Comp for the full subcategory spanned by the extremally discon-
nected profinite sets. The extremally disconnected profinte sets are exactly the projective objects
of the category Comp [9; 16, Chapter III, §3.7].

1.36. Let K be a compact Hausdorff space. Write K4i5¢ for the underlying set of K equipped with
the discrete topology. There is a natural surjection B(K9¢) = K from the Stone-Cech compacti-
fication of K4i5¢ to K. Since the profinite set f(K9°) is extremally disconnected, the subcategory
Extr C Comp is a basis for the Grothendieck topology on Comp. Therefore, restriction of
presheaves defines an equivalence of co-categories

Shhyp(Comp) = Shhyp(Extr)
with inverse given by right Kan extension [1, Corollary A.8; 2, Corollary 3.12.14].

1.37. Since every surjection of extremally disconnected profinite sets admits a section, a presheaf
F on Extr is a sheaf if and only if F preserves finite pr%ducts. Moreover, by [3, Lemma 2.4.10],
the co-topos Sh(Extr) is Postnikov complete. Hence Sh™?(Comp) is also Postnikov complete.

Most reasonable topological spaces embed into sheaves on Comp:

1.38 Notation. Write & : Top — Sh(Comp) for the restricted Yoneda functor defined by
£(X)(K) = Mapy,, (K, X) .
When it does not cause confusion, we also simply denote & (X) € Sh(Comp) by X.

1.39. The functor & is not fully faithful. However, & is fully faithful when restricted to the the
full subcategory of compactly generated topological spaces.

1.40. Note that the functor & : Top — Sh(Comp) preserves limits. The functor & does not
preserve arbitrary colimits. However, in § 3.1 we show that & behaves well with open covers,
coproducts, and proper surjections.

2 Proper descent

Let € be a compactly assembled co-category (see Recollection 1.10). In this section, we show
that the functor sending a locally compact Hausdorff space X to the co-category ShP*'(X; &) of
Postnikov complete sheaves on X satisfies descent for proper surjections in the following sense.

2.1 Notation. Write LCH C Top for the full subcategory spanned by the locally compact
Hausdorff spaces.

2.2 Definition. Let D be an co-category. We say that a functor F : LCH*® — D satisfies proper
descent if for every proper surjection of locally compact Hausdorff spaces p : X - Y, the aug-
mented cosimplicial diagram

F) 25 FOO =2 F(X %y X)

il

obtained by applying F to the Cech nerve of p exhibits F(Y) as the limit of its restriction to
ACA,.

Subsection 2.1 proves Theorem 0.5 (see Corollary 2.8). In §2.2 we record some shape-theoretic
consequences. In §2.3, we explain why Theorem 0.5 does not hold before Postnikov completion.

10



2.1 Proper descent for Postnikov sheaves

hpost

To prove that the functor X + S (X) satisfies proper descent we apply the following criterion:

2.3 Proposition [HA, Corollary 4.7.5.3]. Let 8': A, — Cat,, be an augmented cosimplicial
co-category. Let G : 87! — 8° denote the agumentation. Assume that:

(2.3.1) The co-category S~! admits totalizations of G-split cosimplicial objects, and those totaliza-
tions are preserved by G.

(2.3.2) Forevery morphism ot : [m] — [n]in Ay, the square

sm d° Sm+1

a* ([0]*a)*
|

sn , Cg}’l+1
dO
is horizontally right adjointable. (Note that, in particular, this requires that the coface func-
tors d° be left adjoints.)

Then the natural functor 6 : 87! — limyjca 8" admits a fully faithful right adjoint. Moreover, if
G is conservative, then € is an equivalence.

We are interested in applying Proposition 2.3 in the case where 8" is obtained by applying
sheaves to the Cech nerve of a proper surjection.

2.4 Example. Let & be a presentable co-category which is compactly generated or stable, and let
p: X - Y be a proper surjection of locally compact Hausdorff spaces. The Proper Basechange
Theorem [HTT, Corollary 7.3.1.18; 10, Subexample 3.15] implies that the augmented cosimplicial
diagram

2.5) Sh(Y;€) 2 Sh(X; &) = Sh(X xy X;€) = -
um—

satisfies hypothesis (2.3.2).

2.6 Observation. In the setting of Example 2.4, the functor p*: Sh(Y; &) — Sh(X; &) is left
exact. If there is an integer n > 0 such that £ is an n-category, then the totalizations in (2.3.1)
can be computed by finite limits [12, Proposition A.1]. Hence, in this case, the diagram (2.5) also
satisfies (2.3.1).

2.7 Lemma. Letn > 0 be an integer. Then:

(2.7.1) The functor Sh(=)<, : LCH*® — Cat,, satisfies proper descent.

(2.7.2) The functor Sh(—)<, : Comp” — Cat,, is a hypersheaf.

Proof. For (2.7.1), note that since Spc_, is compactly generated, by Example 2.4 and Observa-
tion 2.6 it suffices to check that for each proper surjection of locally compact Hausdorff spaces
p: X - Y, the pullback functor p* : Sh(Y)., — Sh(X)., is conservative. This follows from
the assumption that p is a surjection (Observation 1.30).

Since Sh(—), factors through the full subcategory Cat,, C Cat,, spanned by the (n + 1)-
categories, and Cat, is an (n + 2)-category, by Remark 1.8, item (2.7.2) is equivalent to the
claim that Sh(—)., is a sheaf. Thus (2.7.2) follows from (2.7.1) and the fact that the functor
Sh(—)«, carries coproducts of topological spaces to products of co-categories. O
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2.8 Corollary. Let & be a compactly assembled co-category. Then:

(2.8.1) The functor Sh**'(—; &) : LCH®® — Cat,, satisfies proper descent.

(2.8.2) The functor ShP*'(—; &) Comp® — Cat,, is a hypersheaf.

Proof. Since & is compactly assembled, the functor € ® (—) : Pr" — Pr* commutes with limits
of diagrams where the transition functors are left exact [10, Lemma 2.15]. Hence it suffices to
prove the claims for & = Spc. In this case, the claims follow from Lemmas 1.26 and 2.7. O

2.2 Consequences in shape theory

We now record some consequences of Corollary 2.8 regarding the shape of compact Hausdorff
spaces. The reader unfamiliar with the shape is encouraged to consult [HTT, §7.1.6; HA, §A.1;
SAG, §E.2; 2, Chapter 4]. We follow the notations of [2, Chapter 4].

Since the shape I, : RTop_ — Pro(Spc) is a left adjoint, Corollary 2.8 implies:

2.9 Corollary. Let p: X - Y be a proper surjection of locally compact Hausdorff spaces. Then
the natural map of prospaces

[C(])liAn}) Hoo Shpost(Xxyn) N Hoo Shpost(Y)
nleA°

is an equivalence.

Recall that the natural geometric morphism ShP*'(x) — Sh(X) induces an equivalences on
protruncated shapes. Combining Corollary 2.9 with work of Hoyois [14], we deduce that the
protruncated shape preserves many (co)limits of compact Hausdorff spaces.

2.10 Corollary. The protruncated shape I, Sh: Comp — Pro(Spc__ ) preserves:
(2.10.1) Finite coproducts.

(2.10.2) Cofiltered limits and arbitrary products.

(2.10.3) Geometric realizations of Cech nerves of surjections.

Proof. For (2.10.1), note that the functor Sh : Comp — RTop_ preserves finite coproducts and
the protruncated shape
M.y : RTop_, — Pro(Spc__)

is a left adjoint. Item (2.10.2) is [14, Example 2.12], and Corollary 2.9 implies (2.10.3). O
2.11 Warning. The protruncated shape does not preserve pullbacks of compact Hausdorff
spaces. To see this, let S' denote the topological circle, and choose a point ¢ € S'. The shapes of
Sh({t}) and Sh(S') are the point and the homotopy type BZ, respectively (see [HTT, Corollary

7.2.1.12, Theorem 7.2.3.6 & Remark 7.2.4.18; 11, Corollary 3.5]). The pullback of topological
spaces {t} Xq1 {t} is a point, hence

I, Sh({t} Xg1 {£}) = * .

On the other hand,
I1 Sht X IT Shl’ ~ % X k7.
e Sh({1}) M, Sh(sh) S BZ
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2.3 The necessity of Postnikov completion

We conclude this section by explaining why Postnikov completion is necessary in the statement
of Corollary 2.8. To do this, we give an example of a compact Hausdorff space K for which
Sh yp(K ) is not Postnikov complete.We begin with some preliminary observations.

2.12. Let XX be an co-topos. For each m > 1, write Ky (Z, m) for the constant object of XX at
the Eilenberg-MacLane space K(Z, m). Note that since K(Z, m) is m-truncated, Ky(Z, m) is a
hypercomplete object of X'. Moreover, since the hypercomplete objects of XX are closed under

limits, the object ] .. Ky(Z, m) is also a hypercomplete object of XX

m>1

2.13 Observation. If the co-topos XX is Postnikov complete, then

‘cSn(H Ky (Z, m)) ~ [[Kx(Z,m).
m=1

m>1

In particular, 1< (Hm>1 Ky (Z, m)) is a terminal object of XX, so that [] ., Ky (Z,m) is con-

nected.

m>1

2.14 Observation. Let X be a topological space and write F := [] _ . Kgpx)(Z, m). Then

m>1

molCGF) =~ [[HT (X:Z).

m>1

Note that if the sheaf F is connected, then any element (e, ),>1 € Hm>1 heaf(X ; Z) vanishes
locally in the following sense: any point x € X has an open neighborhood U C X such that for
eachm > 1, the class ey, |y € HY (U3 Z) is zero.

2.15Example. LetX =[] m>1 5 be the product of positive-dimensional spheres. We claim that
the co-topos Sh yp(X )isnot Postnlkov complete. In light of Observation 2.13, to see this it suffices
to show that the hypersheaf Hm>1 Ksh(x)(Z, m) is not connected. Observation 2.14 shows that
it suffices to construct cohomology classes e; € Hsheaf (X; Z) that do not simultaneously vanish
on any nonempty open of X. For this, let ¢; be the pullback of the generator of

sheaf(sl Z)

under the projection pr; : [ 15 = St.

2.16 Example. Not only is the co-topos of hypersheaves on X = Hm>1 S™ not Postnikov com-
plete, but there are also objects which are not limits of their Postnikov towers. To see this, consider
the filtered colimit

n+1
G:= COlim(KSh(X)(Z, 1) —_ e — H KSh(X)(Z m) — H KSh(X)(Z m) )
m=1 m=1

formed in Sh™P(X). Here, the transition map

n n
T Ksneo(Z.m) > Keneoy(Zon + 1) x [ [ Ksney (2, m)

m=1 m=1
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is the constant map at the basepoint of Kgy,(x)(Z, n + 1) on the first factor and the identity on the
second factor. Si}rllce connect%d objects are closed under filtered colimits, G is connected. The
functor 1, : Sh YP(X) — Sh™™P(X) preserves filtered colimits and finite products, hence

n
T<n G~ H KSh(X)(Z’ m) .

m=1

As a consequence, we have

EE&TS,I G~ H KSh(X)(Zf m) .

m>1

Example 2.15 shows that the limit lim,> T<, G is not connected. In particular, the natural map
G — lim,5 T<, G is not an equivalence.

Example 2.15 lets us see that the presheaves Sh, Sh™P : Comp® — Cat,, are not sheaves.

2.17 Lemma. Let §: Comp” — LTop_, be a sheaf and assume that the restriction of 8 to
profinite sets factors through LTopggSt. Then for each compact Hausdorff space K, the co-topos
8(K) is Postnikov complete.

Proof. Since every compact Hausdorff space admits a surjection from a profinite set, this follows
from the fact that the subcategory LTop?>* c LTop__ is closed under limits (1.25). O

oo

Since the functors Sh and ShP**" agree on profinite sets (Example 1.28), Example 2.15 shows:

2.18 Corollary. The presheaves Sh, Sh™P Comp” — LTop_, are not sheaves.

3 The comparison functor
Let X be a topological space. In this section, we construct a comparison geometric morphism
¢y * Sh(X) — Sh(Comp) x .

The idea is to define c by left Kan extending the functor & : Open(X) — Sh(Comp) x to
presheaves on X along the Yoneda embedding. A priori, the right adjoint to this left Kan extension
functor only lands in presheaves on X. To see that it factors through sheaves on X amounts to
showing that the co-topos Sh(Comp) has descent for open covers of topological spaces. We prove
thisin §3.1. Subsection 3.2 constructs the comparison functor and gives an alternative description
when X is a profinite set. In §3.3, we explain two naturality properties of the comparison functor.

3.1 Descent for open covers

3.1 Lemma. Let X be a topological space and {U;};c; an open cover of X. Then the natural map
]_[iE ; £(Up) = &(X) is an effective epimorphism in Sh(Comp).

Proof. First we prove the claim under the assumption that X is compact Hausdorff. In this
case, since X is compact, there exists a finite subset I, C I such that {U;};¢;, covers X. Since
X is compact Hausdorff, there exists a cover of X by closed subsets {Z;};c;, such that Z; C U;.

14



Since & : Comp < Sh(Comp) preserves finite coproducts and carries surjections to effective
epimorphisms, the composite map

€t<HZi> =~ [[&@) — [[«W) — &&X)

iely iely iel

is an effective epimorphism. Hence the second map Hiel &£(U;) - &£(X) is also an effective
epimorphism.

Now we prove the claim in general. We need to show that for each compact Hausdorff space
Kandmap f: &(K) - &(X)in Sh(Comp), the induced map

$K) x [« - «&)
iel

is an effective epimorphism. Since K is compact Hausdorff, by the Yoneda lemma the map
f: &(K) = &(X) is induced by a map of topological spaces f : K — X. Since coproducts in
Sh(Comp) are universal and & : Top — Sh(Comp) preserves limits, we see that

K U,) ~ K U;
£( );ﬁoH‘“ )= [T &( )&>(<X)&( )

iel iel

= [T~ W).

iel
Since {f~1(U;)}; is an open cover of K, the claim now follows from the compact case. O

3.2 Corollary. Let X be a topological space and let {U;};c; be an open cover of X. Then the induced
augmented simplicial object

P—
= [ sU0,nUy) S 1, W) — &0

iy,ipel

exhibits & (X) as the geometric realization of its restriction to A°P C Aip.

Proof. This follows from the fact that Hie ; £(U;) = &(X) is an effective epimorphism and the
computation

(HJ:(Ui)) X e X (]_[;(Up): 11 «Ww) x - x &)

iel &) @\ i yoin€l X)) £&X)
~ J] «@W;n-nU). O
iy el

The usual cofinality argument shows:

3.3 Corollary. Let X be a topological space and let U be a covering sieve of X. Then the natural
map
colim &(U) - £(X)
UeUu

is an equivalence in Sh(Comp).
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Since the methods of proof are similar, we conclude this subsection showing that the func-
tor & : Top — Sh(Comp) carries proper surjections to effective epimorphisms and preserves
coproducts. These results are not used in the rest of the paper.

3.4 Lemmma. Let p: X - Y be a proper surjection of locally compact Hausdorff spaces. Then
£(p): £X) = &£(Y) is an effective epimorphism in Sh(Comp).

Proof. Since & preserves pullbacks and is fully faithful on locally compact Hausdorff spaces, we
need to show that for every compact Hausdorff space K and map K — Y, the induced map

is an effective epimorphism. Since p is a proper surjection, the pullback p : K Xy X — K is also
a proper surjection. Since K is compact and p is proper, K Xy X is also compact. The fact that
& : Comp < Sh(Comp) carries surjections to effective epimorphisms completes the proof. [

3.5 Lemma. The functor & : Top — Sh(Comp) preserves coproducts.

Proof. Let {X;};c; be a collection of topological spaces. We need to show that for any compact
Hausdorff space K and map f : K — ][, X;, the induced map

(3.6) $K)  x  J]ex) - £&)

jeIXj iel

is an equivalence. Since & preserves pullbacks and coproducts in Sh(Comp) are universal, we
see that

&(K)ct(x [Ty =& x &)

jeIXj) iel iel & jeIXj

zHJ:(K X Xi)

iel jer Xj
=[] <('x).

iel

Since K is compact, there is a finite subset I, C I such that f~1(X;) # @ if and only if i € I,.
Hence

&E)  x = [T&(ED)

( Jjel Xj iEIO

and the map [].., £(f~1(X;)) = &£(K) is induced by the inclusions f~!(X;) < K. Note that

iely

KxJ]re.

iely

Moreover, each f~1(X;) is clopen in K, hence compact Hausdorff. Thus the fact that the Yoneda
embedding & : Comp < Sh(Comp) preserves finite coproducts shows that the map (3.6) is an
equivalence. O
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3.2 The comparison functor

In this subsection, we define the comparison functor and give an alternative description of this
functor in the case of a profinite set.

3.7 Definition. Let X be a topological space. Write

¢y : PSh(X) — Sh(Comp) /x
for the left Kan extension of the functor

& : Open(X) — Sh(Comp) /x
along the Yoneda embedding Open(X) < PSh(X).

3.8. Since the functor & : Open(X) — Sh(Comp) x is left exact, by [HTT, Proposition 6.1.5.2],
the functor cy is also left exact.

3.9 Observation. The functor ¢} has a right adjoint
Cx % - Sh(Comp)/X - PSh(X)

given by the formula
cx «(G)(U) = Mapsh(cOmp)/X(J:(U), G).

By Corollary 3.3, we see that for each G € Sh(Comp),x, the presheaf cx ,(G) is a sheaf. Hence
the adjunction ¢} 4 cx , restricts to a geometric morphism

ot
Sh(X) % Sh(Comp) .

3.10 Remark. If X is not compactly generated, then the functor
& 1 Open(X) — Sh(Comp; Set) /x

need not be fully faithful. Hence, the functor c;"( : Sh(X;Set) — Sh(Comp; Set) /x need not be
fully faithful.

In the remainder of this subsection, we give an alternative description of the comparison
geometric morphism when X is a profinite set. To do so, we use the following description of
Sh(Comp),x as sheaves on a site.

3.11 Recollection. Let F € Sh(Comp) be a sheaf of sets. Write Comp /F C Sh(Comp) . for the
full subcategory spanned by morphisms from representable sheaves. Give Comp JF the finest
Grothendieck toplogy that contains the sieves that become covering sieves after applying the
forgetful functor Comp /P Comp. With respect to this topology, the natural functor

Sh(Comp /F) — Sh(Comp) /r

is an equivalence of co-categories [SGA 4,, Exposé III, §5, Proposition 5.4].
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3.12. Let X be a topological space. To simplify notation for sheaves with coefficients, we implic-
itly make use of the identification

Sh(Comp /X) ~ Sh(Comp) /x
provided by Recollection 3.11 repeatedly throughout the rest of these notes.

3.13 Recollection. Let S be a profinite set, and write Clop(S) C Open(S) for the poset of clopen
subsets of S. Then Clop(S) is a basis closed under finite intersection. Hence for any presentable
oo-category &, restriction along the inclusion Clop(S)°P C Open(S)°P defines an equivalence of
co-categories

Sh(S; &) = Sh(Clop(S); ) .

The inverse equivalence is given by right Kan extension [1, Corollary A.8; 2, Corollary 3.12.14].

3.14. For a profinite set S, the inclusion Clop(S) C Comp /s is a morphism of sites.

3.15 Observation. Let S be a profinite set and £ a presentable co-category. The composite
CS’* . ~ .
Sh(Comp/S) ~ Sh(Comp)/S —— Sh(S;¢&) s Sh(Clop(S); &)

carries a sheaf G : (Comp /S)"p — Spc to its restriction to Clop(S)°P C (Comp /S)OP. As a conse-
quence, the geometric morphism

o
Sh(S) <:>S Sh(Comp/S) .

CS %

is induced by the inclusion of sites Clop(S) C Comp /st

3.3 Naturality of the comparison functor

3.16 Lemma. Let f : X — Y be a map of topological spaces. Then the square

Sh(Y) —— Sh(Comp),y

(3.17) f*l lXxy(—>
Sh(X) — Sh(Comp) /x
X

canonically commutes.

Proof. Since both composites are left adjoints and Sh(Y') is generated under colimits by Open(Y),
it suffices to show that these composites agree on opens. For this, note for V' C Y open, we have

S f*(V) = &(fFH(V) (by definition)
~&£(V) X LX) (& preserves pullbacks)
L)
=cp(V)xy X (by definition) . O

3.18. In light of Lemma 3.16, the comparison functors assemble into a natural transformation
Sh(=) — Sh(Comp),_, of presheaves of co-categories on Top.

18



For open embeddings, the square (3.17) is also vertically left adjointable:

3.19 Lemma. Let j: U < X be an open embedding of topological spaces. Then the square

Sh(U) —Y— Sh(Comp),y

J [ [forget

Sh(X) ——— Sh(Comp) x

X
canonically commutes.

Proof. Since both composites are left adjoints and Sh(U) is generated under colimits by the opens
of U, it suffices to show that these composites agree on opens. For this, note that for V' C U open,
by definition we have

(V) = (V) = &(V) = ¢, (V)

as objects of Sh(Comp) x. O

4 Full faithfulness of the comparison functor

Let &£ be a compactly assembled oo-category (Recollection 1.10). In this section, we show that if
X is alocally compact Hausdorff space, then the comparison functor

¢*Post . ShP'(X; £) - ShP*'(Comp x> €)

is fully faithful (Corollary 4.11). Since cohomology is computed by global sections, this implies
that the sheaf cohomology and condensed cohomology of X agree (see Corollary 4.12 and Re-
mark 4.13).

In §4.1, we begin by proving the claim when X is an extremally disconnected profinite set. In
§4.2, we use proper descent (Corollary 2.8) and the functoriality of the comparison morphism to
prove the result in general. Subsection 4.3 explains why the functor ¢}, : Sh(X) — Sh(Comp) /x
is not generally fully faithful before Postnikov completion.

4.1 Full faithfulness for extremally disconected profinite sets

Let S be an extremally disconnected profinite set. To prove that the functor cg is fully faithful,
we verify that the inclusion Clop(S) Cc Comp /s satisfies the covering lifting property.*

4.1 Recollection. If S is an extremally disconnected topological space, and U C S is open,
then U is also extremally disconnected. However, closed subsets of extremally disconnected
topological spaces need not be extremally disconnected [4, Remark 2.4.11].

4.2 Lemma. Let S be an extremally disconnected profinite set. Then the inclusion of sites
Clop(S) & Comp /s

satisfies the covering lifting property.

4The reader unfamiliar with the covering lifting property should consult [19, Definition A.12].

19



Proof. Let U C S be a clopen subset and let {f; : K; — U};; be a finite jointly surjective family
in Comp /st We claim that there exits a cover {V;};; of U by clopens such that each inclusion

V; & U factors through f; : K; — U. To see this, first note that since U C S is clopen, U is also
an extremally disconnected profinite set. Thus the surjection

Hfi: HKI_»U

iel iel

admits a sections: U — ]_[l.el K;.Foreachi € I, define V; := s7!(K;). Since K; is a clopen subset
of ]_[l.d K;, the subset V; C U is also clopen. Moreover, {V;};c; covers U. Lastly, by construction,
for each i € I, the composite

slv; fi
Vi — Ki — U
coincides with the inclusion V; C U. O
The following is an application of Observation 3.15, Lemma 4.2, and [19, Proposition A.13].

4.3 Notation. Let S be a profinite set and £ a presentable co-category. Write
¢; : PSh(Clop(S); €) < PSh(Comp ; £)

for the functor given by right Kan extension the inclusion Clop(S)°P < (Comp /S)Op.

4.4 Corollary. Let S be an extremally disconnected profinite set and £ a presentable co-category.
Then:

8

(4.4.1) The functor cg preserves sheaves. In particular, cg

restricts to a fully faithful right adjoint to

Cs - Sh(Comp/S; &) - Sh(S;&).
(4.4.2) The left adjoint cg : Sh(S; &) < Sh(Comp /s> &) is fully faithful.

4.2 Full faithfulness and descent

In this subsection, we extend (4.4.2) to Postnikov complete sheaves on a locally compact Haus-
dorff space. We begin by extending to compact Hausdorff spaces by proper descent. To do so, we
make use of the following well-known lemma:

4.5 Lemma. Let J be an oco-category, let X,, Y. : J — Cat,, be diagrams of co-categories, and
let f.: X. — Y. be a natural transformation. If for each i € J, the functor f;: X; — Y; is fully
faithful, then the induced functor on limits

Ui fi: M % = i
is fully faithful.

4.6 Corollary. Let f*: Y — X be a left exact left adjoint functor between oco-topoi. The following
are equivalent:

(4.6.1) The induced functor on Postnikov completions f*PSt: YPost . post jg fully faithful.
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(4.6.2) For each integer n > 0, the restriction f* : Yo, = X, is fully faithful.
Proof. Remark 1.18 shows that (4.6.1) = (4.6.2). Lemma 4.5 shows that (4.6.2) = (4.6.1). O

4.7 Corollary. Let S be an extremally disconnected profinite set and & a compactly assembled
oo-category. Then the comparison functor

c;’pOSt : Sh(S; &) —» ShpOSt(Comp/S; &)

is fully faithful.

Proof. Since c¢*P%t: Sh(S) — Sh” OSt(Comp ) is left exact and & is compactly assembled, by
tensoring with & it suffices to prove the claim for Postnikov sheaves valued in the co-category of
spaces [10, Lemma 2.14]. The claim now follows from Corollaries 4.4 and 4.6. O

4.8 Recollection (van Kampen colimits). A colimit in an co-category X with pullbacks is van
Kampen if the functor X°? — Cat,, given by U — X,y transforms it into a limit in Cat,,. A
presentable co-category X is an oo-topos if and only if all colimits in XX are van Kampen; see
[HTT, Proposition 5.5.3.13, Theorem 6.1.3.9(3), & Proposition 6.3.2.3; 15].

4.9 Corollary. Let K be a compact Hausdorff space and £ a compactly assembled co-category.
Then the comparison functor

CZPOSt : ShpOSt(K ;E) > ShpOSt(Comp /K &)
is fully faithful.
Proof. Since the functors
K~ ShP(k;&) and K~ Sh"™'(Comp 1 E)

are hypersheaves on Comp (Corollary 2.8 and Recollection 4.8, respectively), by choosing a
hypercover of K by extremally disconnected profinite sets and applying Lemma 4.5, we are
reduced to the case where K is extremally disconnected. We conclude by Corollary 4.7. O

The full faithfulness of c;;’pOSt is preserved by passing to open subspaces:

4.10 Lemma. Let j: U < X be an open embedding of topological spaces and let & be a compactly
assembled co-category. If c;;’post : ShP*'(X) - ShpOSt(Comp /X) is fully faithful, then the functor

cEpOSt : ShpOSt(U; &) - ShpOSt(Comp Yig &)

is also fully faithful.

*,post |

Proof. Since ¢, 1 Sh(U) — ShpOSt(Comp /U) is left exact and & is compactly assembled, by
tensoring with & it suffices to prove the claim for Postnikov sheaves valued in the co-category
of spaces [10, Lemma 2.14]. In this case, Lemma 3.19 shows that for each integer n > 0, the
diagram

3

C.
Sh(U)<, ———— (Sh(Comp) /0 )<n

Ji [ [forget

Sh(X)<, — (Sh(Comp),x )<,

s
X
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commutes. Since c;;’pOSt is fully faithful, the bottom horizontal functor is fully faithful. Hence

the top horizontal functor is also fully faithful. We conclude by Corollary 4.6. O

Since every locally compact Hausdorff space embeds as an open in a compact Hausdorff
space, Corollary 4.9 and Lemma 4.10 show:

4.11 Corollary. Let X be a locally compact Hausdorff space and & a compactly assembled co-cat-
egory. Then the functor

¢ 1 ShP™(X: €) — Sh™(Comp : €)
is fully faithful.

We conclude this subsection with some cohomological consequences of Corollary 4.11. The
following generalizes [7, Theorem 3.11; 23, Theorem 3.2].

4.12 Corollary. Let X be a locally compact Hausdorff space, let R be a connective E; -ring spectrum,
and let M be a bounded-above left R-module spectrum. Then the natural comparison map

RTgheaf (X; M) = RTopna(X; M)
is an equivalence in the co-category LMod(R) of left R-module spectra.

4.13 Remark (condensed, singular, and sheaf cohomology). Let R be a ring and X a topological
space that is locally compact Hausdorff and locally weakly contractible. Write C,(X;R) € D(R)
for the complex of singular chains on X. Given an object M € D(R), write

C™*(X; M) := RHomg(C.(X;R),M) .

If M is an ordinary R-module, then C™*(X; M) is what is usually referred to as the complex of
singular cochains on X with values in M.
If M is t-bounded-above, then Corollary 4.12 and [11, Corollary 3.31] provide natural equiv-
alences
chond(X;M) « Rrsheaf(X;M) = C_*(X;M) .

Hence the condensed, singular, and sheaf cohomologies of X all agree.

4.14. Let X be a topological space that admits a locally finite CW structure. Since Sh(X) is
Postnikov complete, Corollary 4.12 and [11, Corollary 3.31] actually imply that for any object
M e D(R), there are natural equivalences

RTcond(X; M) < Rl gheat(X; M) = CT*(X; M) .

4.3 The necessity of Postnikov completion

We conclude by explaining why Corollary 4.11 is generally false before passing to Postnikov
completions. First we explain why Corollary 4.11 is false if Sh?**" is replaced by Sh.

4.15 Lemma. Let K be a compact Hausdorff space. Then the following are equivalent:

(4.15.1) The functor cg, : Sh(K) — Sh(Comp /K) is conservative.

(4.15.2) The oo-topos Sh(K) is hypercomplete.
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Proof. Choose an extremally disconnected profinite set S equipped with a surjection p: S » K.
Consider the commutative square

Sh(K) —~— Sh(Comp) ¢

P*l lSXK(—)

Sh(S) — Sh(Comp) s .
S

Since S is an extremally disconnected profinite set, cj is fully faithful (Corollary 4.4). Since p is
surjective and the functor Sh(Comp) () satisfies descent for surjections of compact Hausdorff
spaces, the right-hand vertical functor is conservative. Hence cy is conservative if and only if
p* is conservative. To conclude, note that since p is surjective and Sh(S) is hypercomplete, the
pullback functor p* is conservative if and only if Sh(K) is hypercomplete. O

4.16 Warning. Since there exist compact Hausdorff spaces K for which Sh(X) is not hypercom-
plete [HTT, Counterexample 6.5.4.8], Lemma 4.15 implies that the functor c, is not generally
fully faithful.

Now we explain why Corollary 4.11 is false if ShP* is replaced by Sh™P.

4.17 Lemma. Let X be a topological space. If c;k(’hyp : Shhyp(X ) — Shhyp(Comp) /x fully faithful,
then every object of Sh™P (X) is the limit of its Postnikov tower.

418 Lemma. Let f*: Y < X be a fully faithful left exact left adjoint between co-topoi. If every
object of XX is the limit of its Postnikov tower, then every object of Y is the limit of its Postnikov tower.

Proof. By Observation 1.17, we need to show that t; : Y — YPost g fully faithful. Consider the
commutative square
[*

y Y ypost

r =

X —— POt
t*
X

By Corollary 4.6, the functor f*P%t is fully faithful, and by assumption £ is fully faithful. Hence
t;‘, is also fully faithful. O

Proof of Lemma 4.17. Combine Lemma 4.18 with the fact that Shhyp(Comp) /x is Postnikov com-
plete (1.37). O

4.19 Warning. Example 2.16 and Lemma 4.17 show that for X = [, _, S™, the functor c;hyp
is not fully faithful. -
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