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Let k be a field with separable closure k̄ ⊃ k, and let X be a qcqs k-scheme. We use the

theory of profinite Galois categories developed by Barwick–Glasman–Haine to provide

a quick conceptual proof that the sequences �ét
<∞(Xk̄) → �ét

<∞(X) → BGal(k̄/k) and

�̂ét∞(Xk̄) → �̂ét∞(X) → BGal(k̄/k) of protruncated and profinite étale homotopy types

are fiber sequences. This gives a common conceptual reason for the following two

phenomena: first, the higher étale homotopy groups of X and the geometric fiber Xk̄

are isomorphic, and second, if Xk̄ is connected, then the sequence of profinite étale

fundamental groups 1 → π̂ét
1 (Xk̄) → π̂ét

1 (X) → Gal(k̄/k) → 1 is exact. It also proves the

analogous results for the groupe fondamental élargi of SGA3.

Introduction

Let k be a field with separable closure k̄ ⊃ k, and let X be a qcqs k-scheme. Write Xk̄

for the basechange of X to k̄. The fundamental exact sequence for étale fundamental

groups asserts that if Xk̄ is connected, then the natural sequence of profinite groups

(0.1)

Communicated by Prof. Lars Hesselholt
Received October 3, 2022; Revised October 3, 2022; Accepted December 19, 2022

© The Author(s) 2023. Published by Oxford University Press. All rights reserved. For permissions,

please e-mail: journals.permission@oup.com.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnad018/7034035 by Institute for Advanced Study user on 29 M

arch 2023

https://doi.org/10.1093/imrn/rnad018


2 P. J. Haine et al.

is exact ([14, Exposé IX, Théorème 6.1]; [37, Tag 0BTX]). The purpose of this paper

is to explain a simple argument that extends this short exact sequence to a fiber

sequence of étale homotopy types in the sense of Artin–Mazur–Friedlander ([3]; [12,

Chapter 4]). To do this, we make use of Barwick, Glasman, and Haine’s new description

of the étale homotopy type in terms of profinite Galois categories ([5, Theorem 12.5.1];

[15]).

Given a scheme Y, there are two variants of the étale homotopy type relevant

to the present work: the 1st is the (protruncated) étale homotopy type �ét
<∞(Y). This

is a prospace that is not generally profinitely complete. The fundamental progroup of

�ét
<∞(Y) recovers the groupe fondamental élargi of SGA3 [1, Exposé X, Section 6]. The

2nd is the profinite completion of �ét
<∞(Y), which we denote by �̂ét∞(Y). The fundamental

progroup of �̂ét∞(Y) recovers the usual profinite étale fundamental group π̂ét
1 (Y).

The profinite étale homotopy type also comes equipped with a natural comparison

morphism �ét
<∞(Y) → �̂ét∞(Y). If Y is geometrically unibranch, both variants coincide: in

this case, the comparison morphism �ét
<∞(Y) → �̂ét∞(Y) is an equivalence ([3, Theorem

11.1]; [12, Theorem 7.3]; [26, Theorem 3.6.5]). See Section 1.2 for a short recollection of

the modern perspective on the étale homotopy type and how it relates to the classical

definition.

The following are the main results of this paper. We note that with our methods,

the only thing particular to working over a field that we need is that Spec(k) is 0-

dimensional. Write Pro(Spc) for the ∞-category of prospaces and Pro(Spcπ ) ⊂ Pro(Spc)

for the full subcategory spanned by the profinite spaces.

Theorem 0.2 (Corollary 3.12). Let f : X → S be a morphism between qcqs schemes, and

let s̄ → S be a geometric point of S. If dim(S) = 0, then the naturally null sequence

(0.3)

is a fiber sequence in the ∞-category Pro(Spc).

For a 0-dimensional scheme S, the prospace �ét
<∞(S) is already profinitely

complete (see Example 1.28). Hence, the following property of profinite completion

implies that (0.3) remains a fiber sequence after profinite completion.

Proposition 0.4 (Proposition 3.18). The functor (−)∧π : Pro(Spc) → Pro(Spcπ ) that

carries a prospace to its profinite completion preserves pullbacks along maps between

profinite spaces.
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Fundamental Fiber Sequence 3

Corollary 0.5 (Corollary 3.21). With the same notation as Theorem 0.2, if dim(S) = 0,

then the naturally null sequence

is a fiber sequence in the ∞-category Pro(Spcπ ).

By taking homotopy groups, Corollary 0.5 recovers the fundamental exact

sequence (0.1). To explain this, we first introduce the following notation.

Notation 0.6. Given a qcqs scheme Y and geometric point ȳ → Y, write π0(Y) for the

profinite set of connected components of �̂ét∞(Y) and π̂ét
n (Y, ȳ) for the n-th profinite

homotopy group of �̂ét∞(Y) at ȳ. (Equivalently, π0(Y) is the profinite set of connected

components of Y.)

Choose a geometric point x̄ of Xs̄ with image x in X. Since the higher étale homotopy

groups of a 0-dimensional qcqs scheme vanish (see Example 1.28), Corollary 0.5 shows

that the higher étale homotopy groups of X are geometric: for n ≥ 2, the natural

homomorphism of profinite groups

π̂ét
n (Xs̄, x̄) → π̂ét

n (X, x)

is an isomorphism. Moreover, without assuming that the geometric fiber Xs̄ is con-

nected, we obtain an exact sequence of pointed profinite sets

Theorem 0.2 implies the analogous isomorphisms and exact sequence in the category of

pointed prosets for the homotopy prosets of the protruncated étale homotopy types of

Xs̄, X, and S. See also [23, Corollary 4.10].

Example 0.7. Take S to be the spectrum of a field k with separable closure k̄ ⊃ k.

Corollary 0.5 provides a natural fiber sequence of profinite étale homotopy types

As a consequence, the sequence of pointed profinite sets
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4 P. J. Haine et al.

is exact. Since we do not make use of the fundamental exact sequence (0.1), Corollary

0.5 provides a new proof of the fundamental exact sequence.

0.1 Proof overview

To prove Theorem 0.2, we use Barwick, Glasman, and Haine’s description of the étale

homotopy type in terms of profinite Galois categories ([5, Theorem 12.5.1]; [15]). Let us

briefly recall this description. Given a qcqs scheme Y, Barwick–Glasman–Haine gave the

category of points of the étale topos of Y the structure of a pro-object in the category of

categories with finitely many morphisms. Since it globalizes the absolute Galois groups

of the residue fields of the points of Y, they denote the resulting procategory by Gal(Y).

Using Hoyois’ description of the étale homotopy type [18, Corollary 5.6] via Lurie’s shape

theory ([27, Section A.1]; [28, Section 7.1.6]; [29, Section E.2]), Barwick–Glasman–Haine

showed that the prospace �ét
<∞(Y) can be recovered as the protruncated classifying

space of the procategory Gal(Y). See Section 1.2 for more details.

Via this perspective, proving Theorem 0.2 amounts to showing that a sequence of

classifying prospaces is a fiber sequence. The geometric input we need is the following:

for any morphism between qcqs schemes f : X → S and geometric point s̄ → S, the

sequence of profinite categories

is a fiber sequence (see Section 2). If dim(S) = 0, then the profinite category Gal(S)

is already a profinite 1-groupoid. Theorem 0.2 then follows from the assertion that

taking protruncated classifying spaces preserves pullbacks along morphisms between

profinite 1-groupoids. In Section 3, we prove these categorical facts, as well as

Proposition 0.4. See Example 3.7 and Corollary 3.11.

0.2 Related work

Let k be a field with separable closure k̄ ⊃ k, and let X be a qcqs k-scheme. Write Gk :=
Gal(k̄/k). Theorem 0.2 generalizes work of Schmidt–Stix. In the proof of [36, Proposition

2.3], Schmidt and Stix showed that the sequence of protruncated étale homotopy types

is a fiber sequence, provided that X is separated, locally noetherian, and of finite type

over k. Their proof uses Friedlander’s description of the étale homotopy type of a locally
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Fundamental Fiber Sequence 5

noetherian scheme via rigid hypercovers. It also strongly relies on the assumptions that

X is of finite type and that the base is a field. At the time, it was not known if their

work implied Corollary 0.5 (under these assumptions); Proposition 0.4 shows that this

is indeed the case.

Corollary 0.5 generalizes work of Cox, Quick, and Chough. Extending work of

Cox over R [10, Theorem 1.1], and Quick for varieties over general fields [32, Theorem

3.5], Chough showed the natural map

�̂ét∞(Xk̄) → �̂ét∞(X)

realizes �̂ét∞(X) as the quotient �̂ét∞(Xk̄) // Gk of the profinite étale homotopy type of

Xk̄ by the natural Gk-action [9, Theorem 5.1.26]. Chough’s proof uses the relative étale

homotopy type ([4, Section 8.1]; [16, Section 9.2.3]).

Since Chough’s thesis, Lurie proved the following: given a profinite group G,

there is an equivalence of ∞-categories between profinite spaces with a continuous

G-action and profinite spaces with a map to the profinite classifying space BG [29,

Theorem E.6.5.1]. This equivalence sends a profinite space U with G-action to the

quotient U // G and a map of profinite spaces φ : V → BG to the fiber fib(φ) over

the unique point of BG. In light of this dictionary, Corollary 0.5 is equivalent to the

presentation �̂ét∞(X) 	 �̂ét∞(Xk̄)//Gk. Note that our method of proof is completely different

from Chough’s and works over more general bases.

1 Background

We begin by collecting some background and notation on pro-objects, étale homotopy

types, and profinite Galois categories.

1.1 Pro-objects

In this subsection, we set our notation for pro-objects and the various completion

functors relating the ∞-categories of pro-objects relevant to this paper. We refer the

unfamiliar reader to [29, Section A.8.1] for more background on pro-objects, [5, Section

4.1]; [19, Section 3] for background on protruncated objects, and [5, Section 4.4]; [29,

Section 3] for background on profinite spaces.

Notation 1.1. We write Spc for the ∞-category of spaces and Cat∞ for the ∞-category

of ∞-categories.
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6 P. J. Haine et al.

Notation 1.2. Given an ∞-category C, we write Pro(C) for the ∞-category of pro-objects

in C obtained by formally adjoining cofiltered limits to C. The existence of Pro(C) is a

special case of (the dual of) [28, Proposition 5.3.6.2]. Given a functor F : C → D, we simply

write F : Pro(C) → Pro(D) for the cofiltered-limit-preserving extension of F.

1.3. Note that an adjunction L : C � D : R extends along cofiltered limits to an

adjunction L : Pro(C) � Pro(D) : R.

Observation 1.4. If C admits cofiltered limits, then the identity C → C extends to a

cofiltered-limit-preserving functor lim: Pro(C) → C. This functor sends a prosystem

{Ui}i∈I to the limit limi∈I Ui computed in C. Moreover, the functor lim: Pro(C) → C is

right adjoint to the Yoneda embedding C ↪→ Pro(C).

We are mostly interested in (localizations of) the ∞-categories Pro(Cat∞) of pro-

∞-categories and Pro(Spc) of prospaces. Equivalences in Pro(Spc) cannot be detected on

homotopy prosets; thus, one wants to work with the localization of Pro(Spc) at the π∗-

isomorphisms. Since there are nontrivial prospaces with no points, instead of working

with homotopy progroups, it is better to work with truncations.

Notation 1.5. Given an integer n ≥ 0, write Spc≤n ⊂ Spc for the full subcategory

spanned by the n-truncated spaces. Write τ≤n : Spc → Spc≤n for the left adjoint to the

inclusion. Given a space U, we call τ≤n(U) the n-truncation of U.

We say that a space U is truncated if U is n-truncated for some integer n ≥ 0.

We write Spc<∞ ⊂ Spc for the full subcategory spanned by the truncated spaces.

Notation 1.6 (Protruncation). The inclusion Pro(Spc<∞) ⊂ Pro(Spc) admits a left

adjoint

τ<∞ : Pro(Spc) → Pro(Spc<∞)

defined as follows. The functor τ<∞ is the unique cofiltered-limit-preserving extension

of the fully faithful functor Spc ↪→ Pro(Spc<∞) that sends a space U to the cofiltered

diagram given by its Postnikov tower {τ≤n(U)}n≥0. We refer to Pro(Spc<∞) as the ∞-

category of protruncated spaces and τ<∞ as the protruncation functor.

1.7. Said differently, a map of prospaces U → V becomes an equivalence after

protruncation if and only if for each n ≥ 0, the induced map of prospaces τ≤n(U) →
τ≤n(V) is an equivalence.
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Fundamental Fiber Sequence 7

1.8. By [19, Remark 3.2] and [20, Corollary 7.5], a map of pointed connected prospaces

U → V becomes an equivalence after protruncation if and only if for each n ≥ 1, the

induced map of homotopy progroups πn(U) → πn(V) is an isomorphism.

We are also interested in profinite completions of prospaces.

Notation 1.9 (Profinite completion). A space U is π -finite if U is truncated, π0(U)

is finite, and all homotopy groups of U are finite. We write Spcπ ⊂ Spc for the full

subcategory spanned by the π-finite spaces. Again, the inclusion Pro(Spcπ ) ⊂ Pro(Spc)

admits a left adjoint

(−)∧π : Pro(Spc) → Pro(Spcπ )˙

See [29, Remark E.2.1.3]. We call Pro(Spcπ ) the ∞-category of profinite spaces and

(−)∧π the profinite completion functor. Note that since Spcπ ⊂ Spc<∞, the profinite

completion functor factors through Pro(Spc<∞).

We are also interested in various types of classifying spaces for pro-∞-

categories.

Notation 1.10. We denote the left adjoint to the inclusion Spc ⊂ Cat∞ by B: Cat∞ →
Spc. Given an ∞-category C, we call BC the classifying space of C.

We make use of the description of classifying spaces as geometric realizations.

Recollection 1.11. The nerve construction defines a fully faithful right adjoint

Cat∞ ↪→ Fun(�op, Spc)

from the ∞-category of ∞-categories to the ∞-category of simplicial spaces [21], [25,

Section 1], [27, Proposition A.7.10], [29, Section A.8.2], and [33]. Objects in the image

of this embedding are often called complete Segal spaces. Under this embedding, the

subcategory Spc ⊂ Cat∞ corresponds to the constant functors �op → Spc. Moreover,

the localization B: Cat∞ → Spc is given by geometric realization.

Notation 1.12 (Classifying prospaces). Write B<∞ for the composite
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8 P. J. Haine et al.

The functor B<∞ is left adjoint to the inclusion Pro(Spc<∞) ⊂ Pro(Cat∞). Given a pro-

∞-category C, we refer to B<∞(C) as the protruncated classifying space of C. Write B∧
π

for the composite

The functor B∧
π is left adjoint to the inclusion Pro(Spcπ ) ⊂ Pro(Cat∞). Given a pro-∞-

category C, we refer to B∧
π (C) as the profinite classifying space of C.

1.2 Étale homotopy types and Galois categories

We now set our conventions for étale homotopy types and their refinements to profinite

Galois categories. For background on étale homotopy types, the unfamiliar reader

should refer to [3], [4], [12, Chapter 4], [16], and [35] for the more classical perspective

and to [5, Chapters 4 and 11], [7, Section 2], [6, Section 2], [18], and [19] for the more

modern perspective using Lurie’s shape theory. The reader should refer to [5, Chapter

12] for more background on profinite Galois categories.

We begin by recalling a bit about the modern interpretation of the étale

homotopy type. The point is that the original definition only made sense for locally

noetherian schemes, but Lurie’s shape theory allows one to define the étale homotopy

type of arbitrary schemes. We emphasize that the reader does not need to be familiar

with ∞-topoi or shape theory to understand the proofs in this paper; all of our results

make use of the description of the étale homotopy type provided by Theorem 1.27.

Recollection 1.13. Let Y be a locally noetherian scheme. Using hypercovers, Artin and

Mazur [3, Section 9] constructed a pro-object in the homotopy category of spaces called

the étale homotopy type of Y. Friedlander [12, Section 4] refined this construction,

producing a pro-object in simplicial sets that he called the étale topological type of Y.

Hoyois provided a modern interpretation of Friedlander’s construction: Friedlander’s

étale topological type corepresentes the shape of the ∞-topos of étale hypersheaves of

spaces on Y [18, Corollary 5.6].

Remark 1.14. From the modern perspective, it is more natural to consider the shape of

the ∞-topos of étale sheaves of spaces (with no hyperdescent conditions) on Y. This is

only a minor departure from the Artin–Mazur–Friedlander étale homotopy type: by [5,

Example 4.2.8], the protruncations of the shapes of the ∞-topoi of étale hypersheaves

and étale sheaves on Y agree.
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Fundamental Fiber Sequence 9

Since Lurie’s shape theory makes sense for arbitrary ∞-topoi, it provides a

definition of the étale homotopy type of any scheme.

Notation 1.15. Given a scheme Y, we write �ét∞(Y) ∈ Pro(Spc) for the shape of the ∞-

topos of étale sheaves of spaces on Y. We simply refer to �ét∞(Y) as the étale homotopy

type of Y. We write �ét
<∞(Y) ∈ Pro(Spc<∞) for the protruncation of �ét∞(Y) and write

�̂ét∞(Y) for the profinite completion of �ét∞(Y).

Now we set the context for profinite Galois categories. To do this, we need to fix

some notation and recall a bit about points in the étale topology.

Notation 1.16. We write RTop for the (2, 1)-category of topoi and (right adjoints in)

geometric morphisms. For a scheme Y, we write Yét for the small étale topos of Y. Given

a morphism of schemes f : X → S, we write f∗ : Xét → Sét for the induced geometric

morphism of étale topoi.

Notation 1.17. Let Y be a scheme and ȳ → Y a geometric point. We write y ∈ Y for the

underlying point of ȳ.

Recollection 1.18. Let Y be a qcqs scheme. The Grothendieck School [2, Exposé VIII,

Théorème 7.9] computed the category Pt(Yét) of points of the étale topos of Y.

(1.18.1) Objects of Pt(Yét) are geometric points ȳ → Y.

(1.18.2) Given geometric points s̄ → Y and η̄ → Y a morphism s̄ → η̄ in Pt(Yét)

is an étale specialization η̄ � s̄: a morphism of Y-schemes Spec(Osh
Y,η) →

Spec(Osh
Y,s) between spectra of strictly henselian local rings.

Importantly, there is a natural isomorphism of sets

HomPt(Yét)
(ȳ, ȳ) ∼= Gal(κ(ȳ)/κ(y)). (1.19)

Barwick–Glasman–Haine gave Pt(Yét) the structure of a profinite category.

Notation 1.20. We say that a 1-category C is finite if C has finitely many objects up to

isomorphism and finite Hom sets. We write Cat1,π ⊂ Cat∞ for the full subcategory

spanned by the finite 1-categories and refer to objects of Pro(Cat1,π ) as profinite

categories.

Remark 1.21. Since the inclusion Cat1,π ⊂ Cat∞ preserves finite limits, the induced

inclusion Pro(Cat1,π ) ⊂ Pro(Cat∞) preserves all limits.
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10 P. J. Haine et al.

Notation 1.22. Given a qcqs scheme Y, we write Gal(Y) ∈ Pro(Cat1,π ) for the profinite

Galois category of Y introduced by Barwick–Glasman–Haine [5, Definitions 10.1.4 and

12.1.3].

Remark 1.23. Like the étale homotopy type, the profinite Galois category Gal(Y) only

depends on the étale topos of Y. Moreover, the composite

is identified with the functor Y 
→ Pt(Yét). With this extra structure of a profinite

category, the isomorphism (1.19) refines to an isomorphism of profinite sets. See [5,

Lemma 10.3.2 and Construction 12.1.5].

For this article, the details of the definition of Gal(Y) are not so important; it

is only necessary to know a few of the basic properties of profinite Galois categories.

In the remainder of this subsection, we review all of the properties of profinite Galois

categories used in this paper.

Remark 1.24. By Remark 1.23 and [5, Definition 4.1.5 and Theorem 10.3.3], the

assignment Gal(Y) 
→ Pt(Yét) is conservative. Also, note that the functor Pt: RTop →
Cat1 preserves limits. Therefore, given a diagram Y• : I� → Schqcqs, if the induced

diagram of étale topoi Y•,ét : I� → RTop is a limit diagram, then so is the diagram

Gal(Y•) : I� → Pro(Cat∞)

of profinite Galois categories.

The following is immediate from the definition of the profinite Galois category.

Observation 1.25. Let Y be a qcqs scheme. Then dim(Y) = 0 if and only if the profinite

category Gal(Y) is a profinite 1-groupoid (i.e., lies in the subcategory Pro(Spcπ ) ⊂
Pro(Cat∞)).

Example 1.26. Let k be a field. A choice of separable closure k̄ ⊃ k provides an

equivalence

Gal(Spec(k))
∼−→ BGal(k̄/k)

between the profinite Galois category of Spec(k) and the 1-object profinite 1-groupoid

with profinite automorphism group given by Gal(k̄/k).
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Fundamental Fiber Sequence 11

A key tool we make use of is the following description of the étale homotopy type

in terms of classifying prospaces.

Theorem 1.27 ([5, Theorem 12.5.1] and [15]). Let Y be a qcqs scheme. There are natural

equivalences of prospaces

�ét
<∞(Y)

∼−→ B<∞(Gal(Y)) and �̂ét∞(Y)
∼−→ B∧

π (Gal(Y)).

Example 1.28. Let S be a 0-dimensional qcqs scheme. (By Serre’s cohomological

characterization of affineness, every 0-dimensional qcqs scheme is affine.) In light of

Observation 1.25, Theorem 1.27 shows that

�ét
<∞(S) 	 Gal(S).

In particular, the protruncated étale homotopy type �ét
<∞(S) is 1-truncated and profinite.

2 Galois Categories of Geometric Fibers

In this section, we explain why the formation of étale topoi (hence Galois categories, see

Remark 1.24) commutes with taking geometric fibers (Corollary 2.4). Since the formation

of étale topoi does not preserve general pullbacks of schemes [24, Remark 1.5], this is

not immediate. To prove this, we break the problem up into two steps: first, we pull

back to the strictly henselian local ring, then to the geometric point.

Notation 2.1. Let S be a scheme and s̄ → S a geometric point. We write

S(s̄) := Spec(Osh
S,s)

for the strict localization of S at s̄. Given a morphism of schemes f : X → S, we write Xs̄

and X(s̄) for the pullbacks of schemes

2.2. If S is the spectrum of a field k and s̄ is the spectrum of a separable closure k̄ ⊃ k,

then

S(s̄) = Spec(k̄) and X(s̄) = Xs̄ = Spec(k̄) ×
Spec(k)

X.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnad018/7034035 by Institute for Advanced Study user on 29 M

arch 2023



12 P. J. Haine et al.

Proposition 2.3. Let f : X → S be a morphism between qcqs schemes and s̄ → S a

geometric point. Then both of the squares in the diagram of étale topoi

are pullback squares in RTop.

Proof. First, we prove that the right-hand square is a pullback. Recall that the strict

localization S(s̄) is isomorphic (over S) to the limit limU∈Nbd(s̄) U over the cofiltered

system Nbd(s̄) of affine étale neighborhoods of s̄ in S [2, Exposé VIII, 4.5]. Hence,

X(s̄)
∼= lim

U∈Nbd(s̄)
U ×S X.

Since the functor (−)ét : Sch → RTop preserves limits of cofiltered diagrams of qcqs

schemes with affine transition morphisms [2, Exposé VII, Lemme 5.6] and [8, Lemma

3.3], as well as pullbacks along étale morphisms, we see that

X(s̄),ét 	 lim
U∈Nbd(s̄)

Uét ×
Sét

Xét 	 S(s̄),ét ×
Sét

Xét.

To see that the left-hand square is a pullback, note that the morphism of schemes

s̄ → S(s̄) is a closed immersion and the functor (−)ét : Sch → RTop preserves pullbacks

along closed immersions. See [2, Exposé VIII, Théorème 6.3], [28, Proposition 7.3.2.12],

[29, Proposition 3.1.4.1], and [30, Chapter II, Theorem 3.1]. �

Since s̄ is the spectrum of a separably closed field, we have Gal(s̄) 	 ∗. In light

of Remark 1.24, Proposition 2.3 implies the following.

Corollary 2.4. Let f : X → S be a morphism between qcqs schemes and s̄ → S a

geometric point. Then both of the squares in the diagram

are pullback squares in Pro(Cat∞).
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Fundamental Fiber Sequence 13

3 The Fundamental Fiber Sequence

Let f : X → S be a morphism between qcqs schemes and s̄ → S a geometric point. We

have seen that there is a fiber sequence of profinite categories

Our goal is to show that if dim(S) = 0, then this fiber sequence remains a fiber sequence

after applying the localizations

B<∞ : Pro(Cat∞) → Pro(Spc<∞) and B∧
π : Pro(Cat∞) → Pro(Spcπ ).

Since the functors B<∞ and B∧
π do not generally preserve fibers, this is not immediate

from the definitions. Instead, the main technical results of this section are that these

localizations preserve pullbacks along morphisms between profinite spaces in the

following sense.

Recollection 3.1. Let C be an ∞-category with pullbacks and D ⊂ C a full subcategory

such that the inclusion admits a left adjoint L : C → D. We say that the localization L is

locally cartesian if for any cospan U → W ← V in C with U, W ∈ D, the natural map

L(U ×W V) → U ×W L(V)

is an equivalence. See [13, Section 1.2] and [17, Section 3.2].

In Section 3.1, we explain why the classifying prospaces functor B: Pro(Cat∞) →
Pro(Spc) is locally cartesian (Example 3.7). From this and Corollary 2.4, we deduce a

version of the fundamental fiber sequence for classifying prospaces of Galois categories

(Corollary 3.8). Subsection 3.2 shows that the protruncation functor τ<∞ : Pro(Spc) →
Pro(Spc<∞) actually preserves all limits (Proposition 3.9). From this, we deduce the

fundamental fiber sequence for protruncated étale homotopy types (Corollary 3.12).

In Section 3.3, we show that the profinite completion functor is locally cartesian

(Proposition 3.18) and deduce the fundamental fiber sequence for profinite étale homo-

topy types (Corollary 3.21).

3.1 Local cartesianness of classifying prospaces

We now show that the localization B: Pro(Cat∞) → Pro(Spc) is locally cartesian. Using

the embedding of Cat∞ into simplicial spaces, we first treat the localization B: Cat∞ →
Spc.
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14 P. J. Haine et al.

3.2. Let I be a weakly contractible ∞-category (e.g., I = �op). Let C be an ∞-

category with I-shaped colimits. Since I is weakly contractible, the constant functor

C → Fun(I, C) is fully faithful. Hence, its left adjoint colimI : Fun(I, C) → C is a

localization.

The following is a direct reformulation of the definitions.

Lemma 3.3. Let I be a weakly contractible ∞-category and let C be an ∞-category with

I-shaped colimits and pullbacks. Then the following are equivalent.

(3.3.1) I-shaped colimits are universal in the ∞-category C.

(3.3.2) The localization colimI : Fun(I, C) → C is locally cartesian.

Example 3.4. Since geometric realizations of simplicial objects are universal in Spc, in

light of Recollection 1.11, the localization B: Cat∞ → Spc is locally cartesian.

Now note that passing to pro-objects preserves locally cartesian localizations.

Lemma 3.5. Let C be an ∞-category with pullbacks, and let L : C → D be a locally

cartesian localization. Then the induced localization L : Pro(C) → Pro(D) is locally

cartesian.

Proof. We need to show that given a cospan U → W ← V in Pro(C) with U, W ∈ Pro(D),

the natural morphism

L(U ×W V) → U ×W L(V) (3.6)

is an equivalence in Pro(D). Since L : Pro(C) → Pro(D) preserves cofiltered limits, it

suffices to prove that (3.6) is an equivalence in the special case that U, W ∈ D and

V ∈ C. This now follows from the assumption that the localization L : C → D is locally

cartesian. �

Example 3.7. The localization B: Pro(Cat∞) → Pro(Spc) is locally cartesian.

Corollary 3.8. Let f : X → S be a morphism between qcqs schemes, and let s̄ → S be a

geometric point of S. If dim(S) = 0, then the natural square

is a pullback square in the ∞-category Pro(Spc).
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Fundamental Fiber Sequence 15

Proof. Since dim(S) = 0, the profinite category Gal(S) is a profinite space (Observation

1.25). The claim follows by applying the locally cartesian localization B: Pro(Cat∞) →
Pro(Spc) to the large pullback square appearing in Corollary 2.4. �

3.2 Local cartesianness of protruncated classifying spaces

In this subsection, we prove that the protruncation functor preserves all limits

and deduce the fundamental fiber sequence for protruncated étale homotopy types

(Corollary 3.12).

Proposition 3.9. The protruncation functor τ<∞ : Pro(Spc) → Pro(Spc<∞) preserves

limits.

Proof. By definition, the functor τ<∞ preserves cofiltered limits and the terminal

object; hence, it suffices to show that τ<∞ preserves pullbacks. Since τ<∞ preserves

cofiltered limits, we are reduced to showing that given a cospan U → W ← V of spaces,

the induced morphism

τ<∞(U ×W V) → τ<∞(U) ×
τ<∞(W)

τ<∞(V)

is an equivalence in Pro(Spc<∞). That is, we need to show that for each integer k ≥ 0,

the natural morphism

τ≤k(U ×W V) 	 τ≤kτ<∞(U ×W V) −→ τ≤k

(
τ<∞(U) ×

τ<∞(W)
τ<∞(V)

)
(3.10)

is an equivalence. By definition,

τ≤k

(
τ<∞(U) ×

τ<∞(W)
τ<∞(V)

)
	

{
τ≤k

(
τ≤n(U) ×

τ≤n(W)
τ≤n(V)

)}
n≥0

.

By [11, Proposition 4.13], the natural map

U ×W V → τ≤n(U) ×
τ≤n(W)

τ≤n(V)

is (n − 1)-connected. Hence, for n ≥ k + 1, the map

τ≤k(U ×W V) −→ τ≤k

(
τ≤n(U) ×

τ≤n(W)
τ≤n(V)

)
is an equivalence. Thus, the morphism (3.2) is an equivalence, as desired. �

By Example 3.7 and Proposition 3.9, we see the following.
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16 P. J. Haine et al.

Corollary 3.11. The localization B<∞ : Pro(Cat∞) → Pro(Spc<∞) is locally cartesian.

Corollary 3.12. Let f : X → S be a morphism between qcqs schemes, and let s̄ → S be a

geometric point of S. If dim(S) = 0, then the naturally null sequence

is a fiber sequence in the ∞-category Pro(Spc<∞).

Proof. Combine Theorem 1.27, Corollary 3.8, and Proposition 3.9. �

3.3 Local cartesianness of profinite completion

We now explain why profinite completion is locally cartesian (Proposition 3.18). From

this, we deduce the fundamental fiber sequence for profinite étale homotopy types

(Corollary 3.21).

Since the proof is exactly the same (and we need it in future work), we record the

more general statement that completion at a set of primes is locally cartesian. To do so,

we first introduce some definitions.

Definition 3.13. Let 	 be a set of prime numbers.

(3.13.1) A finite group G is an 	-group if the order of G is in the multiplicative

closure of 	.

(3.13.2) A space U is 	-finite if U is π-finite and all homotopy groups of U are 	-

groups. We write Spc	 ⊂ Spcπ for the full subcategory spanned by the 	-

finite spaces.

Notation 3.14 (	-Completion). The inclusion Pro(Spc	) ⊂ Pro(Spc) admits a left

adjoint

(−)∧	 : Pro(Spc) → Pro(Spc	)

called 	-completion. Write B∧
	 for the composite

Observation 3.15. In light of Observation 1.4, the composite 	-completion functor

is a left adjoint.
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Fundamental Fiber Sequence 17

In order to show that 	-completion is locally cartesian, we make use of the

following generalization of [29, Theorem E.6.0.7 and Corollary E.6.0.8]. See also [26,

Proposition 3.2.4].

Theorem 3.16. Let 	 be a set of prime numbers.

(3.16.1) Let U be an 	-finite space. Then the functor

colimU : Fun(U, Pro(Spc	)) → Pro(Spc	)/U

is an equivalence of ∞-categories.

(3.16.2) Given a map U → W of 	-finite spaces, the functor

U ×W (−) : Pro(Spc	)/W → Pro(Spc	)/U

preserves limits and colimits.

Lurie only states Theorem 3.16 when 	 is the set of all primes (so Spc	 = Spcπ )

or a single prime. However, the proofs given in [29, Sections E.6.1 and E.6.2] work

verbatim in this more general setting.

The next lemma helps us compare 	-completions of pullbacks with pullbacks of

	-completions.

Lemma 3.17. Let 	 be a set of prime numbers and U → W a map of spaces. Then:

(3.17.1) The functor (U ×W (−))∧	 : Spc → Pro(Spc	) preserves colimits.

(3.17.2) If U and W are 	-finite, then the functor U ×W (−)∧	 : Spc → Pro(Spc	)

preserves colimits.

Proof. For (3.17.1), note that colimits are universal in Spc and the functor (−)∧	 : Spc →
Pro(Spc	) preserves colimits (Observation 3.15).

For (3.17.2), note that since U and W are 	-finite, the pullback functor

U ×W (−) : Pro(Spc	)/W → Pro(Spc	)/U

preserves colimits. Thus, the claim follows from the fact that the functor (−)∧	 : Spc →
Pro(Spc	) preserves colimits. �

Proposition 3.18. Let 	 be a set of prime numbers. Then the localization

(−)∧	 : Pro(Spc) → Pro(Spc	)

is locally cartesian.
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18 P. J. Haine et al.

Proof. Given a cospan U → W ← V in Pro(Spc) with U, W ∈ Pro(Spc	), we need to

show that the natural map

(U ×W V)∧	 → U ×W V∧
	 (3.19)

is an equivalence. Since 	-completion preserves cofiltered limits, we are reduced to the

case where U, W ∈ Spc	 and V ∈ Spc. In this case, Lemma 3.17 shows that both sides of

(3.19) preserve colimits in V. Since Spc is generated under colimits by the point, we are

reduced to showing that (3.19) is an equivalence when V = ∗; this is true because ∗ is

	-finite. �

By Example 3.7 and Proposition 3.18, we see the following.

Corollary 3.19. Let 	 be a set of prime numbers. Then the localization B∧
	 : Pro(Cat∞) →

Pro(Spc	) is locally cartesian.

Corollary 3.20. Let f : X → S be a morphism between qcqs schemes, and let s̄ → S be a

geometric point of S. If dim(S) = 0, then the naturally null sequence

(3.22)

is a fiber sequence in the ∞-category Pro(Spcπ ).

Proof. Combine Theorem 1.27, Corollary 3.8, and Proposition 3.18. �

Warning 3.23. The fiber sequence (3.22) need not remain a fiber sequence after

completion at a set of primes. To see this, let k be a field with separable closure k̄ ⊃ k

and absolute Galois group G := Gal(k̄/k). Set S := Spec(k) and X := Spec(k̄). Note that

since �̂ét∞(Xk̄) 	 
BG is a profinite set, it is already 	-complete. Write G	 for the

maximal pro-	 quotient of G. In this case, [3, Corollary 3.7] implies that the natural

map


BG 	 �ét∞(Xk̄)∧	 −→ 

(
�ét∞(S)∧	

)
	 


(
(BG)∧	

)
induces the quotient map G � G	 on π0.

Using the local cartesianness of 	-completion, we see that the failure of Gal(k̄/k)

to be a pro-	 group is the only obstruction to (3.22) remaining a fiber sequence after

	-completion.
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Fundamental Fiber Sequence 19

Definition 3.24. Let 	 be a set of prime numbers, and let k be a field. We say that k is

	-closed if for every finite Galois extension K ⊃ k and prime � ∈ 	, the degree of K over

k is not divisible by �. (For a prime p, the notion of a p-closed field used here is stronger

than the one introduced in [31, Chapter VI, Section 1].)

3.25. Given a set of prime numbers 	, write 	′ for the complement of 	 in the set of all

primes. By the fundamental theorem of Galois theory, a field k is 	′-closed if and only

if for any separable closure k̄ ⊃ k, the Galois group Gal(k̄/k) is a pro-	 group.

Logic provides a source of examples of 	-closed fields.

Example 3.26.

(3.26.1) If k is a real closed field, then k is 2′-closed.

(3.26.2) Let k be a field of characteristic p > 0. If k is infinite and does not have the

independence property (i.e., is an NIP field), then k is p-closed ([22, Corollary

4.4]; [34]).

Observation 3.27. Let S be a 0-dimensional qcqs scheme, and let 	 be a set of prime

numbers. Since the profinite étale homotopy type �̂ét∞(S) is a profinite 1-groupoid with

automorphism groups the absolute Galois groups of the residue fields of S, the profinite

space �̂ét∞(S) is 	-complete if and only if each residue field of S is 	′-closed.

Corollary 3.28. Let f : X → S be a morphism between qcqs schemes, let s̄ → S be

a geometric point of S, and let 	 be a set of prime numbers. If dim(S) = 0 and each

residue field of S is 	′-closed, then the naturally null sequence

is a fiber sequence in the ∞-category Pro(Spc	).

Proof. By assumption, �̂ét∞(S) is 	-complete; thus, the conclusion follows from Propo-

sition 3.18 and Corollary 3.21. �
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