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Let k be a field with separable closure k D k, and let X be a qcgs k-scheme. We use the
theory of profinite Galois categories developed by Barwick-Glasman-Haine to provide
a quick conceptual proof that the sequences Héjoo(X,-c) — I'Iitoo(X) — BGal(l_c/k) and
ﬁgg(X]-c) — ﬁgg(X) — BGal(k/k) of protruncated and profinite étale homotopy types
are fiber sequences. This gives a common conceptual reason for the following two
phenomena: first, the higher étale homotopy groups of X and the geometric fiber Xj
are isomorphic, and second, if X; is connected, then the sequence of profinite étale
fundamental groups 1 — frft(X,-c) — #8(X) — Gal(k/k) — 1 is exact. It also proves the

analogous results for the groupe fondamental élargi of SGA3.

Introduction

Let k be a field with separable closure k D k, and let X be a qcgs k-scheme. Write Xz
for the basechange of X to k. The fundamental exact sequence for étale fundamental

groups asserts that if X; is connected, then the natural sequence of profinite groups

1 — 28Xy — #f(X) — Gal(k/k) — 1 (0.1)
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is exact ([14, Exposé IX, Théoréme 6.1]; [37, Tag OBTX]). The purpose of this paper
is to explain a simple argument that extends this short exact sequence to a fiber
sequence of étale homotopy types in the sense of Artin-Mazur-Friedlander ([3]; [12,
Chapter 4]). To do this, we make use of Barwick, Glasman, and Haine's new description
of the étale homotopy type in terms of profinite Galois categories ([5, Theorem 12.5.1];
[15]).

Given a scheme Y, there are two variants of the étale homotopy type relevant
to the present work: the 1st is the (protruncated) étale homotopy type I'Iéfoo(Y). This
is a prospace that is not generally profinitely complete. The fundamental progroup of
l'[‘itoo(Y) recovers the groupe fondamental élargi of SGA3 [1, Exposé X, Section 6]. The
2nd is the profinite completion of H@OO(Y), which we denote by ﬁgg(Y). The fundamental
progroup of ﬁgg(y) recovers the usual profinite étale fundamental group ﬁlét(Y).
The profinite étale homotopy type also comes equipped with a natural comparison
morphism H‘itOO(Y) — ﬁgg(Y). If Y is geometrically unibranch, both variants coincide: in
this case, the comparison morphism Hitoo(Y) — ﬁgg(Y) is an equivalence ([3, Theorem
11.1]; [12, Theorem 7.3]; [26, Theorem 3.6.5]). See Section 1.2 for a short recollection of
the modern perspective on the étale homotopy type and how it relates to the classical
definition.

The following are the main results of this paper. We note that with our methods,
the only thing particular to working over a field that we need is that Spec(k) is O-
dimensional. Write Pro(Spc) for the co-category of prospaces and Pro(Spc,,) C Pro(Spc)
for the full subcategory spanned by the profinite spaces.

Theorem 0.2 (Corollary 3.12). Let f: X — S be a morphism between qcqgs schemes, and

let s — S be a geometric point of S. If dim(S) = 0, then the naturally null sequence

e (Xg) — M (X) — M (S) (0.3)

o0

is a fiber sequence in the co-category Pro(Spc).

For a 0O-dimensional scheme S, the prospace I'Ié<too(S) is already profinitely
complete (see Example 1.28). Hence, the following property of profinite completion

implies that (0.3) remains a fiber sequence after profinite completion.

Proposition 0.4 (Proposition 3.18). The functor (—);: Pro(Spc) — Pro(Spc,) that
carries a prospace to its profinite completion preserves pullbacks along maps between

profinite spaces.
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Fundamental Fiber Sequence 3
Corollary 0.5 (Corollary 3.21). With the same notation as Theorem 0.2, if dim(S) = O,
then the naturally null sequence

M8 ) — HE0 — OEES)
is a fiber sequence in the co-category Pro(Spc,,).

By taking homotopy groups, Corollary 0.5 recovers the fundamental exact

sequence (0.1). To explain this, we first introduce the following notation.

Notation 0.6. Given a gcgs scheme Y and geometric point y — Y, write 7y(Y) for the
profinite set of connected components of ﬁgg(Y) and ﬁ,"it(Y,f/) for the n-th profinite
homotopy group of ﬁgg(Y) at y. (Equivalently, 7y(Y) is the profinite set of connected

components of Y.)

Choose a geometric point x of X; with image x in X. Since the higher étale homotopy
groups of a 0-dimensional gcqs scheme vanish (see Example 1.28), Corollary 0.5 shows
that the higher étale homotopy groups of X are geometric: for n > 2, the natural

homomorphism of profinite groups
e (X, %) — #EHX, %)

is an isomorphism. Moreover, without assuming that the geometric fiber X; is con-

nected, we obtain an exact sequence of pointed profinite sets

1 — A8X,

%) — 78X, x) — 78S, 5) — mp(Xy) — me(X) — 7, (S)

Theorem 0.2 implies the analogous isomorphisms and exact sequence in the category of
pointed prosets for the homotopy prosets of the protruncated étale homotopy types of
X, X, and S. See also [23, Corollary 4.10].

Example 0.7. Take S to be the spectrum of a field k with separable closure k O k.

Corollary 0.5 provides a natural fiber sequence of profinite étale homotopy types

e (x;) — T%(X) — BGal(k/k) .

As a consequence, the sequence of pointed profinite sets

1 — 728X, %) — X, x) — Gal(k/k) — 7y(Xp) — 7o(X) — 1
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4 P.J. Haine et al.

is exact. Since we do not make use of the fundamental exact sequence (0.1), Corollary

0.5 provides a new proof of the fundamental exact sequence.

0.1 Proof overview

To prove Theorem 0.2, we use Barwick, Glasman, and Haine's description of the étale
homotopy type in terms of profinite Galois categories ([5, Theorem 12.5.1]; [15]). Let us
briefly recall this description. Given a gcgs scheme Y, Barwick-Glasman-Haine gave the
category of points of the étale topos of Y the structure of a pro-object in the category of
categories with finitely many morphisms. Since it globalizes the absolute Galois groups
of the residue fields of the points of Y, they denote the resulting procategory by Gal(Y).
Using Hoyois’ description of the étale homotopy type [18, Corollary 5.6] via Lurie’s shape
theory ([27, Section A.1]; [28, Section 7.1.6]; [29, Section E.2]), Barwick-Glasman-Haine

showed that the prospace I®

(Y) can be recovered as the protruncated classifying
space of the procategory Gal(Y). See Section 1.2 for more details.

Via this perspective, proving Theorem 0.2 amounts to showing that a sequence of
classifying prospaces is a fiber sequence. The geometric input we need is the following:
for any morphism between gcqs schemes f: X — S and geometric point 5 — S, the

sequence of profinite categories

Gal(X;) — Gal(X) — Gal(S)

is a fiber sequence (see Section 2). If dim(S) = 0, then the profinite category Gal(S)
is already a profinite 1-groupoid. Theorem 0.2 then follows from the assertion that
taking protruncated classifying spaces preserves pullbacks along morphisms between
profinite 1-groupoids. In Section 3, we prove these categorical facts, as well as

Proposition 0.4. See Example 3.7 and Corollary 3.11.

0.2 Related work

Let k be a field with separable closure k O k, and let X be a gcgs k-scheme. Write Gy =
Gal(l},/ k). Theorem 0.2 generalizes work of Schmidt-Stix. In the proof of [36, Proposition
2.3], Schmidt and Stix showed that the sequence of protruncated étale homotopy types

né (x;) — né (X) — BGy

is a fiber sequence, provided that X is separated, locally noetherian, and of finite type

over k. Their proof uses Friedlander’'s description of the étale homotopy type of a locally
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Fundamental Fiber Sequence 5

noetherian scheme via rigid hypercovers. It also strongly relies on the assumptions that
X is of finite type and that the base is a field. At the time, it was not known if their
work implied Corollary 0.5 (under these assumptions); Proposition 0.4 shows that this
is indeed the case.

Corollary 0.5 generalizes work of Cox, Quick, and Chough. Extending work of
Cox over R [10, Theorem 1.1], and Quick for varieties over general fields [32, Theorem

3.5], Chough showed the natural map
e (x;) — 0% X)

realizes ﬁgg(X) as the quotient ﬁgg(x,-c) / Gy of the profinite étale homotopy type of
X}, by the natural Gg-action [9, Theorem 5.1.26]. Chough's proof uses the relative étale
homotopy type ([4, Section 8.1]; [16, Section 9.2.3]).

Since Chough’s thesis, Lurie proved the following: given a profinite group G,
there is an equivalence of co-categories between profinite spaces with a continuous
G-action and profinite spaces with a map to the profinite classifying space BG [29,
Theorem E.6.5.1]. This equivalence sends a profinite space U with G-action to the
quotient U / G and a map of profinite spaces ¢: V — BG to the fiber fib(¢) over
the unique point of BG. In light of this dictionary, Corollary 0.5 is equivalent to the
presentation ﬁig(X) ~ ﬁgg(X,-c)//Gk. Note that our method of proof is completely different

from Chough's and works over more general bases.

1 Background

We begin by collecting some background and notation on pro-objects, étale homotopy

types, and profinite Galois categories.

1.1 Pro-objects

In this subsection, we set our notation for pro-objects and the various completion
functors relating the oco-categories of pro-objects relevant to this paper. We refer the
unfamiliar reader to [29, Section A.8.1] for more background on pro-objects, [5, Section
4.1]; [19, Section 3] for background on protruncated objects, and [5, Section 4.4]; [29,

Section 3] for background on profinite spaces.

Notation 1.1. We write Spc for the co-category of spaces and Cat_, for the co-category

of co-categories.
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6 P.J. Haine et al.

Notation 1.2. Given an co-category C, we write Pro(C) for the co-category of pro-objects
in C obtained by formally adjoining cofiltered limits to C. The existence of Pro(C) is a
special case of (the dual of) [28, Proposition 5.3.6.2]. Given a functor F: C — D, we simply

write F: Pro(C) — Pro(D) for the cofiltered-limit-preserving extension of F.

1.3. Note that an adjunction L: C = D: R extends along cofiltered limits to an
adjunction L: Pro(C) = Pro(D): R.

Observation 1.4. If C admits cofiltered limits, then the identity C — C extends to a
cofiltered-limit-preserving functor lim: Pro(C) — C. This functor sends a prosystem
{U;}ier to the limit lim, ; U; computed in C. Moreover, the functor lim: Pro(C) — C is
right adjoint to the Yoneda embedding C — Pro(C).

We are mostly interested in (localizations of) the co-categories Pro(Cat,,) of pro-
oo-categories and Pro(Spc) of prospaces. Equivalences in Pro(Spc) cannot be detected on
homotopy prosets; thus, one wants to work with the localization of Pro(Spc) at the = -
isomorphisms. Since there are nontrivial prospaces with no points, instead of working

with homotopy progroups, it is better to work with truncations.

Notation 1.5. Given an integer n > 0, write Spc_,, C Spc for the full subcategory
spanned by the n-truncated spaces. Write 7_,,: Spc — Spc_,, for the left adjoint to the
inclusion. Given a space U, we call t_, (U) the n-truncation of U.

We say that a space U is truncated if U is n-truncated for some integer n > 0.

We write Spc_., C Spc for the full subcategory spanned by the truncated spaces.

Notation 1.6 (Protruncation). The inclusion Pro(Spc_,,) C Pro(Spc) admits a left

adjoint
T_o - Pro(Spc) — Pro(Spc_,.)

defined as follows. The functor 7__, is the unique cofiltered-limit-preserving extension
of the fully faithful functor Spc — Pro(Spc_,,) that sends a space U to the cofiltered
diagram given by its Postnikov tower {r_,(U)},-o. We refer to Pro(Spc_,,) as the oo-

category of protruncated spaces and t__, as the protruncation functor.

1.7. Said differently, a map of prospaces U — V becomes an equivalence after
protruncation if and only if for each n > 0, the induced map of prospaces t_,(U) —

7_,(V) is an equivalence.
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Fundamental Fiber Sequence 7

1.8. By [19, Remark 3.2] and [20, Corollary 7.5], a map of pointed connected prospaces
U — V becomes an equivalence after protruncation if and only if for each n > 1, the

induced map of homotopy progroups =,,(U) — 7,,(V) is an isomorphism.
We are also interested in profinite completions of prospaces.

Notation 1.9 (Profinite completion). A space U is w-finite if U is truncated, 7y(U)
is finite, and all homotopy groups of U are finite. We write Spc, C Spc for the full
subcategory spanned by the 7-finite spaces. Again, the inclusion Pro(Spc,,) C Pro(Spc)

admits a left adjoint
(—)2: Pro(Spc) — Pro(Spc,)’

See [29, Remark E.2.1.3]. We call Pro(Spc,) the oo-category of profinite spaces and
(—)% the profinite completion functor. Note that since Spc, C Spc_.,, the profinite

completion functor factors through Pro(Spc_.,).

We are also interested in various types of classifying spaces for pro-oco-

categories.

Notation 1.10. We denote the left adjoint to the inclusion Spc C Cat_, by B: Cat,, —
Spc. Given an oco-category C, we call BC the classifying space of C.

We make use of the description of classifying spaces as geometric realizations.
Recollection 1.11. The nerve construction defines a fully faithful right adjoint
Cat,, — Fun(A°P, Spc)

from the oco-category of co-categories to the co-category of simplicial spaces [21], [25,
Section 1], [27, Proposition A.7.10], [29, Section A.8.2], and [33]. Objects in the image
of this embedding are often called complete Segal spaces. Under this embedding, the
subcategory Spc C Cat,, corresponds to the constant functors A°®? — Spc. Moreover,

the localization B: Cat,, — Spc is given by geometric realization.
Notation 1.12 (Classifying prospaces). Write B__, for the composite

Pro(Cat,) — 2 s Pro(Spc) —=s Pro(Spc

<oo) -
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8 P.J. Haine et al.

The functor B__, is left adjoint to the inclusion Pro(Spc_,,) C Pro(Cat,,). Given a pro-
oo-category C, we refer to B__ (C) as the protruncated classifying space of C. Write B}

for the composite
Pro(Cat,.) —2  Pro(Spc) ﬁ Pro(Spc,,) .

The functor B is left adjoint to the inclusion Pro(Spc,) C Pro(Cat,). Given a pro-co-

category C, we refer to B2 (C) as the profinite classifying space of C.

1.2 Etale homotopy types and Galois categories

We now set our conventions for étale homotopy types and their refinements to profinite
Galois categories. For background on étale homotopy types, the unfamiliar reader
should refer to [3], [4], [12, Chapter 4], [16], and [35] for the more classical perspective
and to [5, Chapters 4 and 11], [7, Section 2], [6, Section 2], [18], and [19] for the more
modern perspective using Lurie's shape theory. The reader should refer to [5, Chapter
12] for more background on profinite Galois categories.

We begin by recalling a bit about the modern interpretation of the étale
homotopy type. The point is that the original definition only made sense for locally
noetherian schemes, but Lurie’'s shape theory allows one to define the étale homotopy
type of arbitrary schemes. We emphasize that the reader does not need to be familiar
with co-topoi or shape theory to understand the proofs in this paper; all of our results

make use of the description of the étale homotopy type provided by Theorem 1.27.

Recollection 1.13. Let Y be a locally noetherian scheme. Using hypercovers, Artin and
Mazur [3, Section 9] constructed a pro-object in the homotopy category of spaces called
the étale homotopy type of Y. Friedlander [12, Section 4] refined this construction,
producing a pro-object in simplicial sets that he called the étale topological type of Y.
Hoyois provided a modern interpretation of Friedlander’'s construction: Friedlander’'s
étale topological type corepresentes the shape of the co-topos of étale hypersheaves of

spaces on Y [18, Corollary 5.6].

Remark 1.14. From the modern perspective, it is more natural to consider the shape of
the co-topos of étale sheaves of spaces (with no hyperdescent conditions) on Y. This is
only a minor departure from the Artin-Mazur-Friedlander étale homotopy type: by [5,
Example 4.2.8], the protruncations of the shapes of the co-topoi of étale hypersheaves

and étale sheaves on Y agree.

€202 U2Je|\ 62 UO Josn Apn)g paoueApy Joj a1nisul Aq SE0YE02/8 1 0PBUI/UIWI/EE0L 0 | /I0p/3]01lMB-80UBAPER/UIWI/WO02 dNO"dIWapeI.//:Sd)y WOol) POPEOJUMO(]



Fundamental Fiber Sequence 9

Since Lurie’'s shape theory makes sense for arbitrary oo-topoi, it provides a

definition of the étale homotopy type of any scheme.

Notation 1.15. Given a scheme Y, we write Hgg(Y) € Pro(Spc) for the shape of the co-
topos of étale sheaves of spaces on Y. We simply refer to [1¢{(Y) as the étale homotopy
type of Y. We write H‘itoo(Y) € Pro(Spc_,,) for the protruncation of ngg(y) and write
ﬁgg(Y) for the profinite completion of I'Igg(Y).

Now we set the context for profinite Galois categories. To do this, we need to fix

some notation and recall a bit about points in the étale topology.

Notation 1.16. We write RTop for the (2, 1)-category of topoi and (right adjoints in)
geometric morphisms. For a scheme Y, we write Y, for the small étale topos of Y. Given
a morphism of schemes f: X — S, we write f,: X;; — Sg for the induced geometric

morphism of étale topoi.

Notation 1.17. Let Y be a scheme and y — Y a geometric point. We write y € Y for the
underlying point of y.

Recollection 1.18. Let Y be a gcqs scheme. The Grothendieck School [2, Exposé VIII,
Théoreme 7.9] computed the category Pt(Y,,) of points of the étale topos of Y.
(1.18.1) Objects of Pt(Yy,) are geometric points y — Y.
(1.18.2) Given geometric points § — Y and 7 — Y a morphism § — 7 in Pt(Yy,)
is an étale specialization i ~ s: a morphism of Y-schemes Spec((’)?}l‘n) —
Spec(Oi}"s) between spectra of strictly henselian local rings.

Importantly, there is a natural isomorphism of sets
Homyp,y, (7, 7) = Gal(k (7)/k (). (1.19)
Barwick-Glasman-Haine gave Pt(Y},) the structure of a profinite category.
Notation 1.20. We say that a 1-category C is finite if C has finitely many objects up to
isomorphism and finite Hom sets. We write Cat, , C Cat,, for the full subcategory

spanned by the finite 1-categories and refer to objects of Pro(Cat, ) as profinite

categories.

Remark 1.21. Since the inclusion Cat, , C Cat,, preserves finite limits, the induced

inclusion Pro(Cat, ;) C Pro(Cat,,) preserves all limits.
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10 P.J. Haine et al.

Notation 1.22. Given a qcqgs scheme Y, we write Gal(Y) € Pro(Cat,; ) for the profinite
Galois category of Y introduced by Barwick-Glasman-Haine [5, Definitions 10.1.4 and
12.1.3].

Remark 1.23. Like the étale homotopy type, the profinite Galois category Gal(Y) only
depends on the étale topos of Y. Moreover, the composite

Sch®ds S, pro(cat. ) 2 Cat,,
is identified with the functor ¥ — Pt(Yy). With this extra structure of a profinite
category, the isomorphism (1.19) refines to an isomorphism of profinite sets. See [5,

Lemma 10.3.2 and Construction 12.1.5].

For this article, the details of the definition of Gal(Y) are not so important; it
is only necessary to know a few of the basic properties of profinite Galois categories.
In the remainder of this subsection, we review all of the properties of profinite Galois

categories used in this paper.

Remark 1.24. By Remark 1.23 and [5, Definition 4.1.5 and Theorem 10.3.3], the

assignment Gal(Y) — Pt(Yy,) is conservative. Also, note that the functor Pt: RTop —

Cat, preserves limits. Therefore, given a diagram Y,:I° — Sch%?®, if the induced

diagram of étale topoi Y, 4 : I" — RTop is a limit diagram, then so is the diagram
Gal(Y,): I" — Pro(Cat,)

of profinite Galois categories.

The following is immediate from the definition of the profinite Galois category.

Observation 1.25. Let Y be a qcqs scheme. Then dim(Y) = 0 if and only if the profinite
category Gal(Y) is a profinite 1-groupoid (i.e., lies in the subcategory Pro(Spc,) C
Pro(Cat_)).

Example 1.26. Let k be a field. A choice of separable closure k O k provides an
equivalence

Gal(Spec(k)) — BGal(k/k)

between the profinite Galois category of Spec(k) and the 1-object profinite 1-groupoid
with profinite automorphism group given by Gal(k/k).
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Fundamental Fiber Sequence 11

A key tool we make use of is the following description of the étale homotopy type

in terms of classifying prospaces.

Theorem 1.27 ([5, Theorem 12.5.1] and [15]). Let Y be a qcqs scheme. There are natural

equivalences of prospaces
né (v) > B_(Gal(Y)) and T[¢(Y) = B)(Gal(Y)).

Example 1.28. Let S be a 0-dimensional gcqs scheme. (By Serre's cohomological
characterization of affineness, every 0-dimensional qcgs scheme is affine.) In light of
Observation 1.25, Theorem 1.27 shows that

¢ _(S) ~ Gal(s).

t

In particular, the protruncated étale homotopy type I1%_ (S) is 1-truncated and profinite.

2 Galois Categories of Geometric Fibers

In this section, we explain why the formation of étale topoi (hence Galois categories, see
Remark 1.24) commutes with taking geometric fibers (Corollary 2.4). Since the formation
of étale topoi does not preserve general pullbacks of schemes [24, Remark 1.5], this is
not immediate. To prove this, we break the problem up into two steps: first, we pull

back to the strictly henselian local ring, then to the geometric point.

Notation 2.1. Let S be a scheme and s — S a geometric point. We write
S@) = Spec((’)g%lS

for the strict localization of S at 5. Given a morphism of schemes f: X — S, we write X;
and X5 for the pullbacks of schemes
- J

J r

o 6

2.2. If Sis the spectrum of a field k and § is the spectrum of a separable closure k D k,
then

S@ = Spec(k) and X =X; = Spec(k) Spe>t<:(k)X'
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12 P. J. Haine et al.

Proposition 2.3. Let f: X — S be a morphism between qcqs schemes and s — S a

geometric point. Then both of the squares in the diagram of étale topoi
Xsor — X560 — Xeg

bk

Sét S),et Set

are pullback squares in RTop.

Proof. First, we prove that the right-hand square is a pullback. Recall that the strict
localization S, is isomorphic (over S) to the limit limy ypqi U over the cofiltered
system Nbd(s) of affine étale neighborhoods of s in S [2, Exposé VIII, 4.5]. Hence,

X = lim UxcX.
® 7 yenbde S
Since the functor (—),: Sch — RTop preserves limits of cofiltered diagrams of gcqgs
schemes with affine transition morphisms [2, Exposé VII, Lemme 5.6] and [8, Lemma
3.3], as well as pullbacks along étale morphisms, we see that

X o~ lim Uy X X > Sig ar X Xgy.

(s),ét UeNbd(s) ét Set ét (8),ét Set ét
To see that the left-hand square is a pullback, note that the morphism of schemes
§ — S5 is a closed immersion and the functor (—),: Sch — RTop preserves pullbacks

along closed immersions. See [2, Exposé VIII, Théoréme 6.3], [28, Proposition 7.3.2.12],
[29, Proposition 3.1.4.1], and [30, Chapter II, Theorem 3.1]. [ |

Since 5 is the spectrum of a separably closed field, we have Gal(s) >~ . In light

of Remark 1.24, Proposition 2.3 implies the following.

Corollary 2.4. Let f: X — S be a morphism between gcqs schemes and s — S a

geometric point. Then both of the squares in the diagram

Gal(Xy) — Gal(X5) — Gal(X)

[l

* —— Gal(Sg) — Gal(s)

are pullback squares in Pro(Cat_,).
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3 The Fundamental Fiber Sequence

Let f: X — S be a morphism between qcqs schemes and s — S a geometric point. We

have seen that there is a fiber sequence of profinite categories

Gal(X;) — Gal(X) — Gal(S) .

Our goal is to show that if dim(S) = O, then this fiber sequence remains a fiber sequence

after applying the localizations

B_.,: Pro(Cat,) — Pro(Spc and B/ : Pro(Cat.) — Pro(Spc,,).

<o0)

Since the functors B__, and B do not generally preserve fibers, this is not immediate
from the definitions. Instead, the main technical results of this section are that these
localizations preserve pullbacks along morphisms between profinite spaces in the

following sense.

Recollection 3.1. Let C be an co-category with pullbacks and D C C a full subcategory
such that the inclusion admits a left adjoint L: C — D. We say that the localization L is

locally cartesian if for any cospan U — W <« V in C with U, W € D, the natural map
L(U xyy V) = U xpy L(V)

is an equivalence. See [13, Section 1.2] and [17, Section 3.2].

In Section 3.1, we explain why the classifying prospaces functor B: Pro(Cat_ ) —
Pro(Spc) is locally cartesian (Example 3.7). From this and Corollary 2.4, we deduce a
version of the fundamental fiber sequence for classifying prospaces of Galois categories
(Corollary 3.8). Subsection 3.2 shows that the protruncation functor r__ : Pro(Spc) —
Pro(Spc_,,) actually preserves all limits (Proposition 3.9). From this, we deduce the
fundamental fiber sequence for protruncated étale homotopy types (Corollary 3.12).
In Section 3.3, we show that the profinite completion functor is locally cartesian
(Proposition 3.18) and deduce the fundamental fiber sequence for profinite étale homo-

topy types (Corollary 3.21).

3.1 Local cartesianness of classifying prospaces

We now show that the localization B: Pro(Cat, ) — Pro(Spc) is locally cartesian. Using
the embedding of Cat_, into simplicial spaces, we first treat the localization B: Cat,, —

Spc.
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14 P. J. Haine et al.

3.2. Let Z be a weakly contractible oco-category (e.g., Z = A°P). Let C be an oco-
category with Z-shaped colimits. Since Z is weakly contractible, the constant functor
C — Fun(Z,C) is fully faithful. Hence, its left adjoint colim;: Fun(Z,C) — C is a

localization.
The following is a direct reformulation of the definitions.

Lemma 3.3. LetZ be a weakly contractible co-category and let C be an co-category with
Z-shaped colimits and pullbacks. Then the following are equivalent.
(3.3.1) Z-shaped colimits are universal in the co-category C.

(3.3.2) The localization colim;: Fun(Z,C) — C is locally cartesian.

Example 3.4. Since geometric realizations of simplicial objects are universal in Spc, in

light of Recollection 1.11, the localization B: Cat,, — Spc is locally cartesian.
Now note that passing to pro-objects preserves locally cartesian localizations.

Lemma 3.5. Let C be an oco-category with pullbacks, and let L: C — D be a locally
cartesian localization. Then the induced localization L: Pro(C) — Pro(D) is locally

cartesian.

Proof. We need to show that given a cospan U — W <« V in Pro(C) with U, W € Pro(D),

the natural morphism
LU xyy V) = U xyy L(V) (3.6)

is an equivalence in Pro(D). Since L: Pro(C) — Pro(D) preserves cofiltered limits, it
suffices to prove that (3.6) is an equivalence in the special case that U, W € D and
V € C. This now follows from the assumption that the localization L: C — D is locally

cartesian. [
Example 3.7. The localization B: Pro(Cat.,) — Pro(Spc) is locally cartesian.

Corollary 3.8. Let f: X — S be a morphism between gcgs schemes, and let s — S be a

geometric point of S. If dim(S) = 0, then the natural square

BGal(X;) — BGal(X)

| |

+ — BGal(S)

is a pullback square in the co-category Pro(Spc).
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Fundamental Fiber Sequence 15

Proof. Since dim(S) = 0, the profinite category Gal(S) is a profinite space (Observation
1.25). The claim follows by applying the locally cartesian localization B: Pro(Cat,) —
Pro(Spc) to the large pullback square appearing in Corollary 2.4. |

3.2 Local cartesianness of protruncated classifying spaces

In this subsection, we prove that the protruncation functor preserves all limits
and deduce the fundamental fiber sequence for protruncated étale homotopy types
(Corollary 3.12).

Proposition 3.9. The protruncation functor r_ : Pro(Spc) — Pro(Spc_, ) preserves

limits.

Proof. By definition, the functor t__, preserves cofiltered limits and the terminal
object; hence, it suffices to show that r__, preserves pullbacks. Since t_,, preserves
cofiltered limits, we are reduced to showing that given a cospan U — W <« V of spaces,

the induced morphism

T oo UxyV)—>1_(U) x = V)

(
TeooW) 0

is an equivalence in Pro(Spc_,,). That is, we need to show that for each integer k > 0,

the natural morphism

T (U Xy V) 217 (U X3y V) —> rik(r@O(U) . x(W) ‘L'<OO(V)) (3.10)

is an equivalence. By definition,

r<k(t<oo(U) X r<OO(V)):{t<k<r<n(U) X r<n(V))]
- T<oo (W) - - t<n(W) —

By [11, Proposition 4.13], the natural map

n>0

Uxy V—1_,U) ‘[S:EW) T, (V)

is (n — 1)-connected. Hence, for n > k + 1, the map

T (U xy V) — Tgk(fgn(U) >§ )rsn(V))

T<n

is an equivalence. Thus, the morphism (3.2) is an equivalence, as desired. |

By Example 3.7 and Proposition 3.9, we see the following.
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16 P. J. Haine et al.

Corollary 3.11. The localization B_,: Pro(Cat,,) — Pro(Spc_,,) is locally cartesian.
Corollary 3.12. Let f: X — S be a morphism between gcqs schemes, and let s - Sbe a
geometric point of S. If dim(S) = 0, then the naturally null sequence

M (X5 — T (X) — T ()

is a fiber sequence in the oo-category Pro(Spc_.).

Proof. Combine Theorem 1.27, Corollary 3.8, and Proposition 3.9. [ |

3.3 Local cartesianness of profinite completion

We now explain why profinite completion is locally cartesian (Proposition 3.18). From
this, we deduce the fundamental fiber sequence for profinite étale homotopy types
(Corollary 3.21).

Since the proof is exactly the same (and we need it in future work), we record the
more general statement that completion at a set of primes is locally cartesian. To do so,

we first introduce some definitions.

Definition 3.13. Let X be a set of prime numbers.

(3.13.1) A finite group G is an X-group if the order of G is in the multiplicative
closure of X.

(3.13.2) A space U is Z-finite if U is m-finite and all homotopy groups of U are X-
groups. We write Spcy, C Spc,, for the full subcategory spanned by the X-

finite spaces.

Notation 3.14 (X-Completion). The inclusion Pro(Spcy) < Pro(Spc) admits a left

adjoint
(—)%: Pro(Spc) — Pro(Spcy)
called X-completion. Write B, for the composite
Pro(Cat, ) —>— Pro(Spc) s, Pro(Spcy) .
Observation 3.15. In light of Observation 1.4, the composite X-completion functor
Spc —— Pro(Spc) (—4)§> Pro(Spcy,)

is a left adjoint.
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In order to show that X-completion is locally cartesian, we make use of the
following generalization of [29, Theorem E.6.0.7 and Corollary E.6.0.8]. See also [26,
Proposition 3.2.4].

Theorem 3.16. Let X be a set of prime numbers.
(3.16.1) Let U be an X-finite space. Then the functor
colim;;: Fun(U, Pro(Spcy,)) — Pro(Spcy)

is an equivalence of co-categories.

(3.16.2) Given a map U — W of X-finite spaces, the functor
Uxy (—): Pro(Sch)/W — Pro(Sch)/U

preserves limits and colimits.

Lurie only states Theorem 3.16 when X is the set of all primes (so Spcy, = Spc,;)
or a single prime. However, the proofs given in [29, Sections E.6.1 and E.6.2] work
verbatim in this more general setting.

The next lemma helps us compare X-completions of pullbacks with pullbacks of

¥ -completions.

Lemma 3.17. Let £ be a set of prime numbers and U — W a map of spaces. Then:

(3.17.1) The functor (U xy, (—))5: Spc — Pro(Spcy) preserves colimits.
(3.17.2) If U and W are X-finite, then the functor U x,, (-)%: Spc — Pro(Spcy)

preserves colimits.

Proof. For (3.17.1), note that colimits are universal in Spc and the functor ()% : Spc —
Pro(Spcy) preserves colimits (Observation 3.15).
For (3.17.2), note that since U and W are X-finite, the pullback functor

U xyy (—): Pro(Spey) iy — Pro(Spes)

preserves colimits. Thus, the claim follows from the fact that the functor (—)%: Spc —

Pro(Spcy.) preserves colimits. |

Proposition 3.18. Let ¥ be a set of prime numbers. Then the localization
(—)%: Pro(Spc) — Pro(Spcy)

is locally cartesian.
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18 P. J. Haine et al.

Proof. Given a cospan U — W <« V in Pro(Spc) with U, W € Pro(Spcy), we need to

show that the natural map
(U xy Vs > U xy VE (3.19)

is an equivalence. Since X-completion preserves cofiltered limits, we are reduced to the
case where U, W € Spcy, and V € Spc. In this case, Lemma 3.17 shows that both sides of
(3.19) preserve colimits in V. Since Spc is generated under colimits by the point, we are
reduced to showing that (3.19) is an equivalence when V = x; this is true because * is
> -finite. |

By Example 3.7 and Proposition 3.18, we see the following.

Corollary 3.19. Let X be a set of prime numbers. Then the localization B4 : Pro(Cat,,) —

Pro(Spcy) is locally cartesian.

Corollary 3.20. Letf: X — S be a morphism between qcqs schemes, and lets - Sbe a

geometric point of S. If dim(S) = 0, then the naturally null sequence
Iy — AL — ALE) (3.22)

is a fiber sequence in the co-category Pro(Spc,,).
Proof. Combine Theorem 1.27, Corollary 3.8, and Proposition 3.18. [ |

Warning 3.23. The fiber sequence (3.22) need not remain a fiber sequence after
completion at a set of primes. To see this, let k be a field with separable closure k > k
and absolute Galois group G := Gal(l_c/k). Set S := Spec(k) and X := Spec(l_c). Note that
since ﬁgf.)(X,;) ~ QBG is a profinite set, it is already ©-complete. Write G* for the
maximal pro-X quotient of G. In this case, [3, Corollary 3.7] implies that the natural

map
QBG ~ % (X3 — Q (ngg@g) ~ Q((BG)Y)
induces the quotient map G — G* on .
Using the local cartesianness of -completion, we see that the failure of Gal(k/k)

to be a pro-X group is the only obstruction to (3.22) remaining a fiber sequence after

¥-completion.
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Definition 3.24. Let X be a set of prime numbers, and let k be a field. We say that k is
¥-closed if for every finite Galois extension K D k and prime ¢ € %, the degree of K over
k is not divisible by ¢. (For a prime p, the notion of a p-closed field used here is stronger
than the one introduced in [31, Chapter VI, Section 1].)

3.25. Given a set of prime numbers X, write ¥’ for the complement of T in the set of all
primes. By the fundamental theorem of Galois theory, a field k is X'-closed if and only

if for any separable closure k O k, the Galois group Gal(k/k) is a pro-% group.
Logic provides a source of examples of X-closed fields.

Example 3.26.

(3.26.1) If kis a real closed field, then k is 2’-closed.

(3.26.2) Let k be a field of characteristic p > 0. If k is infinite and does not have the
independence property (i.e., is an NIP field), then k is p-closed ([22, Corollary
4.4]; [34]).

Observation 3.27. Let S be a 0-dimensional gcqs scheme, and let X be a set of prime
numbers. Since the profinite étale homotopy type ﬁgg(S) is a profinite 1-groupoid with
automorphism groups the absolute Galois groups of the residue fields of S, the profinite

space Hf’xtj(S) is T-complete if and only if each residue field of S is ¥’-closed.

Corollary 3.28. Let f: X — S be a morphism between qcqs schemes, let 5 — S be
a geometric point of S, and let ¥ be a set of prime numbers. If dim(S) = 0 and each

residue field of S is X’-closed, then the naturally null sequence

N&e); — NLe0; — N}
is a fiber sequence in the oco-category Pro(Spcy,).

Proof. By assumption, ﬁgg(S) is T-complete; thus, the conclusion follows from Propo-
sition 3.18 and Corollary 3.21. |
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