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Abstract. We show that compact subanalytic strati�ed spaces and algebraic strati�cations of real varieties
have �nite exit-path∞-categories, re�ning classical theorems of Lefschetz–Whitehead, Łojasiewicz, and Hiron-
aka on the �niteness of the underlying homotopy types of these spaces. These strati�cations are typically not
conical; hence we cannot rely on the currently available exodromy equivalence between constructible sheaves
on a strati�ed space, which requires conicality as a fundamental hypothesis. Building on ideas of Clausen and
Ørsnes Jansen, we study the class of exodromic strati�ed spaces, for which the conclusion of the exodromy theo-
rem holds. We prove two new fundamental properties of this class of strati�ed spaces: coarsenings of exodromic
strati�cations are exodromic, and every morphism between exodromic strati�ed spaces induces a functor be-
tween the associated exit path∞-categories. As a consequence, we produce many new examples of exodromic
strati�ed spaces, including: coarsenings of conical strati�cations, locally �nite subanalytic strati�cations of real
analytic spaces, and algebraic strati�cations of real varieties. Our proofs are at the generality of strati�ed∞-topoi,
hence apply to even more general situations such as strati�ed topological stacks. Finally, we use the previously
mentioned �niteness results to construct derived moduli stacks of constructible and perverse sheaves.
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0 Introduction

0.1 Motivation. Let (X, P) be a strati�ed space. MacPherson observed the following generalization of the
monodromy equivalence: provided the strati�cation of X is su�ciently nice, the category of constructible
sheaves of sets on (X, P) is equivalent to the category of functors from the exit-path category of (X, P) to
Set. Treumann [38] provided the �rst general account of this phenomenon, and Treumann’s result has
since been generalized by Lurie [HA, Theorem A.9.3], Lejay [25], and Porta–Teyssier [32]. To contextualize
the results of this paper, let us �rst recall the most general theorem of this form currently available. WriteConshypP (X) for the ∞-category of hyperconstructible hypersheaves1 of spaces on X. If the strati�cation
of (X, P) is conical (see [32, De�nition 2.1.9]) and the strata are locally weakly contractible, the exodromy
theorem2 [32, Theorem 5.4.1] provides an equivalence of∞-categories

(0.1.1) ΦX,P ∶ ConshypP (X) ⥲ Fun(Π∞(X, P), Spc) .
Date: January 23, 2024.
1In this introduction, the reader can safely disregard the adjective “hyper”. Hypersheaves are used in [21; 25; 32] to relax the

geometric assumptions needed for the theorem.
2The term ‘exodromy’ was �rst introduced in [8] as a combination of ‘monodromy’ and ‘exit-paths’.
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Here Π∞(X, P) is Lurie’s exit-path∞-category of (X, P), introduced in [HA, De�nition A.6.2]. The objects
of Π∞(X, P) are the points of X. Roughly speaking, the 1-morphisms are exit-paths �owing from lower to
higher strata (and once they exit a stratum are not allowed to return), the 2-morphisms are homotopies
of exit-paths respecting strati�cations, etc. The functor ΦX,P carries a sheaf F to the functor informally
described by sending a point x ∊ X to the stalk Fx, and each exit-path x → y to a specialization mapFx → Fy , together with higher coherences relating these data. Conicality has played an essential role in
almost all exodromy theorems available in the literature. First, it is crucial in proving that the geometrically
de�ned object Π∞(X, P) is indeed an∞-category [HA, Theorem A.6.4]. Second, it is used at various points
in the proof of the equivalence (0.1.1). Many strati�cations naturally arising in geometry fail to be conical:
typical examples are general subanalytic strati�cations of real analytic manifolds, such as those arising from
the study of the Stokes phenomenon for algebraic di�erential equations [33]. Deep work of Thom, Mather,
andVerdier among others on analytic strati�ed spaces has shown that conical (in fact,Whitney) re�nements
are always available [17]; however, it is sometimes essential to work with a �xed strati�cation. The purpose
of this article is to generalize the exodromy equivalence to many naturally occurring non-conically strati�ed
spaces, paying particular attention to the conically re�neable situation.

0.2 Exodromic strati�ed spaces. To state the results of this paper, we need to brie�y introduce the
concept of an exit-path∞-category without reference to any particular simplicial model. As highlighted
by Ayala–Francis–Rozenblyum [6, Problem 0.0.9] and explained by Clausen–Ørsnes Jansen [14; 28; 29],
one should be able to trade o� the conicality of a strati�ed space (X, P) and Lurie’s simplicial model for the
exit-path∞-category for the following three requirements of the∞-category ConshypP (X):
0.2.1 De�nition (cf. [14, De�nition 3.5]). A strati�ed space s ∶ X → P is exodromic if the following
conditions are satis�ed:
(1) The∞-category ConshypP (X) is atomically generated.

(2) The subcategory ConshypP (X) ⊂ Shhyp(X) is closed under both limits and colimits.

(3) The pullback functor s∗,hyp ∶ Fun(P, Spc) ≃ Shhyp(P) → ConshypP (X) preserves limits.

Let us comment these requirements. Concerning (1), note that the exodromy theorem guarantees that
the∞-category ConshypP (X) can be written as an∞-category of presheaves. Atomic generation is an intrinsic
way to formulate this property: given a presentable∞-category C, an object c ∊ C is atomic if the functorMapC(c, −)∶ C → Spc

preserves all colimits. Write Cat ⊂ C for the full subcategory spanned by the atomic objects. Then C is said
to be atomically generated if the unique colimit-preserving extensionPSh(Cat) → C
of Cat ⊂ C along the Yoneda embedding is an equivalence (see §1.1 for more background on this notion).
In the setting of De�nition 0.2.1, we write Π∞(X, P) for the opposite of the full subcategory of ConshypP (X)
spanned by atomic objects. We refer to Π∞(X, P) as the exit-path∞-category of (X, P). The second feature
is that the subcategory ConshypP (X) ⊂ Shhyp(X) is closed under both limits and colimits. This is in some
sense a categorical regularity condition, which is akin to but weaker than conicality: see [32, Corollary
5.4.4] for a proof in the conical setting, and see De�nition 2.4.10 and Example 2.4.11 for other examples
of regularity properties enjoyed by the conical situation. The third feature is that, by construction, the exit-
path∞-category of (X, P) is equipped with a functor to the stratifying poset P. Given conditions (1) and
(2), condition (3) guarantees that the strati�cation of X equips Π∞(X, P) with a functor Π∞(X, P) → P; see
Recollection 1.1.11.

0.3 The stability theorem. The analysis of the conical situation carried out in [32] shows that conically
strati�ed spaces with locally weakly contractible strata are exodromic in the sense of De�nition 0.2.1. How-
ever, the class of such strati�ed spaces does not have many stability properties; for example, a coarsening
of a conical strati�cation need not be conical. As previously mentioned, in subanalytic geometry and real

http://www.math.ias.edu/~lurie/papers/HA.pdf#atheorem.A.6.2
http://www.math.ias.edu/~lurie/papers/HA.pdf#atheorem.A.6.4
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algebraic geometry conical re�nements always exist, at least locally. The following is the main result of this
paper, and in particular it implies that every subanalytic or real analytic strati�ed space is exodromic:

0.3.1 Theorem (stability properties of exodromic strati�ed spaces; Theorem 5.1.7).
(1) Stability under pulling back to locally closed subposets: If (X, P) is an exodromic strati�ed space, then for

each locally closed subposet S ⊂ P, the strati�ed space (X ×P S, S) is exodromic and the induced functorΠ∞(X ×P S, S) → Π∞(X, P) ×P S
is an equivalence. As a consequence, the induced functorΠ∞(X, P) → P is conservative.

(2) Functoriality: The exodromy equivalence is functorial in all strati�ed maps between exodromic strati�ed
spaces. That is, for every strati�ed map f∶ (X, P) → (Y,Q) between exodromic strati�ed spaces, under the
exodromy equivalence the pullback functorf∗,hyp ∶ ConshypQ (Y) → ConshypP (X)
is induced by a functor of exit-path∞-categoriesΠ∞(X, P) → Π∞(Y, Q) .

(3) Stability under coarsening and localization formula: Let (X, R) be an exodromic strati�ed space and let�∶ R → P be a map of posets. WriteWP for the collection of morphisms in Π∞(X, R) that the compositeΠ∞(X, R) → R → P sends to equivalences. Then the strati�ed space (X, P) is exodromic and the natural
functorΠ∞(X, R) → Π∞(X, P) induces an equivalenceΠ∞(X, R)[W−1P ] ⥲ Π∞(X, P) .

(4) van Kampen: The property of a strati�ed space being exodromic can be checked locally.

(5) Stability of �niteness/compactness: The property of an exit-path∞-category being �nite (resp., compact)
is stable under pulling back to a locally closed subposet, is stable under coarsening, and can be checked on
a �nite open cover.

Together, the items in Theorem 0.3.1 provide robust techniques to produce new examples of exodromic
strati�ed spaces starting from conically strati�ed spaces. We will explain many new examples of strati�ed
spaces momentarily. Before proceeding further, we comment on how Theorem 0.3.1 relates to existing
results, and the our proof methods.

0.3.2 Existing Results. Item (1) was proven by Clausen–Ørsnes Jansen in a slightly di�erent topological
setting [14, Proposition 3.6-(1)], and by Ørsnes Jansen for topological stacks [29, Proposition 3.13-(1)]. Item
(4) is an easy consequence of the theory, and, in the same settings, was previously observed by Clausen–
Ørsnes Jansen [14, Proposition 3.6-(2)] and Ørsnes Jansen [29, Proposition 3.13-(2)]. Two early instances of
(2) were proven in the conically strati�ed setting by Lurie [HA, Corollary A.9.4] in the case where P = ∗,
and Ayala–Francis–Rozenblyum [6, Theorem 3.3.12] under some additional hypotheses on the stratifying
posets. Recently, Ørsnes Jansen [29, Proposition 3.20] generalized the argument given by Ayala–Francis–
Rozenblyum; however the hypotheses are still somewhat restrictive.

The �rst main contribution of Theorem 0.3.1 is that our results have no restrictions on the strati�ying
posets. The second is that we prove functoriality of the exodromy equivalence in all maps of strati�ed spaces.
This is a new result and may be somewhat surprising; with previous methods, even functoriality in the
conical case was a nontrivial result, �rst proven in [32, Proposition 6.2.3]. The third is item (5) on the
stability of �niteness/compactness; its proof requires a careful understanding of the localization formula
from (3) and it generalizes classical �niteness results for homotopy types of real analytic manifolds. See
Remark 0.4.4.

0.3.3 Methods. The �nal main contribution is that our result is actually even more general than Theo-
rem 0.3.1. The point is that the conditions in De�nition 0.2.1 only depend on the datum of the geometric
morphism of∞-topoi Shhyp(X) → Fun(P, Spc) .

http://www.math.ias.edu/~lurie/papers/HA.pdf#atheorem.A.9.4
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This is an example of a strati�ed∞-topos, as introduced in the work of Barwick–Glasman–Haine [8]. Con-
sequently, De�nition 0.2.1 makes sense at the generality of strati�ed∞-topoi. See §2, in particular De�ni-
tion 2.2.10.

We prove Theorem 0.3.1 by proving its natural generalization to strati�ed∞-topoi. See Theorem 3.0.1
for a precise statement. This generalization gives added �exibility; for example, it immediately applies to
strati�ed topological stacks. It also subsumes all results of this form that we are aware of, for example, the
stability results proven by Clausen–Ørsnes Jansen [14] and Ørsnes Jansen [29]. The topos-theoretic result
has the added bene�t of providing a common framework for the various contexts where exodromy was
previously considered (e.g., sheaves vs. hypersheaves).

0.4 Applications of the stability theorem. We now state our main applications of Theorem 0.3.1. Since
every conically strati�ed space with locally weakly contractible strata is exodromic and the class of conically
strati�ed spaces with locally weakly contractible strata is stable under passing to open subsets, we deduce:

0.4.1 Corollary (Proposition 5.2.9). If a strati�ed space (X, P) locally admits a re�nement by a conical
strati�cation with locally weakly contractible strata, then (X, P) is exodromic.

A theorem of Verdier guarantees that a locally �nite subanalytic strati�cation of a real analytic space admits
a re�nement that is Whitney strati�ed [39, Théorème 2.2]. Since Whitney strati�cations are conical [27; 36],
a little more work on top of Theorem 0.3.1 shows:

0.4.2 Theorem (Theorem 5.3.9). Let (X, P) be a real analytic manifold equipped with a locally �nite strati�-
cation by subanalytic subsets. Then:
(1) The strati�ed space (X, P) is exodromic.

(2) If X is compact, then the exit-path∞-categoryΠ∞(X, P) is �nite.
0.4.3 Theorem (Theorem 5.3.13). LetX be an algebraic variety overR and let (X, P) be a �nite strati�cation
of X by Zariski locally closed subsets. Then:
(1) The strati�ed space (X, P) is is exodromic.

(2) The exit-path∞-categoryΠ∞(X, P) is �nite.
0.4.4 Remark. Theorem 0.4.2-(2) and Theorem 0.4.3-(2) extend results of Lefschetz–Whitehead [24], Ło-
jasiewicz [26], andHironaka [22] on the �niteness of the underlying homotopy types of compact subanalytic
spaces and real algebraic varieties.

As an application, we use Theorems 0.4.2 and 0.4.3 to prove representability results for moduli stacks of
constructible and perverse sheaves. Let A be an animated commutative ring (i.e., simplicial commutative
ring). Given a strati�ed space (X, P), we write ConsP(X) for the derived prestack over A sending a derived
a�ne A-scheme Spec(B) to the ∞-groupoid of hyperconstructible hypersheaves of B-modules on (X, P)
with perfect stalks. See Recollection 5.4.5 and [32, §7.1]. Given a function p∶ P → Z, we writepPervP(X) ⊂ ConsP(X)
for the derived subprestack of p-perverse sheaves on (X, P). See [32, §7.7] for details.
0.4.5 Theorem (Corollary 5.4.17). Let (X, P) be a strati�ed space and let A be an animated commutative
ring. Assume one of the following conditions:
(1) (X, P) is a compact real analytic manifold equipped with a strati�cation by subanalytic subsets.

(2) (X, P) is an algebraic variety over R equipped with a �nite strati�cation by Zariski locally closed subsets.
Then the derived prestacks ConsP(X) and pPervP(X) are derived stacks that are locally geometric and locally
of �nite presentation.

0.5 Examples. We conclude the introduction with some examples of non-conical strati�cations to which
our results apply. First we demonstrate how to compute the exit-path∞-category of a coarsening in a simple
situation.
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0.5.1 Example. Consider a circle strati�ed by a point, half-open interval, and open interval, as depicted
on the right-hand side of Figure 1. This strati�cation of S1 is not conical. However, the strati�cation of S1 by
two points and two half-open intervals appearing on the left-hand side of Figure 1 is a conical strati�cation
that re�nes the strati�cation on the right-hand side. The exodromy theorem in the concical case shows that

−−−−−⟶ 
Figure 1. A non-conical strati�cation of S1 is pictured on the right. On the left is a conical
re�nement of the right-hand strati�cation.

the exit-path∞-category of the left-hand strati�cation of S1 is equivalent to the poset
(0.5.2)

⦁
⦁ ⦁

⦁ .

Thus Theorem 0.3.1-(3) implies that the exit-path∞-category of the right-hand strati�cation is equivalent
to the localization of the poset (0.5.2) at the morphism ∙ → ∙. This localization is simply the category given
by a noncommutative triangle ⦁

⦁ ⦁ .

0.5.3 Example (see Examples 5.3.5 and 5.3.10). Favero andHuang [16] recently proved an exodromy result
for certain non-conical strati�cations naturally arising inmirror symmetry. Of particular interest are the tree
strati�cation on a �nite simplicial complex [16, §4.4] and the Bondal–Ruan strati�cation of the n-torus [10;
16, §5.2]. The tree strati�cation is a coarsening of the natural strati�cation on a �nite simplicial complex,
which is conical. Moreover, the Bondal–Ruan strati�cation is subanalytic. Thus Theorems 0.3.1 and 0.4.2
give an alternative perspective on Favero and Huang’s exit-path description of constructible sheaves on
these strati�ed spaces.

More examples arise naturally from the study of the Stokes phenomenon for algebraic di�erential equa-
tions. See [33] for more on this topic, as well as a systematic use of the results of this paper.

0.6 Linear overview. In §1, we provide background on atomically generated∞-categories, locally con-
stant objects of∞-topoi, and monodromy that we need for the rest of the paper. In §2, be begin by recalling
the theory of strati�cations of ∞-topoi introduced in [8, §8.2] as well as constructible objects. We then
explain what it means for a strati�ed∞-topos to be exodromic, see De�nition 2.2.10. We also prove a few
basic results about the class of exodromic strati�ed ∞-topoi. In §3, we prove a stability theorem for the
class of exodromic strati�ed ∞-topoi, see Theorem 3.0.1. This is the main technical result of the paper,
and implies the analogous result for strati�ed spaces stated in this introduction (Theorem 0.3.1). Section 4
explains when exodromy (with coe�cients in the∞-category of spaces) implies exodromy with coe�cients
in other presentable ∞-categories. The key takeaway is that exodromy with coe�cients in a compactly
assembled∞-category is automatic (see Corollary 4.1.15). We need this result in order to prove our repre-
sentability result for the derived moduli of constructible and perverse sheaves (Theorem 0.4.5). Section 5
is dedicated to applications of our stability theorem for exodromic strati�ed∞-topoi (Theorem 3.0.1). We
deduce Theorem 0.3.1, providemany natural examples of exodromic strati�ed spaces coming from geometry
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and topology, and prove all of the results stated in §0.4. In Appendix A, we prove a number of categori-
cal facts needed to control the localizations of exit-path∞-categories we consider. Speci�cally, the results
proven in Appendix A are needed to prove items (3) and (5) of Theorem 0.3.1. In Appendix B, we collect
some background on open and closed subtopoi and recollements. We then explain the relationship between
hypercompletion and recollements (see Proposition B.3.5). We need these results in a variety of places, for
example, to ensure that the de�nition of a constructible object of a strati�ed∞-topos recovers the more
classical notion of a constructible (hyper)sheaf on a topological space.

0.7 Notational conventions. We use the following standard notation.
(1) We write Cat∞ for the large ∞-category of small ∞-categories, and write Spc ⊂ Cat∞ for the full

subcategory spanned by the spaces (i.e.,∞-groupoids or anima). We write Cat∞ for the (very large)∞-category of large∞-categories.

(2) We write PrR for the∞-category of presentable∞-categories and right adjoints and PrL for the∞-cat-
egory of presentable∞-categories and left adjoints.

(3) We write RTop∞ for the∞-category of∞-topoi and geometric morphisms, i.e., right adjoints f∗ whose
left adjoint f∗ is left exact. We write LTop∞ for the∞-category of∞-topoi and left exact left adjoints.

(4) Given a small∞-category C, we write PSh(C) ≔ Fun(C, Spc) for the∞-category of presheaves of spaces
on C.

(5) For an integer n ≥ 0, we write [n] for the poset {0 < ⋯ < n}
We later introduce notational conventions for (hyper)sheaves and constructibility; these are consistent with
the notational conventions in our previous works [21; 32].

0.8 Acknowledgments. We thank David Ayala, Clark Barwick, Marc Hoyois, Jesse Huang, Jacob Lurie,
GuglielmoNocera,MarcoVolpe, andMikalaØrsnes Jansen for enlightening discussions around the contents
of this paper.

PH gratefully acknowledges support from the NSFMathematical Sciences Postdoctoral Research Fellow-
ship under Grant #DMS-2102957 and a grant from the Simons Foundation (816048, LC).

1 Background on atomic generation, locally constant objects, and monodromy

In this section, we recall the necessary background on atomically generated∞-categories (§1.1), tensor
products of presentable∞-categories (§1.2), and locally constant objects of∞-topoi and monodromy (§1.3).

1.1 Recollections on atomic generation. We begin by recalling the background on atomically generated∞-categories needed in this paper. In particular, we provide a useful way to check that a full subcategory
of an atomically generated∞-category is also atomically generated and compute its generators (Proposi-
tion 1.1.13). For more on this topic, we refer the reader to [Ker, Tag 03WR; HTT, §5.1.6; 14, §2.2]. We begin
with some de�nitions.

1.1.1 De�nition. Let C be a presentable∞-category. An object c ∊ C is atomic3 if the functorMapC(c, −)∶ C → Spc

preserves colimits. We write Cat ⊂ C for the full subcategory spanned by the atomic objects.

1.1.2 Observation. The subcategory Cat ⊂ C is always small and idempotent complete. However, contrary
to what happens to the full subcategory Cω ⊂ C spanned by compact objects, the∞-category Cat typically
does not have �nite colimits.

1.1.3 De�nition. LetC be a presentable∞-category.We say that a small full subcategoryC0 ⊂ C atomically
generates C if the unique colimit-preserving extensionPSh(C0) → C

3Atomic objects are also referred to as completely compact objects [HTT, De�nition 5.1.6.2].

http://kerodon.net/tag/03WR
http://www.math.ias.edu/~lurie/papers/HTT.pdf#subsection.5.1.6
http://www.math.ias.edu/~lurie/papers/HTT.pdf#theorem.5.1.6.2
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of C0 ⊂ C along the Yoneda embedding is an equivalence. We say that C is atomically generated if there
exists a small full subcategory C0 ⊂ C that atomically generates C.
1.1.4 Remark. The unique colimit-preserving extension PSh(C0) → C of the inclusion C0 ⊂ C is left
adjoint to the restricted Yoneda functory∶ C → PSh(C0) , c ↦ MapC(−, c) .
Hence C0 atomically generates C if and only if y is an equivalence.

1.1.5 Example [HTT, Proposition 5.1.6.8]. Let C0 be a small ∞-category. Then, the atomic objects ofPSh(C0) are the retracts of representable functors. In particular, the unique atomic object of Spc is the point∗.
1.1.6 Observation. If C0 ⊂ C atomically generates C, then C0 ⊂ Cat. Moreover, by [Ker, Tag 040X], the
inclusion C0 ⊂ Cat exhibits Cat as the idempotent completion of C0. As a consequence, all of the functors
given by extending the obvious inclusions along colimitsPSh(C0) PSh(Cat)

C
are equivalences. In particular, Cat also atomically generates C.
1.1.7 De�nition. Let L∶ D → C be a left adjoint functor of∞-categories. We say that L is atomic if the
right adjoint C → D to L is also a left adjoint.

1.1.8 Observation. If L∶ D → C is an atomic functor between presentable∞-categories, then L preserves
atomic objects, i.e., L(Dat) ⊂ Cat. If R denotes the right adjoint to L, then the squarePSh(Cat) PSh(Dat)

C D
L∗
R

commutes.

The converse is true if C and D are atomically generated:

1.1.9 Recollection [14, Lemma 2.6-(3)]. Let L∶ D → C be a left adjoint between atomically generated
presentable∞-categories. Then L is atomic if and only if L preserves atomic objects.

In this paper, we repeatedly use the fact that the∞-category of atomically generated presentable∞-cate-
gories and atomic functors is equivalent to the∞-category of idempotent complete∞-categories:

1.1.10 Notation. Write PrL,at ⊂ PrL for the non-full subcategory with objects the atomically generated∞-categories and morphisms atomic left adjoints. Write

Catidem∞ ⊂ Cat∞
for the full subcategory spanned by the idempotent complete∞-categories.

1.1.11 Recollection [14, Proposition 2.7]. Consider the functor PSh∶ Catidem∞ → PrL sending a small
idempotent complete∞-category C0 to PSh(C0) with functoriality given by left Kan extension. This functor
restricts to an equivalence PSh∶ Catidem∞ ⥲ PrL,at
with inverse given by (−)at ∶ PrL,at ⥲ Catidem∞ .

http://www.math.ias.edu/~lurie/papers/HTT.pdf#theorem.5.1.6.8
http://kerodon.net/tag/040X
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1.1.12 Notation. Let C be an atomically generated presentable∞-category. To simplify notation later on,
we write Cex ≔ (Cat)op for the opposite of the full subcategory of C spanned by the atomic objects. Thus
there is a natural equivalence C ≃ Fun(Cex , Spc) .

The proof of Theorem 0.3.1 relies on the fact that a full subcategory of an atomically generated∞-category
that is closed under limits and colimits is also atomically generated:

1.1.13 Proposition. Let D be an atomically generated presentable ∞-category and let i ∶ C ↪ D be the
inclusion of a full subcategory. If C is closed under both limits and colimits in D, then:
(1) The∞-category C is presentable and the inclusion i ∶ C ↪ D admits both a left adjoint L∶ D → C and a

right adjoint R∶ D → C.
(2) The∞-category C is atomically generated by L(Dat).
(3) LetWL ⊂ Mor(D) be the collection of L-equivalences. LetW ⊂ WL ∩Mor(Dat) be a subset of morphisms

with the property that C coincides with the subcategory ofW-local objects of D. Then the functorL∶ Dat → Cat
exhibits Cat as the idempotent completion of the localization Dat[W−1].

Proof. Point (1) is a direct consequence of the re�ection theorem of Ragimov–Schlank [34, Theorem 1.1].
To prove (2), �rst note that by Observation 1.1.8, the functor L preserves atomic objects. Hence [HTT,

Proposition 5.1.6.10] implies that the functorPSh(L(Dat)) → C
given by the left Kan extension of the inclusion L(Dat) ⊂ C along the Yoneda embedding is fully faithful.
To complete the proof of (2), we need to show that this functor is also essentially surjective. Equivalently,
we need to show that L(Dat) generates C under colimits. For this, let c ∊ C. Since D is atomically generated,
there exists a diagram d∙ ∶ A → Dat and an equivalencei(c) ≃ colim�∊A d� .
Applying the left adjoint L, we �nd that c ≃ L(i(c)) ≃ colim�∊A L(d�) .
Thus L(Dat) generates C under colimits, as desired.

Now we prove (3). Combining (2) with Observation 1.1.6 shows that the inclusion L(Dat) ⊂ Cat exhibitsCat as the idempotent completion of L(Dat). Thus it su�ces to prove that the functor

(1.1.14) L∶ Dat → L(Dat)
exhibits L(Dat) as the localization of Dat atW. To see this, we apply the three criteria of [13, Proposition
7.1.11]. By de�nition, the functor (1.1.14) is essentially surjective. Moreover, upon passing to presheaves,
precomposition with (1.1.14) is identi�ed with i ∶ C ↪ D via the restricted Yoneda functor from Re-
mark 1.1.4. Hence, precompositionwith (1.1.14) is fully faithful with image contained in the full subcategory
of presheaves F ∊ PSh(Dat) that invertW. Via the restricted Yoneda functor, presheaves F ∊ PSh(Dat) that
invertW correspond toW-local objects of D, that is objects of C. Thus, [13, Proposition 7.1.11] applies and
concludes the proof of (3). �

1.2 Sheaves with coe�cients & tensor products of presentable∞-categories. We now �x our con-
ventions for sheaves with coe�cients in a presentable ∞-category. For this, we make use of the tensor
product of presentable∞-categories; we refer the reader to [HA, §4.8.1] for a background.

1.2.1 Notation. Let X be an∞-topos and let ℰ be a presentable∞-category. We write Sh(X; ℰ) for the
tensor product of presentable∞-categories Sh(X; ℰ) ≔ X ⊗ ℰ .

http://www.math.ias.edu/~lurie/papers/HTT.pdf#theorem.5.1.6.10
http://www.math.ias.edu/~lurie/papers/HA.pdf#subsection.4.8.1
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Since the tensor product (−) ⊗ ℰ de�nes a functor PrR → PrR , the assignment X ↦ Sh(X; ℰ) de�nes a
functor Sh(−; ℰ)∶ RTop∞ → PrR .

1.2.2 Notation (sheaves on∞-sites). Let (C, �) be an∞-site and ℰ be a presentable∞-category. We writePSh(C; ℰ) ≔ Fun(Cop, ℰ)
for the∞-category of ℰ-valued presheaves on C. We also writeSh�(C; ℰ) ⊂ PSh(C; ℰ)
for the full subcategory spanned by ℰ-valued presheaves that satisfy �-descent. When ℰ = Spc, we writeSh�(C) ≔ Sh�(C; Spc) .
1.2.3. The∞-categories PSh(C; ℰ) and Sh�(C; ℰ) are naturally identi�ed with the tensor products of pre-
sentable∞-categories PSh(C)⊗ℰ and Sh�(C)⊗ℰ [SAG, Remark 1.3.1.6 & Proposition 1.3.1.7]. This justi�es
Notation 1.2.1.

1.2.4 (hypersheaves). Let (C, �) be an∞-site. In this paper, we often make use of the theory of hypersheaves.
When ℰ is the∞-category of spaces, hypersheaves can be de�ned intrinsically in the∞-topos Sh�(C) as
hypercomplete objects, that is, objects that are local with respect to∞-connected maps. Hypersheaves thus
form a full subcategory Shhyp� (C) ⊂ Sh�(C). It is then possible to de�ne hypersheaves with coe�cients in ℰ
as the tensor product Shhyp� (C; ℰ) ≔ Shhyp� (C) ⊗ ℰ .
Each of the inclusions Shhyp� (C) ⊂ PSh(C) and Shhyp� (C) ⊂ Sh�(C)
admits a left exact left adjoint adjoint. We refer the reader unfamiliar with hypercomplete objects and
hypercompletion to [HTT, §§6.5.2–6.5.4] or [8, §3.11] for further reading on the subject.

1.2.5 Notation (sheaves on topological spaces). Let X be a topological space and let ℰ be a presentable∞-category. We write Open(X) the poset of open subsets of X, ordered by inclusion. We regard Open(X) as
a site with the covering families given by open covers. We writeSh(X; ℰ) ≔ Sh(Open(X); ℰ) and Shhyp(X; ℰ) ≔ Shhyp(Open(X); ℰ) .
1.2.6 Notation (functoriality). Let f∗ ∶ X → Y be a geometric morphism. We write f∗ for its left exact
left adjoint. If f∗ is an étale geometric morphism, we denote by f♯ the left adjoint to f∗. Fix a presentable∞-category ℰ. Then the functoriality of the tensor product in PrL provides us with a colimit-preserving
functor f∗ ⊗ ℰ∶ Sh(Y; ℰ) → Sh(X; ℰ) .
When there is no risk of confusion, we simply write f∗ instead of f∗⊗ℰ. Similarly, we write f∗ for its right
adjoint, and we apply a similar convention for f♯.
1.3 Locally constant objects & monodromy. We now recall the basics of locally constant objects in∞-topoi and monodromy. We also prove a few foundational results that we need later in the paper, but are
not available elsewhere. For more background, we refer the reader to [HA, §A.1; 1, §3.1].

1.3.1 Notation (constant objects and global sections). Let X be an∞-topos. We writeΓX,∗ ∶ X → Spc
for the global sections functor given by U ↦ MapX(1X , U) .
The global sections functor admits a left exact left adjoint Γ∗X ∶ Spc → X called the constant sheaf functor.
If the∞-topos X is clear from the context, we write Γ∗ and Γ∗ for Γ∗X and ΓX,∗, respectively.

Given a presentable∞-category ℰ, we say that an F object of Sh(X; ℰ) is constant if F lies in the image
of the functor Γ∗ ⊗ ℰ∶ ℰ → Sh(X; ℰ) .

http://www.math.ias.edu/~lurie/papers/SAG-rootfile.pdf#theorem.1.3.1.6
http://www.math.ias.edu/~lurie/papers/SAG-rootfile.pdf#theorem.1.3.1.7
http://www.math.ias.edu/~lurie/papers/HTT.pdf#subsection.6.5.2
http://www.math.ias.edu/~lurie/papers/HTT.pdf#subsection.6.5.4
http://www.math.ias.edu/~lurie/papers/HA.pdf#section.A.1
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1.3.2. Note that Spc is the terminal ∞-topos [HTT, Proposition 6.3.4.1], so Γ∗ is the unique geometric
morphism X → Spc.

1.3.3 Recollection (products of∞-topoi). The product in RTop∞ is given by the tensor product in PrR ;
see [HA, Example 4.8.1.19; 3, Theorem 2.1.5]. In particular:
(1) If f∗ ∶ X′ → X and g∗ ∶ Y′ → Y are left exact left adjoints between∞-topoi, thenf∗ ⊗ g∗ ∶ X′ ⊗ Y′ → X ⊗ Y

is also a left exact left adjoint between∞-topoi.

(2) The functor Γ∗X ⊗ Γ∗Y ∶ Spc ≃ Spc⊗ Spc → X ⊗ Y
is the constant sheaf functor.

1.3.4 De�nition (locally constant objects). Let X be an∞-topos and let ℰ be a presentable∞-category.
An object F ∊ Sh(X; ℰ) is locally constant if there exists an e�ective epimorphism

∐i∊I Ui ↠ 1X such that
for each i ∊ I, the image of F under the natural pullback functorSh(X; ℰ) → Sh(X∕Ui ; ℰ)
is a constant object. We write LC(X; ℰ) ⊂ Sh(X; ℰ)
for the full subcategory spanned by the locally constant objects. When ℰ = Spc, we simply write LC(X) ⊂ X
for LC(X; Spc).
1.3.5 Observation. Given a geometricmorphismof∞-topoif∗ ∶ X → Y, the pullback functorf∗ ∶ Y → X
carries LC(Y; ℰ) to LC(X; ℰ).
This recovers the usual notion of local constancy for (hyper)sheaves on topological spaces:

1.3.6 Example. LetX be a topological space and let X be either Sh(X) or Shhyp(X). An object F ∊ Sh(X; ℰ)
is locally constant if and only if there exists an open cover {Ui}i∊I of X such that each restriction F|Ui is
constant. See [25, Proposition 1.18].

1.3.7 De�nition (monodromic∞-topos). We say that an∞-topos X ismonodromic or locally of constant
shape if the constant sheaf functor Γ∗ ∶ Spc → X admits a left adjointΓ♯ ∶ X → Spc .
In this case, we write Π∞(X) ≔ Γ♯(1X) and call Π∞(X) the shape of X.

The following result of Lurie justi�es the terminology in De�nition 1.3.7:

1.3.8 Recollection (monodromy). LetX be amonodromic∞-topos. Then the full subcategory LC(X) ⊂ X
is closed under limits and colimits. Moreover, there is a natural equivalenceLC(X) ⥲ Fun(Π∞(X), Spc)
See [HA, Proposition A.1.6 & Theorem A.1.15]. Furthermore, for any presentable∞-category ℰ, there is an
equivalence LC(X) ⊗ ℰ ⥲ LC(X; ℰ) .
See [1, Proposition 3.1.7]. In particular, LC(X; ℰ) ⊂ Sh(X; ℰ) is closed under limits and colimits.

1.3.9 Example (monodromy in topology). Let X be a topological space.
(1) If X is locally weakly contractible, then the∞-topos Shhyp(X) is monodromic. The functorΓ♯ ∶ Shhyp(X) → Spc

is given by extending the functor sending an open U ⊂ X to the underlying homotopy type of U
along colimits. In particular Π∞(Shhyp(X)) coincides with the underlying homotopy type of X. See [21,
Proposition 2.4].

http://www.math.ias.edu/~lurie/papers/HTT.pdf#theorem.6.3.4.1
http://www.math.ias.edu/~lurie/papers/HA.pdf#theorem.4.8.1.19
http://www.math.ias.edu/~lurie/papers/HA.pdf#atheorem.A.1.6
http://www.math.ias.edu/~lurie/papers/HA.pdf#atheorem.A.1.15
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(2) If X is paracompact and locally of singular shape in the sense of [HA, De�nition A.4.15], then the∞-
topos Sh(X) is monodromic. Again, the functor Γ♯ ∶ Sh(X) → Spc is given by extending the functor
sending an openU ⊂ X to the underlying homotopy type ofU along colimits. In particular Π∞(Sh(X))
coincides with the underlying homotopy type of X. See [HA, Theorem A.4.19].

An intriguing fact is that any∞-topos étale over a monodromic∞-topos is also monodromic:

1.3.10 Observation. Let X be a monodromic ∞-topos and let U ∊ X. Then the slice ∞-topos X∕U is
monodromic. To see this, note that the compositeX∕U X Spc

forget ΓX,♯
is left adjoint to the constant sheaf functor. As a consequence, we see thatΠ∞(X∕U) = ΓX,♯(U) .

We now explain the functoriality of the monodromy equivalence. To do so, we need the following lemma.

1.3.11 Lemma. Let K, L ∊ Spc and letf∗ ∶ Fun(L, Spc) → Fun(K, Spc)
be a functor. The following are equivalent:
(1) There exists a map of spaces f∶ K → L such that f∗ is equivalent to the functor given by precomposition

with f.
(2) The functor f∗ preserves limits and colimits.

(3) The functor f∗ is left exact and preserves colimits.

Proof. Since every space is an idempotent complete ∞-category (see Lemma A.1.3), the equivalence (1)⇔ (2) follows from Recollection 1.1.11. Clearly (2) ⇒ (3). For the remaining implication (3) ⇒ (2), let f∗
denote the right adjoint to f∗. By assumption, f∗ is a geometric morphism. Note that by the straighten-
ing/unstraightening equivalencesFun(K, Spc) ≃ Spc∕K and Fun(L, Spc) ≃ Spc∕L ,
the unique geometric morphisms to the terminal∞-toposFun(K, Spc) → Spc and Fun(L, Spc) → Spc

are étale. Hence [HTT, Corollary 6.3.5.9] implies that f∗ is an étale geometric morphism; in particular, f∗
admits a left adjoint. �

1.3.12 Corollary. Let f∗ ∶ X → Y be a geometric morphism between monodromic∞-topoi. Then the functorf∗ ∶ LC(X) → LC(Y)
preserves limits and colimits.

Proof. Since X and Y are monodromic, LC(X) ⊂ X and LC(Y) ⊂ Y are closed under limits and colimits.
The claim now follows from the monodromy equivalences for X and Y combined with Lemma 1.3.11. �

1.3.13 Notation. Write RTopmon∞ ⊂ RTop∞ for the full subcategory spanned by the monodromic∞-topoi.

1.3.14 Notation. Write PrR,at ⊂ PrR for the (non-full) subcategory of PrR with objects the atomically
generated presentable∞-categories and morphisms functors that are both left and right adjoints.

1.3.15. Note that the equivalencePrL ≃ (PrR)op given by passing to right adjoints restricts to an equivalence
PrL,at ≃ (PrR,at)op .

http://www.math.ias.edu/~lurie/papers/HA.pdf#atheorem.A.4.15
http://www.math.ias.edu/~lurie/papers/HA.pdf#atheorem.A.4.19
http://www.math.ias.edu/~lurie/papers/HTT.pdf#theorem.6.3.5.9
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1.3.16 Observation (functoriality of the shape). The assignment X ↦ Π∞(X) re�nes to a functorΠ∞ ∶ RTopmon∞ → Spc ⊂ Catidem∞ .

Speci�cally, this functor is given by the composite

RTopmon∞ (PrR,at)op ≃ PrL,at Catidem∞ ,
LC(−) (−)ex∼

where the left-hand functor sends X to the∞-category LC(X) with functoriality given by pullback, and the
right-hand functor sends an atomically generated∞-category C to the∞-category Cex = (Cat)op given by
the opposite of the subcategory of atomic objects.

We conclude with a Künneth formula for the shape of a product of monodromic∞-topoi.

1.3.17 Recollection. The natural equivalence

Spc⊗ Spc⥲ Spc

is induced by the functor

Spc × Spc → Spc(K, L) ↦ K × L .

1.3.18 Observation. Let X and Y be monodromic∞-topoi. Since the inclusionsLC(X) ↪ X and LC(Y) ↪ Y
are both left and right adjoints, the functorLC(X) ⊗ LC(Y) → X ⊗ Y
induced by the functoriality of the tensor product is also fully faithful and both a left and right adjoint.

1.3.19 Proposition (Künneth formula for monodromic∞-topoi). Let X and Y be monodromic∞-topoi.
Write ΓX,♯ ∶ X → Spc and ΓY,♯ ∶ Y → Spc for the left adjoints to the constant sheaf functors. Then:
(1) The functor ΓX,♯ ⊗ ΓY,♯ ∶ X ⊗ Y → Spc⊗ Spc ≃ Spc

is left adjoint to the constant sheaf functor Spc → X ⊗ Y. In particular, the∞-toposX⊗Y is monodromic.

(2) The natural mapΠ∞(X ⊗ Y) → Π∞(X) × Π∞(Y) is an equivalence.

(3) The natural fully faithful functor LC(X) ⊗ LC(Y) → X ⊗ Y
has image LC(X ⊗ Y).

Proof. For (1), note that by the functoriality of the tensor product of presentable∞-categories, ΓX,♯ ⊗ ΓY,♯
is left adjoint to the functor Γ∗X ⊗ Γ∗Y ∶ Spc ≃ Spc⊗ Spc → X ⊗ Y .

By Recollection 1.3.3-(2), Γ∗X ⊗ Γ∗Y is the constant sheaf functor; hence ΓX,♯ ⊗ ΓY,♯ is left adjoint to the
constant sheaf functor, as desired.

For (2), note that by Recollections 1.3.3 and 1.3.17, the functorΓX,♯ ⊗ ΓY,♯ ∶ X ⊗ Y → Spc⊗ Spc ≃ Spc

is induced by the functor X × Y → Spc(F, G) ↦ ΓX,♯(F) × ΓY,♯(G) .
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In particular, applying ΓX,♯ ⊗ ΓY,♯ to the terminal object 1X⊗Y = 1X ⊗ 1Y , we have natural identi�cationsΠ∞(X ⊗ Y) = (ΓX,♯ ⊗ ΓY,♯)(1X ⊗ 1Y)= ΓX,♯(1X) × ΓY,♯(1Y)= Π∞(X) × Π∞(Y) .
Item (3) is an immediate consequence of (2) and the formulaFun(C, Spc) ⊗ Fun(D, Spc) ≃ Fun(C × D, Spc) . �

2 Exit-path∞-categories

In this section, we introduce exodromic strati�ed∞-topoi and their exit-path∞-categories. See De�ni-
tion 2.2.10. These de�nitions are topos-theoretic generalizations of Clausen and Ørsnes Jansen’s de�nition
in the topological setting [14, De�nition 3.5].

In §2.1, we start by reviewing the basics of the theory of strati�ed∞-topoi introduced in [8]. In §2.2, we
explain the basics of constructible objects in strati�ed∞-topoi; we also de�ne exodromic strati�ed∞-topoi
their exit-path∞-categories. In §2.3, we discuss strati�ed morphisms that induce morphisms on the level
of exit-path∞-categories. In §2.4, we conclude with some results on the interaction between exodromic
strati�ed∞-topoi and hypercompletion.

2.1 Strati�ed∞-topoi & strati�ed spaces. We now recall the theory of strati�cations of∞-topoi intro-
duced in [8, §8.2]. This theory directly generalizes the theory of strati�cations of topological spaces, but also
applies to more general contexts such as strati�cations of schemes and topological stacks. The starting point
for the theory is the observation that hypersheaves on a poset P equipped with the Alexandro� topology are
just functors out of P:
2.1.1 Recollection [4, Example A.11; 8, Example 3.12.15]. Let ℰ be a presentable∞-category and let P be
a poset. Regard P as a topological space with the Alexandro� topology. Then there is a natural equivalence
of∞-categories Fun(P, ℰ) ⥲ Shhyp(P; ℰ) .
2.1.2 Warning. It is necessary that we work with hypersheaves in Recollection 2.1.1; in general, Sh(P) is
not hypercomplete. See [4, Example A.13].

2.1.3 Example [21, Lemma 5.21]. If P is a noetherian poset, then Sh(P) is hypercomplete, henceSh(P) ≃ Fun(P, Spc) .
2.1.4 De�nition (strati�ed∞-topos). Let X be an∞-topos and let P be a poset. A P-strati�cation of X is a
geometric morphism s∗ ∶ X → Fun(P, Spc) .
To simplify notation, we often abusively denote a strati�ed∞-topos by (X, P).

Morphisms of strati�ed∞-topoi are commutative squares. Here is the easiest way to formulate this.

2.1.5 Notation. We write Poset for the category of posets.

2.1.6 De�nition. The∞-category of strati�ed∞-topoi is the pullback

StrTop∞ Poset

Fun([1],RTop∞) RTop∞ .

⌟ Fun(−,Spc)
Here, the bottom horizontal functor sends a geometric morphism s∗ ∶ X → P to its target P.
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2.1.7. Said di�erently, given strati�ed∞-topoi s∗ ∶ X → Fun(P, Spc) and t∗ ∶ Y → Fun(Q, Spc), a mor-
phism of stratifed∞-topoi (X, P) → (Y,Q) consists of a commutative square of geometric morphismsX Y

Fun(P, Spc) Fun(Q, Spc)
f∗

s∗ t∗
�∗

such that the pushforward functor �∗ is induced by a map of posets �∶ P → Q (equivalently, �∗ preserves
limits). To simplify notation, we abusively denote a morphism of strati�ed∞-topoi by f∗ ∶ (X, P) → (Y,Q).

It is often convenient to pull back a P-strati�ed∞-topos to a locally closed subposet of P:
2.1.8 Recollection (locally closed subposets). Let P be a poset. Then a subset S ⊂ P is locally closed in the
Alexandro� topology if and only if S is an interval: given p, q ∊ S with p ≤ q, S contains all x ∊ P such thatp ≤ x ≤ q.
2.1.9 Notation. Let s∗ ∶ X → Fun(P, Spc) be a strati�ed ∞-topos and let i ∶ S ↪ P be a locally closed
subposet. We write XS for the pullback XS X

Fun(S, Spc) Fun(P, Spc) .
⌟ iS,∗

s∗
i∗

computed inRTop∞. Observe that iS,∗ and i∗ de�ne a morphism of strati�ed∞-topoi (XS , S) ↪ (X, P). For
each p ∊ P, we call Xp ≔ X{p} the p-th stratum of (X, P).
2.1.10. Note that if S ⊂ P is open, then iS,∗ is an open immersion of∞-topoi and if S ⊂ P is closed, theniS,∗ is a closed immersion of∞-topoi. Hence for S ⊂ P locally closed, iS,∗ is a locally closed immersion of∞-topoi. (See Appendix B for background on locally closed immersions of∞-topoi.)

2.1.11 Observation. Let (f∗, �)∶ (X, P) → (Y,Q) be a morphism of strati�ed∞-topoi and let T ⊂ Q be
a locally closed subposet. Write PT ≔ �−1(T), so that PT is a locally closed subposet of P. Then we have a
commutative cube of∞-topoi and geometric morphismsXPT YT

X Y
Fun(PT , Spc) Fun(T, Spc)

Fun(P, Spc) Fun(Q, Spc)

fT,∗
iPT,∗ iT,∗

f∗

�∗
In particular, the induced geometric morphism on pullbacks fT,∗ ∶ XPT → YT re�nes to a morphism of
strati�ed∞-topoi (fT,∗, (�|PT )∗)∶ (XPT , PT → (YT , T) .

In this paper, our main examples of strati�ed∞-topoi come from strati�ed topological spaces.

2.1.12 Example (strati�ed∞-topoi attached to strati�ed spaces). Let s ∶ X → P be a strati�ed space.
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(1) Then shyp∗ ∶ Shhyp(X) → Shhyp(P) ≃ Fun(P, Spc)
is a P-strati�ed∞-topos.

(2) If P is noetherian, then s∗ ∶ Sh(X) → Sh(P) ≃ Fun(P, Spc)
is a P-strati�ed∞-topos.

2.1.13 Example. Let s ∶ X → P be a strati�ed topological stack in the sense of [29, De�nition 3.1]. If P is
noetherian, then s∗ ∶ Sh(X) → Fun(P, Spc) is a P-strati�ed∞-topos.

2.1.14 Notation. Let (X, P) be a strati�ed space and S ⊂ P a locally closed subposet. Write XS ≔ X ×P S.
Then XS is naturally an S-strati�ed space. Moreover, the inclusions XS ↪ X and S ↪ P de�ne a morphism
of strati�ed spaces iS ∶ (X, S) ↪ (X, P).

An important fact is that pulling back to a locally closed subposet commutes with taking (hyper)sheaves:

2.1.15 Lemma. Let (X, P) be a strati�ed space and S ⊂ P a locally closed subposet.

(1) The natural geometric morphism Shhyp(XS) → Shhyp(X)S is an equivalence.

(2) If P is noetherian, then the natural geometric morphism Sh(XS) → Sh(X)S is an equivalence.

Proof. Immediate from Recollection 2.1.1, Example 2.1.3, Corollary B.1.10, Corollary B.3.9, and the de�ni-
tions. �

Another useful fact is that in the noetherian setting, pulling back to strata is jointly conservative:

2.1.16 Lemma. Let (X, P) be a strati�ed∞-topos. If the poset P is noetherian, then the pullback functors{i∗p ∶ X → Xp}p∊P
are jointly conservative.

Proof. Let � be a morphism in X such that for each p ∊ P, the morphism i∗p(�) is an equivalence; we need
to show that � is an equivalence. For each p ∊ P, writeP≥p ≔ { q ∊ P | q ≥ p } and P>p ≔ P≥p ∖ {p} .
Since the open subsets {P≥p}p∊P cover P, it su�ces to show:

(∗) For each p ∊ P, the restriction i∗P≥p (�) is an equivalence in XP≥p .
We prove (∗) by noetherian induction on p ∊ P. We need to show that if the restriction i∗P≥q (�) is an
equivalence for each q > p, then i∗P≥p (�) is an equivalence. Note thatP≥p ∖ {p} = P>p = ⋃

q∊P>p P≥q .
Hence the inductive hypothesis implies that the restriction i∗P>p (�) is an equivalence. By assumption i∗p(�)
is also an equivalence. By recollement, the restriction functorsi∗p ∶ XP≥p → Xp and i∗P>p ∶ XP≥p → XP>p
are jointly conservative, completing the proof. �
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2.2 Constructible objects & exit-path∞-categories. We now recall the basics of constructible objects
of strati�ed∞-topoi introduced in [8, §9.4]. We also de�ne exit-path∞-categories at this level of generality.

2.2.1 De�nition (constructible objects). Let (X, P) be a strati�ed∞-topos and let ℰ be a presentable∞-
category. An object F ∊ Sh(X; ℰ) is P-constructible if for each p ∊ P, the restriction i∗p(F) ∊ Sh(Xp; ℰ) is
locally constant. We write ConsP(X; ℰ) ⊂ Sh(X; ℰ)
for the full subcategory spanned by the P-constructible objects. If ℰ = Spc, we simply write ConsP(X) ⊂ X
for ConsP(X; Spc).
2.2.2 Remark. Our terminology di�ers from the terminology used in [8, §9.4]. There, Barwick–Glasman–
Haine use the term formally constructible objects for what we call constructible objects; their constructible
objects are formally constructible objects that satisfy additional �niteness hypotheses. The reason for this
is that [8] is mostly about∞-topoi coming from algebraic geometry, where these �niteness hypotheses are
necessary for a well-behaved theory.

2.2.3 Observation. Given a morphism of strati�ed ∞-topoi f∗ ∶ (X, P) → (Y,Q), the pullback functorf∗ ∶ Y → X carries ConsQ(Y; ℰ) to ConsP(X; ℰ).
It is often useful to write the∞-category of constructible objects as a pullback:

2.2.4 Observation. The∞-category ConsP(X; ℰ) is the pullbackConsP(X; ℰ) ∏p∊P LC(Xp; ℰ)
Sh(X; ℰ) ∏p∊P Sh(Xp; ℰ)∏p i∗p

We use similar notation for constructible sheaves on strati�ed topological spaces.

2.2.5 Notation. Let (X, P) be a strati�ed topological space and let ℰ be a presentable∞-category.

(1) For the natural strati�ed∞-topos (X, P) = (Shhyp(X), P), we writeConshypP (X; ℰ) ≔ ConsP(X; ℰ) .
(2) If P is noetherian, then for the natural strati�ed∞-topos (X, P) = (Sh(X), P), we writeConsP(X; ℰ) ≔ ConsP(X; ℰ) .
De�nition 2.2.1 recovers the usual notion of constructibility:

2.2.6 Observation. Let (X, P) be a strati�ed topological space and let ℰ be a presentable∞-category. In
light of Example 1.3.6 and Lemma 2.1.15:

(1) An object F ∊ Shhyp(X; ℰ) is P-hyperconstructible in the sense of [21, De�nition 5.2] if and only if F isP-constructible in the sense of De�nition 2.2.1.

(2) Assume that P is noetherian. An object F ∊ Sh(X; ℰ) is P-constructible in the sense of [21, De�nition
5.2] if and only if F is P-constructible in the sense of De�nition 2.2.1.

2.2.7 Example. Let P be a poset. Then every hypersheaf on P is P-constructible, i.e.,ConshypP (P) = Shhyp(P) .
In light of Recollection 2.1.1, we deduce that ConshypP (P) ≃ Fun(P, Spc).
2.2.8 Convention. Let P be a poset. We almost always implicitly identify the ∞-categories Shhyp(P; ℰ),ConshypP (P), and Fun(P, ℰ).
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For the next result, recall Notation 1.1.12.

2.2.9 Lemma. For every poset P, we have natural equivalencesConshypP (P)ex ≃ Fun(P, Spc)ex = P .

Proof. By Lemma A.1.3, P is idempotent complete. Hence the claim follows from Recollections 1.1.11
and 2.1.1. �

The following de�nition is a generalization of [14, De�nition 3.5; 29, De�nition 3.10]:

2.2.10 De�nition (exodromic strati�ed∞-topos & exit-path∞-category). A strati�ed∞-toposs∗ ∶ X → Fun(P, Spc)
is exodromic if the following conditions are satis�ed:
(1) The∞-category ConsP(X) is atomically generated.

(2) The subcategory ConsP(X) ⊂ X is closed under both limits and colimits.

(3) The pullback functor s∗ ∶ Fun(P, Spc) → X preserves limits.
In this case we write Π∞(X, P) ≔ ConsP(X)ex
for the opposite of the full subcategory of ConsP(X) spanned by atomic objects (see Notation 1.1.12). We
refer to Π∞(X, P) as the exit-path∞-category of (X, P).
The importance of the last condition of De�nition 2.2.10 is that it provides a functor from the exit-path∞-category of (X, P) to the poset P.
2.2.11 Observation. Let s∗ ∶ X → Fun(P, Spc) be an exodromic strati�ed∞-topos. Then the left adjointsc♯ ∶ ConsP(X) → Fun(P, Spc)
to s∗ supplied by condition (3) of De�nition 2.2.10 is atomic. By Observation 1.1.8 and Lemma 2.2.9, the
functor sc♯ restricts to a functor sex ∶ Π∞(X, P) → P .

Now, some important examples.

2.2.12 Example. In light of Recollection 1.3.8, a trivially strati�ed∞-topos Γ∗ ∶ X → Spc is exodromic if
and only if X is monodromic in the sense of De�nition 1.3.7.

2.2.13 Example (exodromy for conically strati�ed spaces). Let (X, P) be a conically strati�ed topological
space in the sense of [HA, De�nition A.5.5].
(1) If the strata of (X, P) are locally weakly contractible, then the strati�ed∞-topos (Shhyp(X), P) is exo-

dromic. Moreover, the exit-path∞-category Π∞(Shhyp(X), P) is given by Lurie’s simplicial model for
exit-paths Sing(X, P). See [32, Theorem 5.4.1].

(2) If P is noetherian and X is paracompact and locally of singular shape, then the strati�ed ∞-topos(Sh(X), P) is exodromic. Again, the exit-path∞-category Π∞(Sh(X), P) is given by Lurie’s simplicial
model for exit-paths Sing(X, P). See [HA, Theorem A.9.3].

Ørsnes Jansen has also given incredible computations of exit-path∞-categories of some important com-
pacti�cations naturally arising in geometry:

2.2.14 Example (the work of Ørsnes Jansen [30; 28]).
(1) LetG be a connected reductive linear algebraic group de�ned overQwhose center is anisotropic overQ.

Let Γ ⊂ G(Q) be a neat arithmetic subgroup. Write X for the symmetric space of maximal compact sub-
groups of G(R) with Γ-action given by conjugation. Ørsnes Jansen showed that the∞-topos of sheaves
on the reductive Borel–Serre compacti�cation Γ∖XRBS is exodromic and gave an explicit description of
its exit-path∞-category. See [30, Theorem 4.3].

http://www.math.ias.edu/~lurie/papers/HA.pdf#atheorem.A.5.5
http://www.math.ias.edu/~lurie/papers/HA.pdf#atheorem.A.9.3
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(2) Let g, n ≥ 0 be such that 2g − 2 + n > 0. Write ℳg,n for the moduli stack of stable genus g nodal
curves with nmarked points (also called the Deligne–Mumford–Knudsen compacti�cation). Write ℳtopg,n
for its underlying topological stack. The topological stack ℳtopg,n has a natural strati�cation by the poset
of stable genus g dual graphs with nmarked points. Ørsnes Jansen showed that the∞-topos of sheaves
on the topological stack ℳtopg,n is exodromic. Moreover, the exit-path ∞-category is equivalent to the
opposite of the Charney–Lee category of stable genus g curves with n marked points [11; 12; 15]. See
[28, Corollary 6.6 & Theorem 6.7].

Another feature of De�nition 2.2.10 is that the inclusion of constructible objects admits both a left and
right adjoint:

2.2.15 Notation (constructibilization). Let (X, P) be an exodromic strati�ed∞-topos. SinceConsP(X) ⊂ X
is closed under limits and colimits, [34, Theorem 1.1] implies thatConsP(X) is presentable and the inclusioniX,P ∶ ConsP(X) ↪ X
has both a left adjoint LX,P and a right adjoint RX,P. We refer to these adjoints as the left and right con-
structibilization functors, respectively. In particular, ConsP(X) is a localization of X, and it coincides with
the full subcategory of X spanned by LX,P-equivalences.
2.2.16 Example (equational criterion for constructibility). Let (X, P) be a conically strati�ed topological
space with locally weakly contractible strata. Then [32, Corollary 5.4.7] provides an explicit set of generatingLX,P-equivalences in terms of conical charts. When P = ∗, we can take as a generating set all the inclusionsU ⊂ V between weakly contractible open subsets.

A very important fact is that exodromic strati�ed∞-topoi are automatically monodromic:

2.2.17 Lemma (exodromy implies monodromy). Let s∗ ∶ X → Fun(P, Spc) be an exodromic strati�ed∞-topos. Then:
(1) The∞-topos X is monodromic.

(2) The full subcategory LC(X) ⊂ ConsP(X) is closed under limits and colimits.

Proof. First we prove (1). In light of Recollection 1.3.8, we need to show that the constant sheaf functorΓ∗ ∶ Spc → X preserves limits. Note that Γ∗ factors as a composite

Spc Fun(P, Spc) ConsP(X) X ,s∗
where the left-most functor is the constant functor. The constant functor Spc → Fun(P, Spc) preserves
limits, and by assumption both s∗ and the inclusion ConsP(X) ⊂ X preserve limits. Hence Γ∗ preserves
limits, as desired.

For (2), note that both LC(X) and ConsP(X) are closed under limits and colimits in X. �

For later use, let us record the following:

2.2.18 Corollary. Let (X, P) be a strati�ed∞-topos and let ℰ be a presentable∞-category. If (X, P) is exo-
dromic, then the terminal object of Sh(X; ℰ) is constant (hence P-constructible).
Proof. By Lemma 2.2.17, we know that Γ∗ ∶ Spc → X is both a left and right adjoint. By the functoriality of
the tensor product, the induced functor Γ∗ ⊗ ℰ is also both a left and a right adjoint. In particular, Γ∗ ⊗ ℰ
preserves the terminal object; hence the terminal object of Sh(X; ℰ) is constant. �

2.3 Exodromic morphisms. We now discuss the functoriality of exit-path∞-categories. The main point
of this subsection is that given a morphism f∗ ∶ (X, P) → (Y,Q) between exodromic strati�ed∞-topoi, it
is not a priori clear if f∗ induces a functorΠ∞(X, P) → Π∞(Y, Q)
on exit-path∞-categories.



EXODROMY BEYOND CONICALITY 19

2.3.1 Observation (constructible ∗-pushforward). Let f∗ ∶ (X, P) → (Y,Q) be a morphism between exo-
dromic strati�ed∞-topoi. Since the functor f∗ ∶ Y → X preserves colimits, we deduce thatf∗ ∶ ConsQ(Y) → ConsP(X)
preserves colimits as well. In particular, it admits a right adjointfc∗ ∶ ConsP(X) → ConsQ(Y) .
Unraveling the de�nitions, we see that fc∗ is related to the pushforward functor f∗ by the formulafc∗ = RY,Q◦f∗◦iX,P ,
whereRY,Q is the right constructibilization functor ofNotation 2.2.15. In particular, iff∗ takesP-constructible
objects to Q-constructible objects, then fc∗ ≃ f∗.

The following is a generalization of [14, De�nition 3.5-(3)]:

2.3.2 De�nition. Let f∗ ∶ (X, P) → (Y,Q) be a morphism between exodromic strati�ed∞-topoi. We say
that f∗ is exodromic if the left adjoint f∗ ∶ ConsQ(Y) → ConsP(X)
also preserves limits. In this case, we denote its left adjoint byfc♯ ∶ ConsP(X) → ConsQ(Y) .
As a consequence of the equivalence Catidem∞ ≃ PrL,at of Recollection 1.1.11, the functor fc♯ restricts to a
functor fex ∶ Π∞(X, P) → Π∞(Y, Q) .

The following are two important examples of exodromic morphisms:

2.3.3 Example. Let �∶ P → Q be a map of posets. Equip both P and Q with the identity strati�cations.
Then Recollection 2.1.1 shows that the morphism of strati�ed∞-topoi�∗ ∶ (Fun(P, Spc), P) → (Fun(Q, Spc), Q)
is exodromic.

2.3.4 Example. Let f∗ ∶ X → Y be a geometric morphism of∞-topoi. If X and Y are monodromic, then
Corollary 1.3.12 shows that the morphism of trivially strati�ed∞-topoif∗ ∶ (X, ∗) → (Y, ∗)
is exodromic.

In fact, we will see that De�nition 2.3.2 is super�uous: one of the goals of §3 is to show that everymor-
phism between exodromic strati�ed∞-topoi is exodromic. However, this is not obvious; see Theorem 3.2.3
for details.

We conclude this subsection with a few useful observations about exodromic morphisms.

2.3.5 Observation. Let f∗ ∶ (X, P) → (Y,Q) be a morphism of strati�ed∞-topoi. Assume the following:
(1) (X, P) and (Y, Q) are exodromic.

(2) f∗ ∶ Y → X admits a left adjoint f♯ ∶ X → Y.
Then f∗ is exodromic. Moreover, the functorsfc♯ ∶ ConsP(X) → ConsQ(Y) and f♯ ∶ X → Y
are related by the formula fc♯ ≃ LY,Q◦f♯◦iX,P ,
whereLY,Q is the left constructibilization functor ofNotation 2.2.15. In particular, iff♯ carriesP-constructible
objects to Q-constructible objects, then there is a canonical identi�cation fc♯ ≃ f♯.
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2.3.6 Observation (pullback functoriality). Let f∗ ∶ (X, P) → (Y,Q) be a morphism between exodromic
strati�ed∞-topoi. If f∗ is exodromic, then Observation 1.1.8 yields a commutative squareFun(Π∞(Y, Q), Spc) Fun(Π∞(X, P), Spc)

ConsQ(Y) ConsP(X) ,
−◦fex

≀ ≀
f∗

where the vertical equivalences exhibit the exit-path∞-categoriesΠ∞(Y, Q) andΠ∞(X, P) as the opposites
of the subcategories of atomic objects of the targets.

2.3.7 Observation (♯-pushforward functoriality). As a consequence of Observation 2.3.6, there is also a
commutative square Fun(Π∞(X, P), Spc) Fun(Π∞(Y, Q), Spc)

ConsP(X) ConsQ(Y) ,
fex!

≀ ≀
fc♯

where fex! denotes left Kan extension along fex . Since left Kan extension commutes with the Yoneda em-
bedding, we also deduce that there is a commutative squareΠ∞(X, P)op Π∞(Y, Q)op

ConsP(X) ConsQ(Y) ,
fex,op

fc♯
where the vertical functors are the inclusions of the subcategories of atomic objects.

2.4 Exodromy & hypercompletion. Let (X, P) be an exodromic strati�ed∞-topos. The goal of this sub-
section is to show that the hypercompletion Xhyp with the induced strati�cation is also exodromic, the∞-
categoriesConsP(X) andConsP(Xhyp) coincide, and the exit-path∞-categoriesΠ∞(X, P) andΠ∞(Xhyp, P)
coincide. We do not accomplish this in complete generality, however, we prove that this the case under an
additional assumption on (X, P); see De�nition 2.4.10 and Proposition 2.4.14. This assumption is satis�ed,
for example, when P is noetherian and X is the∞-topos of sheaves associated to a conically strati�ed space
for which exodromy is already known.

2.4.1 Notation. Let s∗ ∶ X → Fun(P, Spc) be a strati�ed∞-topos. Then the compositeXhyp X Fun(P, Spc)s∗
de�nes a P-strati�cation of Xhyp. We always regard the hypercompletion of a strati�ed∞-topos with this
induced strati�cation. Also note that since the∞-topos Fun(P, Spc) is hypercomplete, the strati�cationXhyp → Fun(P, Spc)
coincides with the geometric morphism shyp∗ obtained by applying the hypercompletion functor to the
strati�cation s∗.

We start by showing that if (X, P) is exodromic, then every P-constructible object of X is hypercomplete.
For this, we need a few lemmas.

2.4.2 Lemma. Let (X, P) be a strati�ed ∞-topos and S ⊂ P a locally closed subposet. Then the natural
geometric morphism (XS)hyp → (Xhyp)S
is an equivalence of S-strati�ed∞-topoi.
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Proof. This is a special case of Proposition B.3.8. �

2.4.3 Lemma. Let X and Y be ∞-topoi and let f∗ ∶ Y → X be a functor that preserves both limits and
colimits. Let G ∊ Y.
(1) If G is hypercomplete, then f∗(G) is hypercomplete.

(2) If G is the limit of its Postnikov tower, then f∗(G) is the limit of its Postnikov tower.

Proof. Item (1) is the content of [HA, Lemma A.2.6]. For (2), note that since f∗ is a left exact left adjoint,
[HTT, Proposition 5.5.6.28] shows that for each n ≥ 0, we havef∗ τY≤n ≃ τX≤n f∗ .
Since G is the limit of its Postnikov tower and f∗ preserves limits, we see thatf∗(G) ⥲ f∗ ( limn∊Nop τY≤n(G))⥲ limn∊Nop f∗ τY≤n(G)≃ limn∊Nop τX≤n f∗(G) . �

2.4.4 Corollary. Let (X, P) be an exodromic strati�ed∞-topos.
(1) If F ∊ ConsP(X), then F is the limit of its Postnikov tower in X. In particular, we haveConsP(X) ⊂ Xhyp .
(2) We have ConsP(X) ⊂ ConsP(Xhyp)

as full subcategories of Xhyp.
(3) The functor s∗ ∶ Fun(P, Spc) → X factors through Xhyp.
(4) The constant sheaf functor Γ∗ ∶ Spc → X factors through Xhyp ⊂ X.

Proof. Note that since (X, P) is exodromic, the ∞-category ConsP(X) is an ∞-topos and the inclusionConsP(X) ⊂ X preserves limits and colimits. Hence (1) is a special case of Lemma 2.4.3-(2). For (2), note that
the inclusion (Xhyp, P) ↪ (X, P) is a morphism of strati�ed∞-topoi. Hence the hypercompletion functorX → Xhyp carries ConsP(X) to ConsP(Xhyp). By (1), every object of ConsP(X) is already hypercomplete,
hence ConsP(X) ⊂ ConsP(Xhyp)
as full subcategories of Xhyp.

Item (3) is an immediate consequence of item (1) and the fact that s∗ factors through ConsP(X). Item (4)
is immediate from (3) and the fact that Γ∗ factors as the composite

Spc Fun(P, Spc) ConsP(X) X ,s∗
where the left-most functor is the constant functor. �

2.4.5 Observation. Let (X, P) be an exodromic strati�ed ∞-topos. Corollary 2.4.4 implies that the left
constructibilization functorLX,P ∶ X → ConsP(X) factors as a the composite of hypercompletionX → Xhyp
with a localization LhypX,P ∶ Xhyp → ConsP(X) .
In turn, ConsP(X) can be identi�ed with the full subcategory of Xhyp spanned by objects that are local with
respect to LhypX,P-equivalences. Hence a morphism �∶ F → G in X is an LX,P-equivalence if and only if its
hypercompletion �hyp is an LhypX,P-equivalence.

Our next goal is to show that if X is monodromic, then Xhyp is also monodromic and LC(X) = LC(Xhyp).
For this, we need the following lemma.

http://www.math.ias.edu/~lurie/papers/HA.pdf#atheorem.A.2.6
http://www.math.ias.edu/~lurie/papers/HTT.pdf#theorem.5.5.6.28
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2.4.6 Lemma. Let X be an∞-topos and write i∗ ∶ Xhyp ↪ X for the inclusion.
(1) Amorphism f∶ U → V inXhyp is an e�ective epimorphism if and only if i∗(f) is an e�ective epimorphism

in X.

(2) The functor i∗ ∶ Xhyp ↪ X preserves coproducts.

(3) Given an e�ective epimorphism
∐�∊AU� → 1Xhyp in Xhyp, the induced map∐�∊A i∗(U�) → 1X

is an e�ective epimorphism in X.

Proof. For (1), �rst assume that i∗(f) is an e�ective epimorphism. Then since i∗ preserves e�ective epimor-
phisms and i∗ is fully faithful, f ≃ i∗i∗(f) is also an e�ective epimorphism. Conversely, assume that f is an
e�ective epimorphism. Note that τX≤0 i∗(f) = τXhyp≤0 (f) .
Since the property of a morphism being an e�ective epimorphism only depends on the 0-truncation [HTT,
Proposition 7.2.1.14] and f is an e�ective epimorphism, we deduce that i∗(f) is an e�ective epimorphism.

Item (2) is the content of [SAG, Lemma D.6.7.2]. Finally, (3) is immediate from (1) and (2). �

2.4.7 Lemma. Let X be an∞-topos. If every constant object of X is hypercomplete, then:
(1) For eachU ∊ X, every constant object of X∕U is hypercomplete.

(2) Every locally constant object of X is hypercomplete.

(3) The inclusion Xhyp ↪ X carries LC(Xhyp) to LC(X).
(4) We have LC(Xhyp) = LC(X) as full subcategories of X.

Proof. For (1), write p∗ ∶ X → X∕U for the pullback functor. Observe that the constant sheaf functor
Spc → X∕U factors as a composite

Spc X X∕U .Γ∗ p∗
Since the pullback functor p∗ is both a left and a right adjoint, Lemma 2.4.3 shows that p∗ preserves
hypercompleteness. Hence the claim follows from the assumption that every constant object of X is hyper-
complete.

For (2), let L ∊ LC(X) and choose an e�ective epimorphism
∐�∊AU� ↠ 1X such that for each � ∊ A,

the pullback L × U� is a constant object of X∕U� . Then by (1), for each � ∊ A, the object L × U� ∊ X∕U�
is hypercomplete. The claim now follows from the fact that hypercompleteness is a local property [HTT,
Remark 6.5.2.22].

For (3), let L ∊ LC(Xhyp); we wish to show that L ∊ LC(X). Choose an e�ective epimorphism�∶ ∐�∊AU� ↠ 1Xhyp = 1X
in Xhyp such that for each � ∊ A, the pullbackL × U� ∊ (Xhyp)∕U� = (X∕U� )hyp
is constant. By Lemma 2.4.6-(3) the e�ective epimorphism �∶ ∐�∊AU� ↠ 1X in Xhyp is also an e�ective
epimorphism in the larger∞-topos X. Hence it su�ces to show that each L × U� is also a constant object
of the larger∞-topos X∕U� . For this, note that by (1), every constant object of X∕U� is hypercomplete.

Item (4) is immediate from items (2) and (3). �

2.4.8 Proposition. Let X be a monodromic∞-topos. Then:

http://www.math.ias.edu/~lurie/papers/HTT.pdf#theorem.7.2.1.14
http://www.math.ias.edu/~lurie/papers/SAG-rootfile.pdf#theorem.D.6.7.2
http://www.math.ias.edu/~lurie/papers/HTT.pdf#theorem.6.5.2.22
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(1) The composite Xhyp X Spc
i∗ Γ♯

is left adjoint to the constant hypersheaf functor Spc → Xhyp. In particular, Xhyp is monodromic.

(2) The inclusion Xhyp ↪ X carries LC(Xhyp) to LC(X). Moreover, we have LC(Xhyp) = LC(X) as full
subcategories of X.

(3) The natural mapΠ∞(Xhyp) → Π∞(X) is an equivalence.

Proof. For (1), note that since Γ∗ ∶ Spc → X factors through Xhyp, for F ∊ Xhyp and K ∊ Spc, we have
natural equivalences MapSpc(Γ♯i∗(F), K) ≃ MapX(i∗(F), Γ∗(K))≃ MapXhyp(F, Γ∗(K)) .
Item (2) is a special case of Lemma 2.4.7. Finally, by (2), the pullback functor LC(X) → LC(Xhyp) is an
equivalence (in fact, the identity). Hence (3) follows from the de�nition of the shape. �

2.4.9 Warning. Let X be a monodromic ∞-topos and F ∊ X. If the hypercompletion of F is a locally
constant object of Xhyp, then it is not necessarily the case that F is a locally constant object of X.

Let (X, P) be an exodromic strati�ed∞-topos. Corollary 2.4.4-(2) shows that ConsP(X) ⊂ ConsP(Xhyp).
In the case of a trivial strati�cation, we have just seen that this inclusion is an equality. For a general
strati�cation, we do not know if this holds; we o�er the following simple su�cient condition for this to
hold. This condition covers many concrete cases of interest.

2.4.10 De�nition. Let (X, P) be a strati�ed∞-topos. We say that (X, P) isweakly conical if for every locally
closed subset S ⊂ P, the functor iS,∗ ∶ XS → X
takes ConsS(X) to ConsP(X).

This de�nition is motivated by the following:

2.4.11 Example. Let (X, P) be a conically strati�ed space with locally weakly contractible strata. Then(Shhyp(X), P) is weakly conical by [32, Proposition 6.8.1]; this ultimately relies on [32, Lemma 5.3.4], which
is the hard step needed to prove the exodromy equivalence in the conical setting. On the other hand, con-
sider the non-conical strati�cation of a circle pictured on the right-hand side of Figure 1: in this case, the
pushforward of a constant sheaf on the open stratum is not hyperconstructible with respect to the given
strati�cation. Thus, this property is a special feature of the conical situation.

2.4.12 Lemma. Let (X, P) be a weakly conical exodromic strati�ed ∞-topos. Let �∶ F1 → F2 be a LX,P-
equivalence (see Notation 2.2.15). Then for every locally closed subset S ⊂ P, the morphism i∗S(�) is an LXS ,S-
equivalence.

Proof. We have to show that for all G ∊ ConsS(XS), the map i∗S(�) induces an equivalenceMapXS (i∗S(F2), G) → MapXS (i∗S(F1), G) .
By adjunction, this follows immediately from the fact that � is a P-equivalence and that iS,∗(G) ∊ ConsP(X).

�

2.4.13 Lemma. Let (X, P) be an exodromic strati�ed∞-topos. If the inclusionXhyp ↪ X carriesConsP(Xhyp)
to ConsP(X), then:
(1) We have ConsP(Xhyp) = ConsP(X) as full subcategories of X.

(2) The strati�ed∞-topos (Xhyp, P) is exodromic.

(3) The natural functorΠ∞(Xhyp, P) → Π∞(X, P) is an equivalence of∞-categories.
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Proof. Since (X, P) is exodromic, Corollary 2.4.4-(2) guarantees thatConsP(X) ⊂ ConsP(Xhyp) .
Our assumption guarantees that this inclusion is an equality.

For (2), note that by (1) and the assumption that (X, P) is exodromic, the∞-category ConsP(Xhyp) is
atomically generated. In light of Corollary 2.4.4-(3), all that remains to be shown is that the full subcategoryConsP(Xhyp) ⊂ Xhyp
is closed under limits and colimits. Again by (1), we have ConsP(Xhyp) = ConsP(X). Moreover, since (X, P)
is exodromic, ConsP(X) ⊂ X is closed under limits and colimits. The claim now follows from the fact thatXhyp is a localization of X.

Item (3) is immediate from items (1) and (2) and the de�nition of the exit-path∞-category of an exo-
dromic strati�ed∞-topos. �

The following is the main result of this subsection.

2.4.14 Proposition. Let (X, P) be a strati�ed∞-topos. Assume that P is noetherian and that (X, P) is both
exodromic and weakly conical. Then:
(1) The inclusion Xhyp ↪ X carries ConsP(Xhyp) to ConsP(X).
(2) The strati�ed∞-topos (Xhyp, P) is exodromic.

(3) The natural functorΠ∞(Xhyp, P) → Π∞(X, P) is an equivalence of∞-categories.

Proof. First note that by Lemma 2.4.13, it su�ces to prove (1). Since (X, P) is exodromic, Corollary 2.4.4-(2)
guarantees that ConsP(X) ⊂ ConsP(Xhyp) .
We prove the other inclusion by noetherian induction, observing that the case P = ∗ has already been dealt
with in Proposition 2.4.8-(1). Fix F ∊ ConsP(Xhyp) and p ∊ P. Set Q ≔ P≥p. Then Q is an open subset of P;
in particular i∗Q preserves hypercomplete objects. Thus,i∗Q(F) ≃ i∗,hypQ (F) ∊ ConsP(XhypQ ) .
In other words, we can assume without loss of generality that p is a minimal element of P.

Now set S ≔ P>p. Again, S is an open subset of P. Moreover, Xhyp is the recollement of Xhypp and XhypS .
In particular, for each F ∊ ConsP(Xhyp), there is a pullback square

(2.4.15)

F ip,∗i∗,hypp (F)
iS,∗i∗S(F) ip,∗i∗,hypp iS,∗i∗S(F) .

⌟
Thanks to Observation 2.4.5, it is enough to prove that for every LhypX,P-equivalence �∶ G1 → G2 in Xhyp, the
object F is �-local. By virtue of the pullback square (2.4.15), it su�ces to prove that the other three terms
are �-local. The inductive hypothesis guarantees thati∗S(F) ≃ i∗,hypS (F)
belongs to ConsS(XS). Since (X, P) is weakly conical, it follows that iS,∗i∗S(F) ∊ ConsP(X); in particular,iS,∗i∗S(F) is �-local. As for the other two terms, �rst recall from Observation 2.4.5 that �, seen as a morphism
in X, is an LX,P-equivalence. In particular, Lemma 2.4.12 guarantees that i∗p(�) is an LXp -equivalence.
Applying Observation 2.4.5 once more, we deduce thati∗,hypp (�) ≃ (i∗p(�))hyp
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is an LhypXp -equivalence as well. Thus, it immediately follows from adjunction that ip,∗i∗,hypp (F) is �-local. To
conclude, observe that since iS,∗i∗S(F) ∊ ConsP(X), theni∗piS,∗i∗S(F) ∊ LC(Xp) = LC(Xhypp ) .
In particular we have i∗,hypp iS,∗i∗S(F) = i∗piS,∗i∗S(F) ,
and the conclusion follows. �

We conclude with a question about generalizing Proposition 2.4.14.

2.4.16 Question. Let (X, P) be an exodromic strati�ed ∞-topos. Does the inclusion Xhyp ↪ X carryConsP(Xhyp) to ConsP(X)? (If so, then (Xhyp, P) is exodromic and Π∞(Xhyp, P) ⥲ Π∞(X, P).)
3 Stability properties of exodromic stratified∞-topoi

The goal of this section is to prove the following ‘stability theorem’ for the class of exodromic strati�ed∞-topoi:

3.0.1 Theorem (stability properties of exodromic strati�ed∞-topoi).
(1) Stability under pulling back to locally closed subposets: If (X, P) is an exodromic strati�ed∞-topos, then

for each locally closed subposet S ⊂ P, the strati�ed∞-topos (XS , S) is exodromic and the induced functorΠ∞(XS , S) → Π∞(X, P) ×P S
is an equivalence. In particular, the induced functorΠ∞(X, P) → P is conservative. See Corollary 3.1.17.

(2) Every morphism between exodromic strati�ed∞-topoi is exodromic. See Theorem 3.2.3.

(3) Stability under coarsening and localization formula: Let (X, R) be an exodromic strati�ed∞-topos and
let �∶ R → P be a map of posets. WriteWP for the collection of morphisms inΠ∞(X, R) that the compositeΠ∞(X, R) → R → P sends to equivalences. Then the strati�ed∞-topos (X, P) is exodromic and the natural
functorΠ∞(X, R) → Π∞(X, P) induces an equivalenceΠ∞(X, R)[W−1P ] ⥲ Π∞(X, P)
See Theorem 3.3.5.

(4) van Kampen: Existence of exit-path∞-categories can be checked by descent. See Proposition 3.4.2 for a
precise formulation.

(5) Künneth formula: Let (X, P) and (Y, Q) be exodromic strati�ed∞-topoi. If P and Q are noetherian, then
the strati�ed∞-topos (X ⊗ Y, P × Q) is exodromic and there are natural equivalences of∞-categoriesConsP(X) ⊗ ConsQ(Y) ⥲ ConsP×Q(X ⊗ Y)
and Π∞(X ⊗ Y, P × Q) ⥲ Π∞(X, P) × Π∞(Y, Q) .
See Proposition 3.5.5.

(6) Stability of �niteness/compactness: The property of an exit-path∞-category being �nite (resp., compact)
is stable under pulling back to a locally closed subposet, is stable under coarsening, and can be checked on
a �nite cover. See §3.6 for a precise formulation.

Subsection 3.1 proves (1), §3.2 proves (2), §3.3 proves (3), §3.4 proves (4), §3.5 proves (5), and §3.6 proves
(6). Before moving on, we also pose two question related to Theorem 3.0.1. First:

3.0.2 Question. Can one prove the Künneth formula without the extra noetherian hypothesis?

Second, as noted earlier (see Observation 1.3.10), if X is a monodromic∞-topos and U ∊ X, then the slice∞-toposX∕U is alsomonodromic.We have not listed the analogous stability property for exodromic∞-topoi
in Theorem 3.0.1; we do not know if it is true. Thus we ask:
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3.0.3 Question. Let (X, P) be a strati�ed ∞-topos and U ∊ X. Then composing the natural geometric
morphism X∕U → X with the strati�cation of X gives X∕U a natural P-strati�cation. Is the strati�ed∞-
topos (X∕U , P) exodromic?

3.1 Stability under pulling back to locally closed subposets. Let (X, P) be an exodromic strati�ed∞-topos. The purpose of this subsection is to show that for each locally closed subposet S ⊂ P, the strati�ed∞-topos (XS , S) is exodromic, the inclusion iS,∗ ∶ (XS , S) ↪ (X, P) is exodromic, and the natural functorΠ∞(XS , S) → Π∞(X, P) ×P S
is an equivalence (see Corollary 3.1.17). This result generalizes [14, Proposition 3.6-(2); 29, Proposition 3.13-
(1)] to the setting of exodromic strati�ed∞-topoi; the proof is essentially the same as theirs, just adapted to
our more general setting. A key step is to show that both constructible objects and functors out of exit-path∞-categories satisfy recollement. We refer the reader to [HA, §A.8; SAG, §7.2; 2, §6.1; 35, §2] for background
on recollements.

We start by proving a general recollement result for∞-categories of functors out of an∞-category with
a functor to a poset.

3.1.1 Notation. Let F∶ C → P be a functor from an∞-category to a poset. Given a full subposet S ⊂ P,
we write CS ≔ C ×P S.
3.1.2 Observation. In the setting of Notation 3.1.1, note that since the inclusion S ⊂ P is fully faithful, its
basechange CS → C is fully faithful with image those objects lying over S.
3.1.3 Proposition. Let F∶ C → P be a functor from an∞-category to a poset, and let Z ⊂ P be a closed
subposet with open complement U = P ∖ Z. Write i ∶ CZ ↪ C and j ∶ CU ↪ C for the inclusions. Then the
restriction functorsi∗ ∶ Fun(C, Spc) → Fun(CZ , Spc) and j∗ ∶ Fun(C, Spc) → Fun(CU , Spc)
exhibit Fun(C, Spc) as the recollement of Fun(CZ , Spc) and Fun(CU , Spc).
Proof. Note that since every object of C belongs to either CU or CZ and equivalences in Fun(C, Spc) are
detected pointwise, the functors j∗ and i∗ are jointly conservative. Hence the only nontrivial point to check
is that the composite j∗i∗ is constant with value the terminal object of Fun(CU , Spc).

For this, consider the pullback square of∞-categories∅ CZ
CU C .

⌟a
b

i
j

Since i is a right �bration (Lemma A.2.6), i is a proper functor in the sense of [14, De�nition 2.22]. (See also
[HTT, §4.1.2; 13, §4.4].) Hence proper basechange [14, Theorem 2.27] implies that the exchange transfor-
mation j∗i∗ → a∗b∗
is an equivalence. To complete the proof, notice that the functorb∗ ∶ Fun(CZ , Spc) → Fun(∅, Spc) ≃ ∗
is the unique functor and the functor a∗ ∶ ∗ → Fun(CU , Spc) picks out the terminal object. �

We now turn to showing that constructible objects satisfy recollement. Let us introduce a special class of
coe�cients we are interested in:

3.1.4 De�nition. We say that a presentable ∞-category ℰ is compatible with recollements if for every
recollement datum of∞-topoi i∗ ∶ X → Z and j∗ ∶ X → U ,

http://www.math.ias.edu/~lurie/papers/HA.pdf#section.A.8
http://www.math.ias.edu/~lurie/papers/SAG-rootfile.pdf#section.7.2
http://www.math.ias.edu/~lurie/papers/HTT.pdf#subsection.4.1.2
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the induced functorsi∗ ⊗ ℰ∶ X ⊗ ℰ → Z ⊗ ℰ and j∗ ⊗ ℰ∶ X ⊗ ℰ → U ⊗ ℰ
exhibit X ⊗ ℰ as the recollement of Z ⊗ ℰ and U ⊗ ℰ.
3.1.5 Recollection. It follows respectively from [19, Corollary 2.18 and Proposition 2.26] that if ℰ is either
compactly generated or stable, then it is compatible with recollements.

3.1.6 Observation (see Recollection B.1.6 and Proposition B.1.8). Let (X, P) be a strati�ed∞-topos and
let Z ⊂ P be a closed subposet with open complement U = P ∖ Z. Then the functorsi∗Z ∶ X → XZ and i∗U ∶ X → XU
exhibit X as the recollement of XZ and XU .
3.1.7 Lemma. Let (X, P) be a strati�ed∞-topos and let Z ⊂ P be a closed subposet with open complementU = P ∖ Z. Let ℰ be a presentable∞-category. Assume that ℰ is compatible with recollements and that the
terminal object in Sh(X; ℰ) is P-constructible. Then:
(1) If F ∊ ConsU(XU ; ℰ), then iU,!(F) ∊ ConsP(X; ℰ).
(2) If G ∊ ConsZ(XZ ; ℰ), then iZ,∗(G) ∊ ConsP(X; ℰ).
(3) The composite i∗U iZ,∗ ∶ ConsZ(XZ ; ℰ) → ConsU(XU ; ℰ) is constant with value the terminal object.

(4) The functorsi∗Z ∶ ConsP(X; ℰ) → ConsZ(XZ ; ℰ) and i∗U ∶ ConsP(X; ℰ) → ConsU(XU ; ℰ)
are jointly conservative.

Proof. All of these claims essentially follow from Recollection 3.1.5. For (1), note that since i∗U iU,!(F) ≃ F,
it su�ces to show that i∗Z iU,!(F) is locally constant on XZ . By recollement, the functori∗Z iU,! ∶ Sh(XU ; ℰ) → Sh(XZ ; ℰ)
is constant with value the initial object, which is U-constructible. For (2), note that since i∗Z iZ,∗(G) ≃ G, it
su�ces to show that i∗U iZ,∗(G) is U-constructible on XU . Again by recollement, the functori∗U iZ,∗ ∶ Sh(XZ ; ℰ) → Sh(XU ; ℰ)
is constant with value the terminal object. Since i∗U ∶ Sh(X; ℰ) → Sh(XU ; ℰ) is a right adjoint and since the
terminal object in Sh(X; ℰ) is P-constructible by assumption, it follows that the terminal object in Sh(XU ; ℰ)
isU-constructible. In particular, i∗U iZ,∗ carriesConsZ(XZ ; ℰ) toConsU(XU ; ℰ), thus proving at the same time
(2) and (3). Item (4) is immediate from recollement. �

3.1.8 Lemma. Let (X, P) be a strati�ed∞-topos and let U ⊂ P be an open subposet. Let ℰ be a presentable∞-category. Assume that ℰ is compatible with recollements and that the terminal object of Sh(X; ℰ) is P-
constructible. Then:
(1) Write∅ for the initial object of ConsZ(XZ ; ℰ) and setker(i∗Z) ≔ {X ∊ ConsP(X) ∣ i∗Z(X) ≃ ∅}

.

Then the induced functor iU,! ∶ ConsU(XU) ↪ ker(i∗Z)
is an equivalence.

(2) Write ∗ for the terminal object of ConsU(XU ; ℰ) and setker(i∗U) ≔ {X ∊ ConsP(X; ℰ) ∣ i∗U(X) ≃ ∗} .
Then the induced functor iZ,∗ ∶ ConsZ(XZ ; ℰ) ↪ ker(i∗U)
is an equivalence
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Proof. In both cases, it su�ces to check essential surjectivity. So let X ∊ ker(i∗Z) and consider the counitc∶ iU,!i∗U(X) → X in ConsP(X; ℰ). By Lemma 3.1.7-(4), it su�ces to show that i∗(c) and i∗Z(c) are equiv-
alences. The former follows from the full faithfulness of iU,!, and the latter follows from the de�nition
of ker(i∗Z). For (2), the same argument applies, starting with the unit u∶ F → iZ,∗i∗Z(F) in place of the
counit. �

3.1.9 Lemma. Let (X, P) be a strati�ed∞-topos and let Z ⊂ P be a closed subposet with open complementU = P ∖ Z. Let ℰ be a presentable∞-category. Assume that ℰ is compatible with recollements and that the
terminal object of Sh(X; ℰ) is P-constructible. Then:
(1) If ConsP(X; ℰ) is presentable, then ConsP(XZ ; ℰ) and ConsP(XU ; ℰ) are also presentable.
(2) If ConsP(X; ℰ) is closed under colimits in Sh(X; ℰ), then the functor i∗U ∶ ConsP(X; ℰ) → ConsU(XU ; ℰ)

preserves colimits.

(3) IfConsP(X; ℰ) is closed under �nite limits in Sh(X; ℰ), then the functor i∗Z ∶ ConsP(X; ℰ) → ConsZ(XZ ; ℰ)
is left exact.

(4) If ConsP(X; ℰ) is presentable and closed under colimits and �nite limits in Sh(X; ℰ), then the functors i∗Z
and i∗U exhibit ConsP(X; ℰ) as the recollement of ConsZ(XZ ; ℰ) and ConsU(XU ; ℰ).

Proof. For (1), notice that Lemma 3.1.7-(2) implies thatConsZ(XZ ; ℰ) is a localization ofConsP(X; ℰ). More-
over, Lemma 3.1.8-(2) immediately implies that ConsZ(X; ℰ) is closed under weakly contractible colimits
inside ConsP(X; ℰ); in particular ConsZ(X; ℰ) ⊂ ConsP(X; ℰ)
is closed under �ltered colimits. Thus, the∞-categorical re�ection theorem [34, Theorem 1.1] implies thatConsZ(X; ℰ) is presentable. Then, Lemma 3.1.8-(1) implies that ConsU(XU ; ℰ) is presentable.

Item (2) follows from the given assumption, the full faithfulness of ConsU(XU ; ℰ) inside of Sh(XU ; ℰ),
and the fact that i∗U ∶ Sh(X; ℰ) → Sh(XU ; ℰ) preserves colimits and preserve constructible objects. A similar
argument shows (3) as well.

We are left to prove (4). In virtue of Lemma 3.1.7, all we are left to do is to check that i∗U admits a right
adjoint and that i∗Z is left exact. The �rst statement follows from (1), (2), and the adjoint functor theorem,
while the second follows directly from (3). �

In what follows, we will need to use the fact that given an open immersion of ∞-topoi j∗ ∶ U ↪ Y,
the∞-topos U is naturally identi�ed with the slice Y∕j!(1). Hence we recall some basic results about slice∞-categories.

3.1.10 Recollection. Let i ∶ C ↪ D be a fully faithful functor of∞-categories and let c ∊ C. Then:
(1) The induced functor i ∶ C∕c → D∕i(c) is fully faithful.
(2) If i ∶ C ↪ D admits a left adjoint L∶ D → C, then i ∶ C∕c → D∕i(c) admits a left adjoint given by the

induced functor L∶ D∕i(c) → C∕Li(c) ≃ C∕c .
(3) If i ∶ C ↪ D admits a right adjoint R∶ D → C, then i ∶ C∕c → D∕i(c) admits a right adjoint given by the

induced functor R∶ D∕i(c) → C∕Ri(c) ≃ C∕c .
See [HTT, Proposition 5.2.5.1].

3.1.11 Lemma. Let D be an∞-category, C ⊂ D a full subcategory, and c ∊ C. Then the natural squareC∕c D∕c
C D

is a pullback square of∞-categories. Here the vertical functors are the forgetful functors.

http://www.math.ias.edu/~lurie/papers/HTT.pdf#theorem.5.2.5.1
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Proof. Consider the commutative cubeC∕c Fun([1], C)
D∕c Fun([1],D)

C × {c} C × C
D × {c} D × D .

(s,t)
(s,t)

By de�nition, the front and back vertical faces are pullbacks. SinceC ⊂ D is a full subcategory, the right-hand
vertical face is a pullback. Hence the left-hand vertical face is also a pullback. �

Let us now give an alternative description of constructible objects in a strati�ed∞-topos obtained by
pulling back to an open subposet.

3.1.12 Lemma. Let (X, P) be a strati�ed∞-topos and letU ⊂ P be an open subposet. Then:
(1) The square ConsU(XU) XU

ConsP(X) XiU,! iU,!
is a pullback square of∞-categories.

(2) There is a commutative square ConsU(XU) XU
ConsP(X)∕iU,!(1) X∕iU,!(1)

iU,! ≀ iU,!≀
where the vertical functors are equivalences and the horizontal functors are the natural inclusions.

Proof. For (1), note that it su�ces to show that the fully faithful functoriU,! ∶ ConsU(XU) ↪ ConsP(X) ∩ iU,!(XU)
is essentially surjective. For this, let G ∊ XU be such that iU,!(G) is P-constructible. Write Z ≔ P ∖ U. Theni∗Z iU,!(G) = ∅ and i∗U iU,!(G) is U-constructible. Hence G ∊ ConsU(XU), completing the proof.

For (2), note that iU,∗ ∶ XU ↪ X is an open immersion of∞-topoi, the exceptional left adjoint iU,! ∶ XU ↪X induces an equivalence XU ⥲ X∕iU,!(1) �tting into a commutative triangleXU X∕iU,!(1)
X .

iU,!
∼

forget

Since iU,!(1) ∊ ConsP(X), the claim follows from item (1) combined with Lemma 3.1.11. �

3.1.13 Proposition (recollement). Let s∗ ∶ X → Fun(P, Spc) be an exodromic strati�ed∞-topos and letZ ⊂ P be a closed subposet with open complementU = P ∖ Z. Then:
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(1) The functors i∗Z ∶ ConsP(X) → ConsZ(XZ) and i∗U ∶ ConsP(X) → ConsU(XU)
exhibit ConsP(X) as the recollement of ConsZ(XZ) and ConsU(XU).

(2) The strati�ed∞-topos (XU , U) is exodromic, the morphism iU,∗ ∶ (XU , U) ↪ (X, P) is exodromic, and
the induced functor Π∞(XU , U) → Π∞(X, P)U
is an equivalence.

(3) The strati�ed∞-topos (XZ , Z) is exodromic, the morphism iZ,∗ ∶ (XZ , Z) ↪ (X, P) is exodromic, and the
induced functor Π∞(XZ , Z) → Π∞(X, P)Z
is an equivalence.

Proof. Since the terminal object of X is P-constructible, (1) follows directly from Lemma 3.1.9-(4). For (2),
let us �rst prove that ConsU(XU) is closed under limits and colimits in XU . By Lemma 3.1.12-(2), we have
a commutative square ConsU(XU) XU

ConsP(X)∕iU,!(1) X∕iU,!(1)
iU,! ≀ iU,!≀

where the vertical functors are equivalences. Since (X, P) is exodromic, the inclusionConsP(X) ⊂ X admits
both a left and right adjoint. Hence Recollection 3.1.10 shows that the inclusion ConsU(XU) ⊂ XU admits
both a left and right adjoint. Write sU,∗ ∶ XU → Fun(U, Spc) for the induced strati�cation and j ∶ U ↪ P
for the inclusion. All we are left to show is that the ∞-category ConsU(XU) is atomically generated byΠ∞(X, P)U and that the pullback functor s∗U ∶ Fun(U, Spc) → ConsU(XU) preserves limits. To see thatConsU(XU) is atomically generated by Π∞(X, P)U , notice that since i∗Z iU,!(1) = ∅ and i∗U iU,!(1) = 1, the
fully faithful functor iU,! ∶ ConsU(XU) ↪ ConsP(X) ≃ Fun(Π∞(X, P), Spc)
has image those functors F∶ Π∞(X, P) → Spc such that the compositeΠ∞(X, P)Z Π∞(X, P) SpcF
is constant with value the initial object. Now note that this full subcategory coincides with the image of the
fully faithful functor Fun(Π∞(X, P)U , Spc) ↪ Fun(Π∞(X, P), Spc)
given by left Kan extension along the inclusion Π∞(X, P)U ↪ Π∞(X, P).

To see that s∗U ∶ Fun(U, Spc) → ConsU(XU) preserves limits, notice that we have a commutative squareFun(P, Spc) Fun(U, Spc)
ConsP(X) ConsU(XU) .s∗

j∗
s∗U

i∗U
Since j∗ is fully faithful, we see that there are equivalencess∗U ≃ s∗Uj∗j∗ ≃ i∗Us∗j∗ .
Since the functors i∗U , s∗, and j∗ all preserve limits, we deduce that s∗U preserves limits, as desired.

For (3), recall from Lemma 3.1.8-(1) that

(3.1.14) ConsZ(XZ) ≃ ker (i∗U ∶ ConsP(X) → ConsU(XU)) .
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Since (X, P) is exodromic by assumption, (XU , U) is exodromic by (2), and i∗U preserves limits and colimits,
we deduce that ConsZ(XZ) ⊂ XZ is closed under limits and colimits. Proposition 3.1.3 and the identi�ca-
tion (3.1.14) show that the∞-category ConsZ(XZ) is atomically generated by Π∞(X, P)Z and the functori∗Z ∶ ConsP(X) → ConsZ(X) preserves limits and colimits.

Write sZ,∗ ∶ XZ → Fun(Z, Spc) for the induced strati�cation and i ∶ Z ↪ P for the inclusion. All that
remains to be shown is that the pullback functor s∗Z ∶ Fun(Z, Spc) → ConsZ(XZ) preserves limits. For this,
notice that we have a commutative squareFun(P, Spc) Fun(Z, Spc)

ConsP(X) ConsZ(XZ) .s∗
i∗

s∗Z
i∗Z

Since i∗ is fully faithful, we see that there are equivalencess∗Z ≃ s∗Z i∗i∗ ≃ i∗Zs∗i∗ .
Since the functors i∗Z , s∗, and i∗ all preserve limits, we deduce that s∗Z preserves limits, as desired. �

3.1.15. In the setting of Proposition 3.1.13, the recollement takes the following form:

ConsZ(XZ) ConsP(X) ConsU(XU) .iZ,∗
icZ,♯i∗Z i∗UicU,∗

iU,!

Here the functors iZ,∗, i∗Z , iU,!, and i∗U agree with the ones at the level of the∞-topoi XZ , XU , and X. The
functor icU,∗ does not necessarily agree with the pushforward iU,∗ ∶ XU ↪ X, and the functor icZ,♯ is ‘extra’
in the sense that it does not come for free from the theory of recollements.

For the next result, we need the following useful characterization of when a functor of exit-path∞-cate-
gories is fully faithful in terms of the constructible pushforwards:

3.1.16 Lemma. Let f∗ ∶ (X, P) → (Y,Q) be a morphism between exodromic strati�ed ∞-topoi. If f∗ is
exodromic, then the following are equivalent:
(1) The functor fex ∶ Π∞(X, P) → Π∞(Y, Q) is fully faithful.
(2) The functor fc♯ ∶ ConsP(X) → ConsQ(Y) is fully faithful.
(3) The functor fc∗ ∶ ConsP(X) → ConsQ(Y) is fully faithful.
Proof. Immediate from the fact that a functor F∶ C → D is fully faithful if and only if either of the functorsF!, F∗ ∶ Fun(C, Spc) → Fun(D, Spc)
given by left or right Kan extension along F is fully faithful. �

By writing a locally closed immersion of posets as the composite of a closed immersion and an open immer-
sion, we deduce the main result of this subsection:

3.1.17 Corollary (stability under pulling back to locally closed subposets). Let (X, P) be an exodromic
strati�ed∞-topos and let S ⊂ P be a locally closed subposet. Then:
(1) The strati�ed∞-topos (XS , S) is exodromic and the morphism of strati�ed∞-topoi iS,∗ ∶ (XS , S) ↪ (X, P)

is exodromic.

(2) The∞-topos XS is monodromic.

(3) The natural functorΠ∞(XS , S) → Π∞(X, P)S is an equivalence.

(4) The functors icS,♯, icS,∗ ∶ ConsS(XS) → ConsP(X) are both fully faithful.
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(5) The natural functorΠ∞(X, P) → P is conservative.

Proof. Choose an open subposet U ⊂ P containing S such that S is closed in U. For (1), apply Proposi-
tion 3.1.13-(2) to both the open inclusion U ⊂ P and closed inclusion S ⊂ U. Item (2) follows from (1) and
Lemma 2.2.17. For (3), applying Proposition 3.1.13-(3) to the closed inclusion S ⊂ U and the open inclusionU ⊂ P, we see that there are equivalencesΠ∞(XS , S) ⥲ Π∞(XU , U) ×U S⥲ (Π∞(X, P) ×P U) ×U S≃ Π∞(X, P)S .
By Observation 3.1.2, the natural functor Π∞(X, P)S → Π∞(X, P) is fully faithful; hence Lemma 3.1.16
shows that (4) follows from (3). For (5), note that by Recollection A.1.1, we need to show that each �berΠ∞(X, P)p is an∞-groupoid. Since each p ∊ P is locally closed, item (1) shows thatΠ∞(X, P)p ≃ Π∞(Xp, {p}) .
The conclusion now follows from the fact that Π∞(Xp, {p}) is an∞-groupoid (Recollection 1.3.8). �

We conclude by recording a few consequences of Corollary 3.1.17. First, we can describe the objects of
the exit-path∞-category.

3.1.18 Observation (the objects ofΠ∞(X, P)). Let (X, P) be an exodromic strati�ed space. Corollary 3.1.17
implies that there is a natural identi�cationΠ∞(X, P)≃ ≃ ∐p∊P Π∞(Xp)
between the maximal sub-∞-groupoid of Π∞(X, P) and the coproduct of the shapes of the∞-topoi Xp.
Second, equivalences of constructible objects can be checked by pulling back to strata:

3.1.19 Corollary. Let (X, P) be an exodromic strati�ed∞-topos and let {S�}�∊A be a collection of locally closed
subposets of P such that

⋃�∊A S� = P. Then the restriction functors{i∗S� ∶ ConsP(X) → ConsS� (XS� )}�∊A
are jointly conservative.

Proof. Since each p ∊ P is locally closed, by further restricting to the strata, it su�ces to show that the
restriction functors {i∗p ∶ ConsP(X) → LC(Xp)}p∊P
are jointly conservative. By Corollary 3.1.17, the strati�ed∞-topos (Xp, {p}) is exodromic and the inclusionip,∗ ∶ (Xp, {p}) ↪ (X, P) is exodromic. Hence the claim follows from the identi�cation of the restriction
functor i∗p ∶ ConsP(X) → LC(Xp) with the functorFun(Π∞(X, P), Spc) → Fun(Π∞(Xp), Spc)
given by precomposition with the inclusion Π∞(Xp) ≃ Π∞(X, P)p ↪ Π∞(X, P). �

Finally, the∞-category of constructible objects with arbitrary presentable coe�cients is still presentable:

3.1.20 Lemma. Let (X, P) be a strati�ed∞-topos and let ℰ be a presentable∞-category. If for each p ∊ P,
the stratum Xp is monodromic, then the the∞-category ConsP(X; ℰ) is presentable and closed under colimits
in Sh(X; ℰ).
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Proof. By de�nition, ConsP(X; ℰ) �ts into a pullback square of∞-categoriesConsP(X; ℰ) ∏p∊P LC(Xp; ℰ)
Sh(X; ℰ) ∏p∊P Sh(Xp; ℰ)∏p i∗p

Since each Xp is monodromic, by Recollection 1.3.8, LC(Xp; ℰ) is presentable and closed under limits and
colimits in Sh(Xp; ℰ). The fact that the forgetful functor PrL → Cat∞ preserves limits [HTT, Proposition
5.5.3.13] completes the proof. �

3.1.21 Corollary. Let (X, P) be an exodromic strati�ed topos. Then for any presentable∞-category ℰ, the∞-category ConsP(X; ℰ) is presentable and closed under colimits in Sh(X; ℰ).
Proof. Combine Corollary 3.1.17 and Lemma 3.1.20. �

3.2 All morphisms are exodromic. We now use Corollary 3.1.17 to show that everymorphsim between
exodromic strati�ed∞-topoi is exodromic. We start by proving this in the special case where the target is
trivially strati�ed.

3.2.1 Lemma. Let f∗ ∶ (X, P) → (Y, ∗) be a morphism of strati�ed ∞-topoi, where the target is trivially
strati�ed. If the strati�ed∞-topoi (X, P) and (Y, ∗) are exodromic, then the morphism f∗ is exodromic.

Proof. Since (X, P) is exodromic, Lemma 2.2.17-(1) shows that the trivially strati�ed ∞-topos (X, ∗) is
exodromic. The morphism f∗ factors as a composite(X, P) (X, ∗) (Y, ∗) .
By Lemma 2.2.17-(2), the left-handmorphism is exodromic, and by Example 2.3.4 the right-handmorphism
is exodromic. Hence the composite is exodromic. �

For the following result, we introduce the following variant of Notation 2.1.9.

3.2.2 Notation. Let (X, R) be a strati�ed ∞-topos and �∶ R → P be a map of posets. Given p ∊ P, we
write Rp ≔ �−1(p) for the full subposet of R given by the �ber of � over p. Note that Xp = XRp . Hence
the stratum Xp is naturally a Rp-strati�ed∞-topos and the geometric morphism ip,∗ ∶ Xp ↪ X de�nes a
morphism of strati�ed∞-topoi (Xp, Rp) ↪ (X, R).
3.2.3 Theorem (all morphisms are exodromic). Let f∗ ∶ (X, P) → (Y,Q) be amorphism between exodromic
strati�ed∞-topoi. Then f∗ is exodromic.

Proof. By Corollary 3.1.19, the functors{i∗Pq ∶ ConsP(X) → ConsPq (Xq)}q∊Q
are jointly conservative. Moreover, since the subposet Pq ⊂ P is locally closed, by Corollary 3.1.17-(1) these
functors also preserve limits and colimits. Hence it su�ces to show that for each q ∊ Q, the composite i∗Pqf∗
preserves limits and colimits.

As in Observation 2.1.11, write fq ∶ (Xq, Pq) → (Yq, {q}) for the induced morphism of strati�ed∞-topoi.
Note that we have a commutative squareConsQ(Y) ConsP(X)

LC(Yq) ConsPq (Xq) .
f∗

i∗q i∗Pq
f∗q

http://www.math.ias.edu/~lurie/papers/HTT.pdf#theorem.5.5.3.13
http://www.math.ias.edu/~lurie/papers/HTT.pdf#theorem.5.5.3.13
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Again by Corollary 3.1.17-(1), the functor i∗q preserves limits and colimits. To complete the proof, note that by
Corollary 3.1.17-(1) the strati�ed∞-topoi (Xq, Pq) and (Yq, {q}) are exodromic; hence Lemma 3.2.1 shows
that functor f∗q preserves limits and colimits. Thus f∗q i∗q preserves limits and colimits. �

We can now cleanly state the functoriality of exit-path ∞-categories. For this, recall Notation 1.3.14
and De�nition 2.1.6.

3.2.4 Notation. Write StrTopex∞ ⊂ StrTop∞ for the full subcategory spanned by the exodromic strati�ed∞-topoi.

3.2.5 Observation (functoriality of exit-path∞-categories). The assignment (X, P) ↦ Π∞(X, P) re�nes
to a functor Π∞(−,−)∶ StrTopex∞ → Catidem∞ .
Speci�cally, this functor is given by the composite

StrTopex∞ (PrR,at)op ≃ PrL,at Catidem∞ ,Cons (−)ex∼
where the left-hand functor sends (X, P) to the∞-category ConsP(X) with functoriality given by pullback,
and the right-hand functor sends an atomically generated∞-category C to the∞-category Cex = (Cat)op
given by the opposite of the subcategory of atomic objects.

3.3 Stability under coarsening. Let (X, R) be an exodromic strati�ed∞-topos, and let �∶ R → P be a
map of posets. In this subsection, show that (X, P) is also exodromic and expressΠ∞(X, P) as a localization
of Π∞(X, R).
3.3.1 Observation. Let (X, R) be a strati�ed ∞-topos and let �∶ R → P be a map of posets. Since the
morphism of strati�ed∞-topoi (X, R) → (X, P) is the identity on the underlying∞-topos X, the pullback
along (X, R) → (X, P) is simply the inclusionConsP(X) ↪ ConsR(X) .
3.3.2 Lemma. Let (X, R) be a strati�ed∞-topos and let �∶ R → P be a map of posets. If (X, R) is exodromic,
then the following conditions are equivalent:
(1) The strati�ed∞-topos (X, P) is exodromic.

(2) The full subcategory ConsP(X) ⊂ ConsR(X) is closed under both limits and colimits.

Proof. Note that by Observation 3.3.1 we immediately have (1) ⇒ (2).
To show is that (2) ⇒ (1), we check the three conditions of De�nition 2.2.10. First note that since (X, R)

is exodromic, the∞-category ConsR(X) is atomically generated. Hence (2) and Proposition 1.1.13 imply
that the full subcategory ConsP(X) is atomically generated and the inclusionConsP(X) ⊂ ConsR(X)
admits both a left and a right adjoint. Since (X, R) is exodromic, the full subcategoryConsR(X) ⊂ X
is closed under limits and colimits; hence ConsP(X) ⊂ X is also closed under limits and colimits.

Write t∗ ∶ X → Fun(R, Spc) for the strati�cation, and s∗ ∶ X → Fun(P, Spc) for the composite �∗t∗. All
that remains to be shown is that the pullback functors∗ ∶ Fun(P, Spc) → ConsP(X)
preserves limits and colimits. For this, note that we have a commutative squareFun(P, Spc) Fun(R, Spc)

ConsP(X) ConsR(X) .
�∗

s∗ t∗
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Here, the bottom horizontal functor is the inclusion, which is also the pullback along the re�nement map(X, R) → (X, P). The functor �∗ preserves limits and colimits; by assumption both the bottom horizontal
functor and t∗ preserve limits and colimits. Hence s∗ also preserves limits and colimits. �

To compute the exit-path∞-category of a coarsening, we also make use of the following:

3.3.3 Lemma. Let F∶ C → D and G∶ D → ℰ be functors between∞-categories. WriteW ⊂ Mor(C) for the
collection of morphisms that GF carries to equivalences in ℰ. If F is a localization and G is conservative, thenF induces an equivalence C[W−1] ⥲ D .

Proof. Since F is a localization, it su�ces to show that given a morphism f in C, the morphism F(f) is an
equivalence if and only if f ∊ W. To see this, note that since G is conservative, F(f) is an equivalence if and
only if GF(f) is an equivalence. �

For the proof of stability under coarsening, recall Notations 2.1.9 and 3.2.2. We also introduce the follow-
ing notation:

3.3.4 Notation. Let (X, R) be a strati�ed∞-topos and �∶ R → P be a map of posets. If (X, R) is exodromic,
writeWP ⊂ Mor(Π∞(X, R)) for the collection of morphisms sent to equivalences by the compositeΠ∞(X, R) → R → P .

3.3.5 Theorem (stability under coarsening). Let (X, R) be an exodromic strati�ed∞-topos, and let�∶ R → P
be a map of posets. Then:
(1) The strati�ed∞-topos (X, P) is exodromic.

(2) The natural functorΠ∞(X, R) → Π∞(X, P) induces an equivalenceΠ∞(X, R)[W−1P ] ⥲ Π∞(X, P).
Proof. First we prove (1). Since (X, R) is exodromic, Corollary 3.1.21 shows that the subcategoryConsP(X) ⊂ ConsR(X)
is closed under colimits. To prove closure under limits, let F∙ ∶ A → ConsP(X) be a diagram. WriteF−∞ ≔ lim�∊A F�
for the limit computed in ConsR(X). We have to prove that for each p ∊ P, the restriction i∗p(F−∞) is locally
constant. Again by Corollary 3.1.17-(1), the functori∗p ∶ ConsR(X) → ConsRp (Xp)
preserves limits. Therefore, i∗p(F−∞) ≃ lim�∊A i∗p(F�) .
By assumption, each i∗p(F�) is a locally constant object of Xp. Since Xp = XRp , by Corollary 3.1.17-(2), the
trivially strati�ed∞-topos (Xp, {p}) is exodromic. Hence the subcategoryLC(Xp) ⊂ Xp
is closed under limits (Recollection 1.3.8). Therefore, i∗p(F−∞) is locally constant, as desired.

For item (2), note that (1) and Proposition 1.1.13 imply that the induced functor Π∞(X, R) → Π∞(X, P)
exhibits Π∞(X, P) as the idempotent completion of the localization of Π∞(X, R) at the class of morphisms
that the functor Π∞(X, R) → Π∞(X, P) carries to equivalences. Moreover, Corollary 3.1.17-(5) implies that
the induced functor Π∞(X, P) → P is conservative. Hence Lemma 3.3.3 shows that the induced functorΠ∞(X, R) → Π∞(X, P)
exhibits Π∞(X, P) as the idempotent completion of the localization Π∞(X, R)[W−1P ]. Corollary 3.1.17-
(5) shows that the natural functor Π∞(X, R) → R is conservative. Thus Proposition A.2.2 shows thatΠ∞(X, R)[W−1P ] is already idempotent complete, concluding the proof. �
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3.3.6 Notation. Write Env ∶ Cat∞ → Spc for the left adjoint to the inclusion Spc ⊂ Cat∞. For an∞-cate-
gory C, we can compute Env(C) as the localization C[C−1] at all morphisms in C [14, Corollary 2.10].

3.3.7 Corollary. Let (X, P) be an exodromic strati�ed∞-topos. Then there is a natural equivalenceEnv(Π∞(X, P)) ⥲ Π∞(X) .
Proof. Apply Theorem 3.3.5 to the map of posets P → ∗. �

3.4 Checking exodromy locally. We now observe that the existence of an exit-path∞-category can be
checked by descent. This generalizes [14, Proposition 3.6-(2); 29, Proposition 3.13-(2)] to the setting of
strati�ed∞-topoi. We �rst recall two fundamental facts about∞-topoi.

3.4.1 Recollection.
(1) The∞-category LTop∞ has all limits and colimits. Moreover, the forgetful functor LTop∞ → Cat∞

preserves limits. See [HTT, Proposition 6.3.2.3 & Corollary 6.3.4.7].

(2) A colimit in an∞-category X with pullbacks is van Kampen if the functorXop → Cat∞ , U ↦ X∕U
transforms it into a limit in Cat∞. A presentable∞-category X is an∞-topos if and only if all colimits
in X are van Kampen; see [HTT, Proposition 5.5.3.13, Theorem 6.1.3.9(3), & Proposition 6.3.2.3; 23].

3.4.2 Proposition (van Kampen). LetA be an∞-category and let (X∙, P∙)∶ A → StrTop∞ be a diagram of
strati�ed∞-topoi. Let (X∞, P∞) be a cone under (X∙, P∙). Assume that the following conditions are satis�ed:
(1) For each � ∊ A, the strati�ed∞-topos (X�, P�) is exodromic.

(2) The natural pullback functorsX∞ → lim�∊Aop X� and ConsP∞(X∞) → lim�∊Aop ConsP� (X�)
are equivalences.

Then the strati�ed∞-topos (X∞, P∞) is exodromic and the natural functorcolim�∊A Π∞(X�, P�) → Π∞(X∞, P∞)
is an equivalence of∞-categories. Here the colimit is formed in Catidem∞ .

Proof. Immediate from the de�nitions and the equivalence PrL,at ≃ Catidem∞ of Recollection 1.1.11. �

3.4.3 Remark (on idempotent completion). Let P be a poset and write Catcons∞,∕P ⊂ Cat∞,∕P for the full
subcategory spanned by those objects such that the speci�ed functor C → P is conservative. The forgetful
functor

Cat∞,∕P → Cat∞
preserves colimits. The inclusion Catcons∞,∕P ↪ Cat∞,∕P preserves colimits (Observation A.3.5). Hence, the
forgetful functor

Catcons∞,∕P → Cat∞
preserves colimits. By Lemma A.1.3, every object of Catcons∞,∕P is idempotent complete. Hence in Proposi-
tion 3.4.2, if the diagram of stratifying posets is constant, then the colimit in Cat∞ is already idempotent
complete.

3.4.4 Corollary. Let (X, P) be a strati�ed∞-topos and letU∙ ∶ A → X be a diagramwith colim�∊AU� ≃ 1X .
If for each � ∊ A, the strati�ed∞-topos (X∕U� , P) is exodromic, then the strati�ed∞-topos (X, P) is exodromic
and the natural functor colim�∊A Π∞(X∕U� , P) → Π∞(X, P)
is an equivalence of∞-categories.

Proof. Immediate from Proposition 3.4.2 and the fact that colimits in an∞-topos are van Kampen (Recol-
lection 3.4.1-(2)). �

http://www.math.ias.edu/~lurie/papers/HTT.pdf#theorem.6.3.2.3
http://www.math.ias.edu/~lurie/papers/HTT.pdf#theorem.6.3.4.7
http://www.math.ias.edu/~lurie/papers/HTT.pdf#theorem.5.5.3.13
http://www.math.ias.edu/~lurie/papers/HTT.pdf#theorem.6.1.3.9
http://www.math.ias.edu/~lurie/papers/HTT.pdf#theorem.6.3.2.3
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3.5 The Künneth formula. We now prove a Künneth formula for the exit-path∞-category of the product
of exodromic strati�ed∞-topoi. For this subsection, it may be useful to reviewRecollection 1.3.3 on products
of∞-topoi and tensor products of presentable∞-categories. One key input is the Künneth formula in the
unstrati�ed setting (Proposition 1.3.19).

We start by noting that the product of strati�ed∞-topoi is naturally strati�ed:

3.5.1 De�nition (strati�cation of a product). Let s∗ ∶ X → Fun(P, Spc) and t∗ ∶ Y → Fun(Q, Spc) be
strati�ed∞-topoi. We write (X ⊗ Y, P × Q) for the strati�ed∞-toposs∗ ⊗ t∗ ∶ X ⊗ Y → Fun(P, Spc) ⊗ Fun(Q, Spc) ≃ Fun(P × Q, Spc) .
3.5.2 Observation. In the setting of De�nition 3.5.1, assume that (X, P) and (Y, Q) are exodromic strati�ed∞-topoi. Then:
(1) Since s∗ and t∗ preserve limits and colimits,s∗ ⊗ t∗ ∶ Fun(P × Q, Spc) → X ⊗ Y

preserves limits and colimits.

(2) Since the inclusions ConsP(X) ↪ X and ConsQ(Y) ↪ Y are both left and right adjoints, the induced
functor ConsP(X) ⊗ ConsQ(Y) → X ⊗ Y
is fully faithful and both a left and right adjoint.

3.5.3 Lemma. Let (X, P) and (Y, Q) be exodromic strati�ed∞-topoi. The inclusionConsP(X) ⊗ ConsQ(Y) ↪ X ⊗ Y
factors through ConsP×Q(X ⊗ Y).
Proof. Let (p, q) ∊ P × Q. Note that by the de�nition of ConsP(X) ⊗ ConsQ(Y), the composite

(3.5.4) ConsP(X) ⊗ ConsQ(Y) X ⊗ Y Xp ⊗ Yqi∗p⊗i∗q
factors through LC(Xp) ⊗ LC(Yq). By Proposition 1.3.19, we haveLC(Xp) ⊗ LC(Yq) = LC(Xp ⊗ Yq)
as full subcategories of Xp ⊗ Yq. Hence the functor (3.5.4) factors through LC(Xp ⊗ Yq), as desired. �

3.5.5 Proposition (Künneth formula for exodromic strati�ed ∞-topoi). Let s∗ ∶ X → Fun(P, Spc) andt∗ ∶ Y → Fun(Q, Spc) be exodromic strati�ed∞-topoi. If P and Q are noetherian, then:
(1) The natural fully faithful functorConsP(X) ⊗ ConsQ(Y) ↪ ConsP×Q(X ⊗ Y)

is an equivalence.

(2) The strati�ed∞-topos (X ⊗ Y, P × Q) is exodromic and the natural functorΠ∞(X ⊗ Y, P × Q) → Π∞(X, P) × Π∞(Y, Q)
is an equivalence of∞-categories.

Proof. We now proceed by noetherian induction. First, let us prove that when Q = ∗, the functor we just
constructed ⊠∶ ConsP(X) ⊗ LC(Y) → ConsP(X ⊗ Y)



38 PETER J. HAINE, MAURO PORTA, AND JEAN-BAPTISTE TEYSSIER

is an equivalence. When P = ∗, the conclusion follows from Proposition 1.3.19-(3). Otherwise, notice that
Lemma 4.1.10 implies that the question is local on P. We can therefore reduce ourselves to prove that⊠ is
an equivalence for posets of the form P≥p. In this case, consider the following diagram:LC(Xp) ⊗ LC(Y) ConsP(X) ⊗ LC(Y) ConsP>p (X>p) ⊗ LC(Y)

LC(Xp ⊗ Y) ConsP(X ⊗ Y) ConsP>p (X>p ⊗ Y) .⊠ ⊠ ⊠
Since Y is monodromic, LC(Y) is compactly generated and therefore the top row is a recollement. By
Lemma 3.1.9-(4), the bottom line is also a recollement. The inductive hypothesis guarantees that the outer
vertical functors are equivalences. Therefore, Lemma 4.1.8-(4) implies that the same goes for the middle
one. We now repeat the same argument proceeding by noetherian induction on the length of Q and for
arbitrary P. Reasoning as above, we reduce ourselves to consider the following diagram:ConsP(X) ⊗ LC(Y) ConsP(X) ⊗ ConsQ(Y) ConsP(X) ⊗ ConsQ>q (Y>q)

ConsP×{q}(X ⊗ Yq) ConsP×Q(X ⊗ Y) ConsP×Q>q (X ⊗ Y>q) .
⊠ ⊠ ⊠

Once again, since (X, P) is exodromic, ConsP(X) is compactly generated and therefore the top row is a
recollement. The same goes for the bottom row. Thus, the conclusion follows from the previous step, the
inductive hypothesis and Lemma 4.1.8-(4).

For (2), note that byObservation 3.5.2, the pullback functor s∗⊗t∗ preserves limits and colimits.Moreover,
by (1), ConsP×Q(X ⊗ Y) is atomically generated and closed under limits and colimits in X ⊗ Y. Hence,(X ⊗ Y, P × Q) is exodromic. Finally, the equivalenceConsP(X) ⊗ ConsQ(Y) ⥲ ConsP×Q(X ⊗ Y)
shows that Π∞(X ⊗ Y, P × Q) ⥲ Π∞(X, P) × Π∞(Y, Q) . �

3.6 Stability properties of categorical �niteness & compactness. As explained in [32, §7], the com-
pactness of exit-path∞-categories can be used to prove that moduli stacks of constructible and perverse
sheaves are locally geometric. Hence knowing when a strati�ed∞-topos has compact exit-path∞-catego-
ry is of great utility. To complete this section, we explain why the classes of exodromic strati�ed∞-topoi
with �nite or compact exit-path∞-category are stable under coarsening. In §5, we use the results of this
subsection to extend the representability results from [32, §7] beyond the conical situation.

Recall from [32, De�nition 2.2.1] the following:

3.6.1 De�nition. Let (X, P) be an exodromic strati�ed∞-topos. We say that (X, P) is:
(1) Categorically �nite if Π∞(X, P) is a �nite object of Cat∞. (See Recollection A.3.1.)

(2) Categorically compact if Π∞(X, P) is a compact object of Cat∞.

3.6.2 Lemma. Let (X, P) be an exodromic strati�ed∞-topos and S ⊂ P a locally closed subposet. If (X, P) is
categorically �nite (resp., compact), then (XS , S) is categorically �nite (resp., compact).

Proof. This is a special case of Proposition A.3.17. �

3.6.3 Lemma. Let (X, P) be a strati�ed∞-topos and let U1, … ,Un ∊ X be a �nite set of objects such that
the induced map U1 ⊔⋯ ⊔Un → 1X is an e�ective epimorphism. Assume that for all 1 ≤ i1 < ⋯ < ik ≤ n,
the strati�ed∞-topos (X∕Ui1×⋯×Uik , P) is exodromic and is categorically �nite (resp., compact). Then (X, P) is
exodromic and is categorically �nite (resp., compact).
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Proof. Immediate from Corollary 3.4.4 and the fact that both �nite and compact∞-categories are closed
under �nite colimits in Cat∞. �

3.6.4 Proposition. Let (X, R) be an exodromic strati�ed∞-topos and let �∶ R → P be a map of posets. If(X, R) is categorically �nite (resp., compact), then (X, P) is categorically �nite (resp., compact).

Proof. The fact that (X, P) is exodromic follows from the stability of the class of exodromic strati�ed∞-topoi
under coarsening (Theorem 3.3.5-(1)). By Theorem 3.3.5-(2), there is an equivalenceΠ∞(X, P) ≃ Π∞(X, R)[W−1P ] .
Since Π∞(X, R) is a �nite (resp., compact), the claim now follows from Proposition A.3.16. �

4 Exodromy with coefficients

This section concerns exodromy with coe�cients in∞-categories other than the∞-category of spaces.
In §4.1, we explain when the exodromy equivalence holds for sheaves with coe�cients in more general
presentable∞-categories. In particular, exodromy with coe�cients in Spc implies exodromy with coe�-
cients in any compactly assembled∞-category; see Corollary 4.1.15. Subsection 4.2 treats exodromy with
coe�cients in the∞-category PrL of presentable∞-categories; these results are needed in forthcoming
work of the second- and third-named authors [33].

4.1 Exodromywith coe�cients in a presentable∞-category. We are also interested in when the exit-
path∞-category corepresents constructible objects with coe�cients in a presentable∞-category ℰ. The
following slight generalization of the discussion in [32, §6.1] captures this more general situation.

4.1.1 Observation. Let (X, P) be an exodromic strati�ed∞-topos and let ℰ be a presentable∞-category.
Since the∞-category ConsP(X) is presentable and the inclusionConsP(X) ↪ X
is both a left and a right adjoint, tensoring with ℰ gives a fully faithful functor⊠∶ ConsP(X) ⊗ ℰ ↪ Sh(X; ℰ)
that is both a left and a right adjoint.

4.1.2 Lemma. Let ℰ be a presentable∞-category, and let (X, P) be an exodromic strati�ed∞-topos. Then
the functor ⊠∶ ConsP(X) ⊗ ℰ ↪ Sh(X; ℰ)
factors through ConsP(X; ℰ) ⊂ Sh(X; ℰ).
Proof. The functoriality of the tensor product in PrL implies that for each p ∊ P, there is a commutative
square ConsP(X) ⊗ ℰ Sh(X) ⊗ ℰ

LC(Xp) ⊗ ℰ Sh(Xp) ⊗ ℰ .

i∗p⊗idℰ i∗p⊗idℰ

Since the strata of (X, P) are monodromic (Corollary 3.1.17-(2)), the natural functorLC(Xp) ⊗ ℰ → LC(Xp; ℰ)
is an equivalence (Recollection 1.3.8). The claim is now immediate. �
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4.1.3. In the setting of Lemma 4.1.2, we have a commutative triangle

(4.1.4)
ConsP(X) ⊗ ℰ ConsP(X; ℰ)

Sh(X; ℰ) .
4.1.5 De�nition. Let ℰ be a presentable ∞-category and let (X, P) be a strati�ed ∞-topos. We say that(X, P) is ℰ-exodromic if the following conditions are satis�ed:
(1) The strati�ed∞-topos (X, P) is exodromic.

(2) The functor⊠∶ ConsP(X) ⊗ ℰ ↪ ConsP(X; ℰ) is an equivalence.

We collect some basic properties of ℰ-exodromic strati�ed∞-topoi.

4.1.6 Observation. Let (X, P) be an exodromic strati�ed∞-topos. Since equivalences of∞-categories are
stable under retracts, the class of presentable∞-categories ℰ for which (X, P) is ℰ-exodromic is also stable
under retracts.

4.1.7 Lemma. Let ℰ be a presentable∞-category and let (X, P) be a ℰ-exodromic strati�ed∞-topos. Then
the equivalence ⊠∶ ConsP(X) ⊗ ℰ ⥲ ConsP(X; ℰ)
induces a canonical equivalence Fun(Π∞(X, P), ℰ) ≃ ConsP(X; ℰ) .
Proof. Indeed, we have the following canonical equivalences:ConsP(X) ⊗ ℰ ≃ Fun(Π∞(X, P), Spc) ⊗ ℰ≃ Fun(Π∞(X, P), ℰ) . [HA, Proposition 4.8.1.17]

The conclusion follows. �

We now prove an analogue of Corollary 3.1.17. We �rst need the following lemma:

4.1.8 Lemma. Let X1 and X2 be∞-categories with �nite limits and an inital object. LetZ1 X1 U1
Z2 X2 U2

FZ F
i∗1 j∗1

FU
i∗2 j∗2

be a commutative diagram where each of the horizontal rows exhibits Xi as the recollement of Zi and Ui .
(1) If F is essentially surjective, then FZ and FU are essentially surjective.

(2) If FZ preserves the initial object, then the right-hand square is horizontally left adjointable. In this case, ifF is fully faithful (resp., an equivalence), then the same is true of FU .
(3) If FU preserves the terminal object, then the left-hand square is horizontally right adjointable. In this case,

if F is fully faithful (resp., an equivalence), then the same is true of FZ.
(4) Assume that F is left exact. If FZ and FU are equivalences, then F is also an equivalence

Proof. For (1), we prove that FU is essentially surjective; the proof of the essential surjectivity of FZ is
identical. SinceF is essentially surjective, givenu ∊ U2 there existsx ∊ X1 and an equivalence j2,∗(u) ≃ F(x).
Hence the full faithfulness of j2,∗ and the commutativity of the right-hand square show thatu ≃ j∗2j2,∗(u) ≃ j∗2 (F(x)) ≃ FU(j∗1 (x)) .

http://www.math.ias.edu/~lurie/papers/HA.pdf#theorem.4.8.1.17
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We now prove (2); item (3) follows by a dual argument. Consider the exchange transformation�∶ j2,!FU → Fj1,! .
Since the bottom line is a recollement, to prove that � is an equivalence it su�ces to check that j∗2 (�)
and i∗2 (�) are equivalences. We �rst deal with the former. Since the right-hand square commutes, we havej∗2Fj1,! ≃ FUj∗1j1,!, so the conclusion follows from the full faithfulness of both j1,! and j2,!. As for i∗2 (�),
recall that the theory of recollements shows that both i∗2j2,! and i∗1j1,! are constant with value the initial
object. Also, since the left-hand square commutes, we have i∗2Fj1,! ≃ FZi∗1j1,!. Since FZ preserves the initial
object, it follows that both the source and target of i∗2 (�) are constant with value the initial object; hencei∗2 (�) is an equivalence.

From the horizontal left adjointability of the right-hand square and the full faithfulness of j1,! and j2,!, it
immediately follows that if F is fully faithful, then FU is also fully faithful. Finally, if F is an equivalence,
then we have just seen that FU is fully faithful and (1) shows that FU is also essentially surjective.

We are left to prove (4). Since FZ and FU are equivalences, they preserve both the initial and the terminal
object. Then (4) follows from the above adjointability statements and [HA, Proposition A.8.14]. �

4.1.9 Proposition. Let (X, P) be a strati�ed∞-topos and let ℰ be a presentable∞-category. Let S ⊂ P be a
locally closed subposet. If (X, P) is ℰ-exodromic and ℰ is compatible with recollements (De�nition 3.1.4), then(XS , S) is also ℰ-exodromic.

Proof. It is enough to prove that ifU ⊂ P is an open subposet with closed complement Z, then both (XU , U)
and (XZ , Z) areℰ-exodromic. First of all, we already know fromCorollary 3.1.17 that these strati�ed∞-topoi
are exodromic. Consider now the following commutative diagram:

ConsU(XU) ⊗ ℰ ConsP(X) ⊗ ℰ ConsZ(XZ) ⊗ ℰ
ConsU(XU ; ℰ) ConsP(X; ℰ) ConsZ(XZ ; ℰ) .

⊠U
i∗U⊗ℰ i∗Z⊗ℰ

⊠ ⊠Z
i∗U i∗Z

Since (X, P) is ℰ-exodromic, the middle vertical functor is an equivalence. Morever, because because (X, P)
is exodromic, the functor ConsP(X) ⊗ ℰ → Sh(X) ⊗ ℰ ≃ Sh(X; ℰ)
preserves both limits and colimits. Combining Corollary 2.2.18 and Lemma 3.1.9-(4), we see that the bottom
row exhibits ConsP(X; ℰ) as a recollement of ConsU(XU ; ℰ) and ConsZ(XZ ; ℰ). On the other hand, sinceℰ is compatible with recollements, the top row is a recollement as well. Clearly,⊠U preserves the initial
object. On the other hand, since⊠Z is compatible with the inclusion intoSh(XZ) ⊗ ℰ ≃ Sh(XZ ; ℰ)
and since the terminal object in Sh(XZ ; ℰ) is Z-constructible thanks to Corollary 2.2.18, we conclude that⊠Z preserves the terminal object as well. Thus, Lemma 4.1.8 implies that⊠U and⊠Z are equivalences. �

To explain why ℰ-exodromicity can be checked locally, we need descent for the tensor decompositionConsP(X) ⊗ ℰ ≃ ConsP(X; ℰ) .
For this, we make use of the following lemma.

4.1.10 Lemma. Let A be a small∞-category and let C∙ ∶ A → Cat∞ be a diagram of∞-categories. Assume
that for each � ∊ A, the∞-category C� is presentable and that for each morphism � → � in A, the transition
functor C� → C� is both a left and a right adjoint. Then:

(1) The limits of C∙ when computed in PrR , PrL, or Cat∞ all agree.

http://www.math.ias.edu/~lurie/papers/HA.pdf#atheorem.A.8.14
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(2) For any presentable∞-category ℰ, the natural morphismlim�∊A ℰ ⊗ C� → ℰ ⊗ lim�∊A C�
in PrL is an equivalence. (Here, both limits are computed in PrL.)

Proof. Item (1) follows from the fact that both of the forgetful functors PrL → Cat∞ and PrR → Cat∞
preserve limits [HTT, Proposition 5.5.3.13 & Theorem 5.5.3.18]. Item (2) follows from (1), the equivalence
PrR ≃ (PrL)op, and the fact that the functorℰ ⊗ (−)∶ PrR → PrR
preserves limits [HA, Remark 4.8.1.24]. �

4.1.11 Proposition. Let ℰ be a presentable∞-category, let A be an∞-category, and let(X∙, P∙)∶ A → StrTop∞
be a diagram of strati�ed∞-topoi. Let (X∞, P∞) be a cone under (X∙, P∙). Assume that the following conditions
are satis�ed:
(1) For each � ∊ A, the strati�ed∞-topos (X�, P�) is ℰ-exodromic.

(2) The natural pullback functorsX∞ → lim�∊Aop X� and ConsP∞(X∞) → lim�∊Aop ConsP� (X�)
as well as ConsP∞(X∞; ℰ) → lim�∊Aop ConsP� (X�; ℰ)
are equivalences.

Then the strati�ed∞-topos (X∞, P∞) is ℰ-exodromic.

Proof. Proposition 3.4.2 implies that (X, P) is exodromic. Consider the following commutative squareConsP∞(X∞) ⊗ ℰ lim�∊Aop ConsP� (X�) ⊗ ℰ
ConsP∞(X∞; ℰ) lim�∊Aop ConsP� (X�; ℰ)

Since each (X�, P�) is ℰ-exodromic, the left vertical functor is an equivalence. Also, by assumption, the
bottom horizontal functor is an equivalence. Thus it su�ces to show that the top horizontal functor is an
equivalence. By Lemma 4.1.10, it su�ces to show that for every morphism � → � in Aop, the pullback
functor ConsP� (X�) → ConsP� (X�)
is both a left and a right adjoint. By assumption (X� , P�) and (X�, P�) are exodromic, so this is an immediate
consequence of Theorem 3.2.3. �

4.1.12 Corollary. Let (X, P) be a strati�ed∞-topos and let ℰ be a presentable∞-category. LetU∙ ∶ A → X
be a diagram with colim�∊AU� ≃ 1X . If for each � ∊ A, the strati�ed∞-topos (X∕U� , P) is ℰ-exodromic, then
the strati�ed∞-topos (X, P) is also ℰ-exodromic.

Proof. By Recollection 3.4.1 and Proposition 4.1.11, it su�ces to show that the natural pullback functor

(4.1.13) ConsP(X; ℰ) → lim�∊Aop ConsP(X∕U� ; ℰ)
is an equivalence. Notice that for every map � → � in Aop, the induced pullback functorX∕U� → X∕U�

http://www.math.ias.edu/~lurie/papers/HTT.pdf#theorem.5.5.3.13
http://www.math.ias.edu/~lurie/papers/HTT.pdf#theorem.5.5.3.18
http://www.math.ias.edu/~lurie/papers/HA.pdf#theorem.4.8.1.24
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is both a left and a right adjoint. Therefore, Lemma 4.1.10 implies that the pullback functorSh(X; ℰ) → lim�∊Aop Sh(X∕U� ; ℰ)
is an equivalence. This immediately implies that (4.1.13) is fully faithful. To conclude, it is enough to
observe that F ∊ Sh(X; ℰ) is P-constructible if and only if for every � ∊ A, the restriction of F to X∕U� isP-constructible. �

4.1.14 Recollection (compactly assembled∞-categories). A presentable∞-category ℰ is compactly as-
sembled if ℰ is a retract in PrL of a compactly generated∞-category [SAG, De�nition 21.1.2.1 & Theorem
21.1.2.18]. If ℰ is a presentable stable∞-category, then ℰ is compactly assembled if and only if ℰ is dualizable
in the symmetric monoidal∞-category of presentable stable∞-categories and left adjoints equipped with
the Lurie tensor product [SAG, Proposition D.7.3.1].

4.1.15 Corollary. Let (X, P) be a exodromic strati�ed∞-topos and let ℰ be a presentable∞-category. Then:
(1) If ℰ is compactly assembled, then (X, P) is ℰ-exodromic.

(2) If ℰ is stable and P is noetherian, then (X, P) is ℰ-exodromic.

Proof. For (1), note that by Observation 4.1.1, it su�ces to prove the claim in the case that ℰ is compactly
generated. In this case, the proof of [30, Theorem B.9] works verbatim.

We now prove (2). For p ∊ P, we write X≥p for XP≥p . Since the sets {P≥p}p∊P form an open cover of P, by
Corollary 4.1.12 it su�ces to show that for every p ∊ P the strati�ed∞-topos (X≥p, P≥p) is ℰ-exodromic.
We prove this statement by noetherian induction. When P is a single element, the conclusion follows from
Recollection 1.3.8. We are then reduced to showing that if for every q > p the strati�ed∞-topos (X≥q, P≥q)
is ℰ-exodromic, then (X≥p, P≥p) is also ℰ-exodromic. Note thatP≥p ∖ {p} = P>p = ⋃

q>p P≥q .
Thus, Corollary 4.1.12 implies that (X>p, P>p) is ℰ-exodromic.

Now consider the following diagram:LC(Xp) ⊗ ℰ ConsP(X) ⊗ ℰ ConsP>p (X>p) ⊗ ℰ
LC(Xp; ℰ) ConsP(X; ℰ) ConsP>p (X>p; ℰ) .

⊠ ⊠ ⊠
The inductive hypothesis implies that the exterior vertical functors are equivalences. Since ℰ is stable,ConsP(X; ℰ) is closed under �nite limits in Sh(X; ℰ). Thus, Corollary 3.1.21 implies that the assumptions
of Lemma 3.1.9-(4) are satis�ed. It follows that the bottom line is a recollement. Since ℰ is stable, it is
compatible with recollements; therefore, the top line is also a recollement. Thus, Lemma 4.1.8-(4) implies
that the middle functor is an equivalence as well. �

4.2 Exodromy with coe�cients in PrL. Let (X, P) be an exodromic strati�ed ∞-topos. Recall that
we write Cat∞ for the (very large) ∞-category of large ∞-categories. Working in a su�ciently large
Grothendieck universe, Cat∞ is compactly generated. Therefore, combining Lemma 4.1.7 with Corol-
lary 4.1.15, we obtain an equivalence

(4.2.1) ConsP(X;Cat∞) ≃ Fun(Π∞(X, P),Cat∞) .
In many situations it is convenient to replace Cat∞ by PrL; however, since PrL is not itself presentable,
one needs some extra care.

4.2.2 De�nition. Let (X, P) be a strati�ed∞-topos. The∞-category of PrL-valued sheaves on X isSh(X;PrL) ≔ Funlim(Xop,PrL) .

http://www.math.ias.edu/~lurie/papers/SAG-rootfile.pdf#theorem.21.1.2.1
http://www.math.ias.edu/~lurie/papers/SAG-rootfile.pdf#theorem.21.1.2.18
http://www.math.ias.edu/~lurie/papers/SAG-rootfile.pdf#theorem.21.1.2.18
http://www.math.ias.edu/~lurie/papers/SAG-rootfile.pdf#theorem.D.7.3.1
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4.2.3 Observation. Recall from [HTT, Proposition 5.5.3.13] that the forgetful functor PrL → Cat∞ pre-
serves limits. Since Sh(X;Cat∞) ≔ X ⊗ Cat∞, [HA, Proposition 4.8.1.17] supplies a canonical functorSh(X;PrL) → Sh(X;Cat∞) .
4.2.4 De�nition. Let (X, P) be a strati�ed∞-topos. The∞-category of PrL-valued P-constructible sheaves
on X is the �ber productConsP(X;PrL) ≔ Sh(X;PrL) ×Sh(X;Cat∞)ConsP(X;Cat∞) .

Although the above de�nition might seem ad hoc (because the restriction to strata are computed in
Cat∞ rather than in PrL), it is justi�ed by the following result:

4.2.5 Proposition. Let (X, P) be an exodromic strati�ed∞-topos. Then the equivalence (4.2.1) induces an
adjoint equivalence Φ∶ ConsP(X;PrL) ⇆ Fun(Π∞(X, P),PrL)∶ Ψ .

Proof. Under the identi�cationConsP(X;Cat∞) ≃ ConsP(X) ⊗ Cat∞ ≃ Funlim(ConsP(X)op,Cat∞) ,
the equivalence (4.2.1) is realized by the functorΦ∶ Funlim(ConsP(X)op,Cat∞) → Fun(Π∞(X, P),Cat∞)
given by restriction along the inclusion Π∞(X, P) ↪ ConsP(X)op. The inverse of Φ is the functorΨ∶ Fun(Π∞(X, P),Cat∞) → Funlim(ConsP(X)op,Cat∞)
given by right Kan extension along the same inclusion. Consider the compositeConsP(X;PrL) ConsP(X;Cat∞) Fun(Π∞(X, P),Cat∞) .Φ
Unraveling the de�nitions, we see that this functor takes F ∊ ConsP(X;PrL) seen as a limit-preserving
functor F∶ ConsP(X)op → PrL
to the restriction of F toΠ∞(X, P). In particular, this composite factors through Fun(Π∞(X, P),PrL). Com-
mitting a slight abuse of notation, we still denote the resulting functor asΦ∶ ConsP(X;PrL) → Fun(Π∞(X, P),PrL) .
Similarly, since the forgetful functor PrL → Cat∞ preserves limits by [HTT, Proposition 5.5.3.13] we see
that Ψ induces a well de�ned functorΨ∶ Fun(Π∞(X, P),PrL) → ConsP(X;PrL) .
Since the pair (Φ,Ψ) is an adjoint equivalence and the forgetful functor PrL → Cat∞ is faithful and full on
equivalences, we deduce that unit and counits at the level ofCat∞ induce a unit and a counit transformation
at the level of PrL, and therefore that they form an adjoint equivalence. �

4.2.6 Corollary. Let f∗ ∶ (X, P) → (Y,Q) be a morphism of exodromic strati�ed∞-topoi. Then the functorf∗ ∶ ConsQ(Y;Cat∞) → ConsP(X;Cat∞)
induces a well de�ned functor f∗ ∶ ConsQ(Y;PrL) → ConsP(X;PrL)
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making the square ConsQ(Y;PrL) Fun(Π∞(Y, Q),PrL)
ConsP(X;PrL) Fun(Π∞(X, P),PrL)

f∗ −◦Π∞(f)
commutative.

Proof. Recall from Theorem 3.2.3 that f∗ is exodromic. Since Cat∞ is compactly generated, it follows from
Corollary 4.1.15 that the diagramConsQ(Y;Cat∞) Fun(Π∞(Y, Q),Cat∞)

ConsP(X;Cat∞) Fun(Π∞(X, P),Cat∞)
f∗ −◦Π∞(f)

commutes. Since the functor −◦Π∞(f) clearly lifts to a functor−◦Π∞(f)∶ Fun(Π∞(Y, Q),PrL) → Fun(Π∞(X, P),PrL) ,
it follows from Proposition 4.2.5 that the same is true of f∗. �

4.2.7 Warning. The use of constructible sheaves inCorollary 4.2.6 is fundamental. For instance, the functorf∗ ∶ Sh(Y;Cat∞) → Sh(X;Cat∞)
generally does not carry Sh(Y;PrL) to Sh(X;PrL).
4.2.8 Notation. LetPrL,ω ⊂ PrL for the non-full subcategorywith objects compactly generated presentable∞-categories and morphisms left adjoints that preserve compact objects.

4.2.9. Recall from [7, Proposition 2.8.4] that PrL,ω is compactly generated. In particular for an exodromic
strati�ed∞-topos (X, P), Lemma 4.1.7 with Corollary 4.1.15 provide an adjoint equivalenceΦ(ω) ∶ ConsP(X;PrL,ω) ⇆ Fun(Π∞(X, P),PrL,ω)∶ Ψ(ω) .
The natural functor PrL,ω → PrL induces by composition a mapj ∶ Fun(Π∞(X, P),PrL,ω) → Fun(Π∞(X, P),PrL) .
However, since the functor PrL,ω → PrL does not preserve limits, we do not get an induced functorSh(X;PrL,ω) → Sh(X;PrL) .
On the other hand, we have:

4.2.10 Corollary. There exists a canonical functorConsP(X;PrL,ω) → ConsP(X;PrL)
which makes the square

ConsP(X;PrL,ω) Fun(Π∞(X, P),PrL,ω)
ConsP(X;PrL) Fun(Π∞(X, P),PrL)

Φ(ω)X,P
j

ΦX,P
commute.

Proof. Thanks to Proposition 4.2.5, it is enough to de�ne the left vertical map as ΨX,P◦j◦Φ(ω)X,P. �



46 PETER J. HAINE, MAURO PORTA, AND JEAN-BAPTISTE TEYSSIER

5 Applications & examples

In this section, we apply the stability properties of § 3 to strati�ed ∞-topoi arising from topology. In
§5.1, we introduce the topological context for our results and state the stability theorem in this context
(Theorem 5.1.7). Importantly, as a consequence of Theorem 3.0.1 and the exodromy theorem for conically
strati�ed spaces [32], we deduce that for any strati�ed space (X, P) that locally admits a conical re�ne-
ment, the strati�ed ∞-topos (Shhyp(X), P) is exodromic (see Proposition 5.2.9). Many examples fall into
this framework; see §5.3. Of particular interest are strati�ed spaces coming from subanalytic geometry and
real algebraic geometry. Under mild assumptions, we prove that in these geometric settings, the exit-path∞-categories are �nite (Theorems 5.3.9 and 5.3.13). In §5.4, we use exodromy combined with these �nite-
ness results to prove representability results for moduli stacks of constructible and perverse sheaves (see
Theorems 5.4.9 and 5.4.16 and Corollary 5.4.17). This generalizes previous work of Porta–Teyssier in the
conical situation [32, §7]. For use in a future paper, in §5.5, given an exodromic strati�ed∞-topos (X, R)
and map of posets �∶ R → P, we provide a recognition criterion for when R-constructible objects are P-
constructible. In §5.6, we conclude by posing some questions about the relationship between our work and
Lurie’s simplicial model for exit-path∞-categories in the setting of conically re�neable strati�cations.

5.1 Consequences for strati�ed topological spaces. To �x a topological context to apply Theorem 3.0.1,
we make the following de�nition.

5.1.1 De�nition. Let ℰ be a presentable∞-category. We say that a strati�ed topological space s ∶ X → P
is ℰ-exodromic if the strati�ed∞-toposshyp∗ ∶ Shhyp(X) → Fun(P, Spc)
is ℰ-exodromic. In this case, we write Π∞(X, P) ≔ Π∞(Shhyp(X), P) .
We also have the topological version of De�nition 3.6.1:

5.1.2 De�nition. Let (X, P) be an exodromic strati�ed space. We say that (X, P) is:
(1) Categorically �nite if Π∞(X, P) is a �nite object of Cat∞. (See Recollection A.3.1.)

(2) Categorically compact if Π∞(X, P) is a compact object of Cat∞.

The following class of presentable ∞-categories is well-behaved from the perspective of exodromy in
topology:

5.1.3 De�nition. Let P be a poset. We say that a presentable ∞-category ℰ is P-admissible if for every
conically P-strati�ed space (X, P) the hyperrestriction functors{i∗,hypp ∶ Shhyp(X; ℰ) → Shhyp(Xp; ℰ)}p∊P
are jointly conservative. We say that a presentable ∞-category ℰ is admissible if for every poset P, the∞-category ℰ is P-admissible.

5.1.4 Example [21, Lemma 5.21; 19, Lemma 2.12]. Let ℰ be a presentable∞-category.
(1) If ℰ is compactly assembled, then ℰ is admissible.

(2) If ℰ is stable or an∞-topos, then for every noetherian poset P, the∞-category ℰ is P-admissible.

5.1.5 Example [32, Theorem 5.17 & Remark 5.18]. Let (X, P) be a conically strati�ed space with locally
weakly contractible strata and let ℰ be a P-admissible∞-category. Then (X, P) is ℰ-exodromic.

When the strata of (X, P) are locally weakly contractible, we get a particularly nice description of the
objects of the exit-path∞-category:
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5.1.6 Observation (the objects ofΠ∞(X, P)). Let (X, P) be an exodromic strati�ed spacewith locallyweakly
contractible strata. Combining Example 1.3.9-(1) with Observation 3.1.18, we see that there is a natural
identi�cation Π∞(X, P)≃ ≃ ∐p∊P Π∞(Xp)
between the maximal sub-∞-groupoid of Π∞(X, P) and the coproduct of the underlying homotopy types
of the strata of (X, P).

Hence each point x ∊ X gives rise to an object [x] ∊ ConshypP (X), and every object of Π∞(X, P) is of this
form. Moreover, it follows from the functoriality of the monodromy equivalence that the functorConshypP (X) → Spc

corepresented by [x] is equivalent to the stalk functor x∗ ∶ ConshypP (X) → Spc. As a consequence, given aP-hyperconstructible hypersheaf F, every morphism [x] → [y] gives rise to a specializationmap x∗F → y∗F
on stalks.

The stability theorem for exodromic strati�ed∞-topoi has the following topological consequence:

5.1.7 Theorem (stability properties of exodromic strati�ed spaces).
(1) Stability under pulling back to locally closed subposets: If (X, P) is an exodromic strati�ed space, then

for each locally closed subposet S ⊂ P, the strati�ed space (XS , S) is exodromic and the induced functorΠ∞(XS , S) → Π∞(X, P)S
is an equivalence. In particular, the induced functorΠ∞(X, P) → P is conservative.

(2) Stability under coarsening and localization formula: Let (X, R) be an exodromic strati�ed space and let�∶ R → P be a map of posets. Then (X, P) is exodromic and there is a natural equivalenceΠ∞(X, R)[W−1P ] ⥲ Π∞(X, P) .
(3) Functoriality: The exodromy equivalence is functorial in all strati�ed maps between exodromic strati�ed

spaces.

(4) van Kampen: Let (X, P) be a strati�ed space and letU∙ ∶ �opinj → Top∕X
be an semi-simplicial étale hypercovering of X. If for each n ≥ 0, the strati�ed space (Un, P) is exodromic,
then the strati�ed space (X, P) is exodromic. Moreover, the natural functorcolim[n]∊�opinjΠ∞(Un, P) → Π∞(X, P)
is an equivalence of∞-categories.

(5) Stability of �niteness/compactness: Let (X, P) be a strati�ed space.
(a) If (X, P) is exodromic and categorically �nite (resp., compact), then for any locally closed subposetS ⊂ P, the strati�ed space (XS , S) is exodromic and categorically �nite (resp., compact).

(b) Let U1, … ,Un be a �nite open cover of X. Assume that each intersection (Ui1 ∩⋯ ∩ Uik , P) admits
an re�nement which is exodromic and categorically �nite (resp., compact). Then (X, P) is exodromic
and categorically �nite (resp., compact).

Proof. Item (1) is a special case of Corollary 3.1.17, item (2) is a special case of Theorem 3.3.5, item (3)
is a special case of Theorem 3.2.3, item (4) is a special case of Corollary 3.4.4, and item (5) follows from
Lemmas 3.6.2 and 3.6.3 and Proposition 3.6.4. �

Provided X is also locally weakly contractible, the classifying space of the exit-path∞-category of (X, P)
coincides with the underlying homotopy type of X:
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5.1.8 Corollary. Let (X, P) be an exodromic strati�ed space. If X locally weakly contractible, then the spaceEnv(Π∞(X, P)) is naturally equivalent to the underlying homotopy type of X.
Proof. Note that Theorem 5.1.7-(2) shows that there is a natural equivalenceEnv(Π∞(X, P)) ⥲ Π∞(X, ∗)
between the space obtained by inverting all morphisms inΠ∞(X, P) and the shape of the∞-topos Shhyp(X).
To conclude, recall that since X is locally weakly contractible, by Example 1.3.9-(1), the shape of Shhyp(X)
is naturally equivalent to the underlying homotopy type of X. �

We conclude this subsection with some remarks about the stability theorem.

5.1.9 Remark. Theorem 3.0.1 also applies to other topological contexts. For example, given a topological
space or stack X strati�ed by a noetherian poset P, Ørsnes Jansen [28; 29; 30] and Clausen–Ørsnes Jansen
[14] consider the strati�ed∞-topos (Sh(X), P). Theorem 3.0.1 applies in that setting as well, giving a variant
of Theorem 5.1.7 for sheaves rather than hypersheaves. In that context, many of these results were already
proven by Clausen–Ørsnes Jansen and Ørsnes Jansen; see [14, Proposition 3.6; 29, Propositions 3.13 & 3.20].

5.1.10 Remark (the Künneth formula). Let (X, P) and (Y, Q) be exodromic strati�ed spaces. The astute
readermay have noticed that, unlike in Theorem3.0.1, in Theorem5.1.7we have not stated that (X×Y, P×Q)
is exodromic. Neither have we stated that there is a Künneth formulaΠ∞(X × Y, P × Q) ≃ Π∞(X, P) × Π∞(Y, Q) .
This is because, in complete generality, we do not know if this is true.

The issue is the following: there are natural colimit-preserving functors

(5.1.11) Sh(X) ⊗ Sh(Y) → Sh(X × Y) and Shhyp(X) ⊗ Shhyp(Y) → Shhyp(X × Y) ,
however, in general neither of these functors need be an equivalence. In particular, in the topological setting,
we do not immediately deduce a Künneth formula from Proposition 3.5.5. Nonetheless, Künneth formulas
still hold in many contexts. For example, if X is locally compact Hausdor�, then the left-hand functor in
(5.1.11) is an equivalence [HTT, Proposition 7.3.1.11]. So if X is locally compact Hausdor� and both Sh(X)
and Sh(Y) are hypercomplete, then Theorem 3.0.1 implies the Künneth formula for the exit-path∞-catego-
ry of (X ×Y, P ×Q). For another important example, in §5.2 we show that if (X, P) and (Y, Q) locally admit
re�nements by conical strati�cations, then we have a Künneth formula. See Proposition 5.2.11.

5.2 Locally conically re�neable strati�cations: formal properties. Recall that if (X, P) is a conically
strati�ed space, then for any open subset U ⊂ X, the strati�ed space (U, P) is also conically strati�ed. It
is not clear if our de�nition of an exodromic strati�ed space is stable under passage to open subsets (cf.
Question 3.0.3). So we introduce the following strengthening of exodromicity that applies to many examples
from geometry.

5.2.1 De�nition. Let ℰ be a presentable∞-category. A strati�ed space (X, P) is locally ℰ-exodromic if there
exists a basis ℬ ⊂ Open(X) such that for each U ∊ ℬ, the strati�ed space (U, P) is ℰ-exodromic.

5.2.2 Example. Let (X, P) be a conically strati�ed space with locally weakly contractible strata and let ℰ be
a P-admissible presentable∞-category in the sense of De�nition 5.1.3. Then (X, P) is locally ℰ-exodromic.

In light of Theorem 5.1.7, we have the following stability properties of locally exodromic strati�cations:

5.2.3 Proposition. Let ℰ be a presentable∞-category and (X, P) a strati�ed space.
(1) If (X, P) is locally ℰ-exodromic, then (X, P) is ℰ-exodromic.

(2) If there exists an open cover U of X such that for each U ∊ U, the strati�ed space (U, P) is locally ℰ-
exodromic, then (X, P) is locally ℰ-exodromic.

(3) If (X, P) is locally ℰ-exodromic, then for any open subset U ⊂ X, the strati�ed space (U, P) is locallyℰ-exodromic.

http://www.math.ias.edu/~lurie/papers/HTT.pdf#theorem.7.3.1.11
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(4) Assume that ℰ is compatible with recollements. If (X, P) is locally ℰ-exodromic, then for any locally closed
subposet S ⊂ P, the strati�ed space (XS , S) is locally ℰ-exodromic.

(5) If (X, P) is locally ℰ-exodromic, then for any map of posets �∶ P → P′, the strati�ed space (X, P′) is locallyℰ-exodromic.

Proof. Item (1) is immediate from the fact that ℰ-exodromicity can be checked locally (Corollary 4.1.12).
Items (2) and (3) are immediate from the de�nitions. Item (4) follows from the de�nitions and the stability
of ℰ-exodromicity under pulling back to locally closed subposets (Proposition 4.1.9). Item (5) follows from
the de�nitions and the stability of ℰ-exodromicity under coarsenings (Theorem 5.1.7-(2)). �

For the examples in the rest of this subsection, it is convenient to introduce the following de�nition.

5.2.4 De�nition. Let s ∶ X → P be a strati�ed space.
(1) A conical re�nement of (X, P) is the data of a conical strati�cation t ∶ X → R of X with locally weakly

contractible strata and a map of posets �∶ R → P such that s = �t. We say that (X, P) is conically
re�neable if there exists a conical re�nement of (X, P).

(2) We say that (X, P) is locally conically re�neable if there exists an open cover U of X such that for eachU ∊ U, the strati�ed space (U, P) is conically re�neable.
First observe that locally conically re�neable strati�ed spaces have locally weakly contractible strata

(hence Observation 5.1.6 applies). In fact, even more is true; we introduce the following de�nition to axiom-
atize the categorical features of the exit-path∞-category of a locally conically re�neable strati�ed space.

5.2.5 De�nition. We say that a strati�ed space (X, P) is locally cone-like if the following conditions are
satis�ed:
(1) The strati�ed space (X, P) is locally exodromic.

(2) The strata of X are locally weakly contractible.

(3) Every point x ∊ X admits a fundamental system of open neighborhoods Ux such that for each U ∊ Ux,
the object x ∊ Π∞(U, P) is initial.

5.2.6 Lemma. Let (X, P) be a conically strati�ed space with locally weakly contractible strata. Then:
(1) The topological space X is locally weakly contractible.

(2) The strati�ed space (X, P) is locally cone-like.
Proof. First recall that conically strati�ed spaceswith locallyweakly contractible strata are locally exodromic.
We prove both items simultaneously. By [32, Proposition 2.1.18], every point x ∊ X admits a fundamental
system of open neighborhoods Ux such that for each U ∊ Ux, the object x is initial in Π∞(U, P). For any
such U, [32, Corollary 6.2.7] provides a canonical equivalenceΠ∞(U) ≃ Env(Π∞(U, P)) ≃ ∗ ,
whereΠ∞(U) denotes the underlying homotopy type ofU. Therefore, eachU is weakly contractible, i.e., X
is locally weakly contractible. �

We now analyze the stability properties of the class of locally cone-like strati�ed spaces. To start, we need
a lemma.

5.2.7 Lemma. Let L∶ C → D be a functor of ∞-categories that exhibits D as the localization of C at a
collection of morphisms. If c ∊ C is initial, then L(c) ∊ D is initial.

Proof. Recall that for an∞-category ℰ, an object e ∊ ℰ is initial if and only if the functor e∶ ∗ → ℰ that
picks out e is a limit-co�nal functor. Since L is a localization, L∶ C → D is limit-co�nial [5, Proposition
5.13]. Hence the composite ∗ C Dc L
is limit-co�nal. �
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5.2.8 Lemma.
(1) Let (X, P) be a locally cone-like strati�ed space. Then for each locally closed subposet S ⊂ P, the strati�ed

space (XS , S) is locally cone-like.
(2) Let (X, R) be a locally cone-like strati�ed space and �∶ R → P is a map of posets. Then the strati�ed space(X, P) is locally cone-like.
(3) If (X, P) is a strati�ed space and {U�}�∊A is an open cover of X such that each strati�ed space (U�, P) is

locally cone-like, then (X, P) is locally cone-like.
Proof. For (1), the only nontrivial condition to check is De�nition 5.2.5-(3). Let x ∊ XS and let Ux be a
fundamental system of open neighborhoods of x in X such that for each U ∊ Ux, the object x ∊ Π∞(U, P)
is initial. Write Ux,S ≔ {US | U ∊ Ux } .
Notice that US = U ∩ XS and Ux,S is a fundamental system of open neighborhoods of x in XS . By Theo-
rem 5.1.7-(1), for each U ∊ Ux, the natural functorΠ∞(US , S) → Π∞(U, P)
is fully faithful. Since x ∊ Π∞(US , S) and x is initial in the larger∞-category Π∞(U, P), we deduce that x
is also initial in Π∞(US , S).

For (2), again the only nontrivial condition to check is De�nition 5.2.5-(3). Let x ∊ X and let Ux be a
fundamental system of open neighborhoods of x in X such that for each U ∊ Ux, the object x ∊ Π∞(U, R)
is initial. Then Lemma 5.2.7 shows that x ∊ Π∞(U, P) is also initial.

Item (3) is immediate from the de�nitions. �

Now we record the fundamental properties of the class of locally conically re�neable strati�ed spaces.

5.2.9 Proposition (properties of locally conically re�neable strati�ed spaces).
(1) Let (X, P) be a strati�ed space and let ℰ be an admissible presentable ∞-category. If (X, P) is locally

conically re�neable, then (X, P) is locally ℰ-exodromic.

(2) Let (X, P) be a locally conically re�neable strati�ed space. Then for each open subspaceU ⊂ X, the strati�ed
space (U, P) is locally conically re�neable.

(3) Let (X, P) be a locally conically re�neable strati�ed space. Then for each locally closed subposet S ⊂ P, the
strati�ed space (XS , S) is locally conically re�neable.

(4) Let (X, R) be a locally conically re�neable strati�ed space and �∶ R → P is a map of posets. Then the
strati�ed space (X, P) is locally conically re�neable.

(5) If (X, P) is a strati�ed space and {U�}�∊A is an open cover of X such that each strati�ed space (U�, P) is
locally conically re�neable, then (X, P) is locally conically re�neable.

(6) If (X, P) is locally conically re�neable, then X is locally weakly contractible. Moreover, the spaceEnv(Π∞(X, P))
is naturally equivalent to the underlying homotopy type of X.

(7) If (X, P) is a locally conically re�neable strati�ed space, then (X, P) is locally cone-like.
Proof. Item (1) follows fromProposition 5.2.3 and the fact that conically strati�ed spaces with locally weakly
contractible strata are ℰ-exodromic.

For (2), note that since the statement is local, it su�ces to prove the claim when (X, P) admits a global
conical re�nement (X, R). Now note that since (X, R) is conically strati�ed, for any open subset U ⊂ X, the
strati�ed space (U, R) is also conical.

For (3), note that since the statement is local, it su�ces to prove the claim when (X, P) admits a global
conical re�nement (X, R). In this case, [32, Lemma 2.1.11] shows that the strati�ed space (XS , RS) is conical
with locally weakly contractible strata. To conclude, note that (XS , RS) is a re�nement of (XS , S).
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Items (4) and (5) are immediate from the de�nitions. For (6), note that by Lemma 5.2.6-(1), X admits
an open cover by locally weakly contractible topological spaces. Hence the claim is a special case of Corol-
lary 5.1.8. Item (7) follows from the fact that conically strati�ed spaces are locally cone-like (Lemma5.2.6-(2))
and the stability properties of locally cone-like strati�ed spaces (Lemma 5.2.8). �

We conclude this subsection with a Künneth formula for the exit-path∞-category of a product of locally
conically re�neable strati�ed spaces. Due the issues mentioned in Remark 5.1.10, our proof does not rely
on the Künneth formula for exodromic strati�ed∞-topoi (Proposition 3.5.5). Instead, we make use of the
localization formula for the exit-path∞-category of a coarsening and the following lemma.

5.2.10 Lemma. Let C1 and C2 be∞-categories and letWi ⊂ Mor(Ci) be collections of morphisms. Then the
natural functor (C1 × C2)[(W1 ×W2)−1] → C1[W−11 ] × C2[W−12 ]
is an equivalence.

Proof. This is an immediate consequence of [Ker, Tag 02LV]. �

5.2.11 Proposition (Künneth formula for locally conically re�neable strati�cations). Let (X, P) and (Y, Q)
be locally conically re�neable strati�ed spaces. Then:

(1) The product strati�ed space (X × Y, P × Q) is locally conically re�neable.
(2) The natural functor Π∞(X × Y, P × Q) → Π∞(X, P) × Π∞(Y, Q)

is an equivalence of∞-categories.

(3) The natural functor ⊠∶ ConshypP (X) ⊗ ConshypQ (Y) → ConshypP×Q(X × Y)
is an equivalence of∞-categories.

Proof. Item (1) is immediate from the de�nitions and the fact that a product of conically strati�ed spaces is
still conically strati�ed.

For (2), let U∙ ∶ �opinj → Top∕X and V∙ ∶ �opinj → Top∕Y
be open semi-simplicial hypercoverings of X and Y respectively, such that for each n ≥ 0 the strati�ed
spaces (Un, P) and (Vn, Q) are conically re�neable. Since �inj is sifted, �inj-indexed colimits commute with
�nite products in Cat∞; hence Theorem 5.1.7-(4) shows that the natural functorcolim[n]∊�injΠ∞(Un, P) × Π∞(Vn, Q) → Π∞(X × Y, P × Q)
is an equivalence. We can therefore assume that (X, P) and (Y, Q) are (globally) conically re�neable.

Let (X, P′) and (Y, Q′) be conical re�nements of (X, P) and (Y, Q), respectively. Then (X × Y, P′ × Q′) is
conical and thus it is a conical re�nement of (X × Y, P × Q). It follows from [32, Theorem 5.4.1] and the
explicit geometrical de�nition of the exit-path∞-category that the natural functorΠ∞(X × Y, P′ × Q′) → Π∞(X, P′) × Π∞(Y, Q′)
is an equivalence. Unraveling the de�nitions, we see thatWP×Q = WP ×WQ as collection of morphisms inΠ∞(X, P′) × Π∞(Y, Q′). The conclusion now follows from Lemma 5.2.10.

Item (3) is immediate from (2) and the fact that the functor Fun(−, Spc) carries products of∞-categories
to tensor products in PrL. �

http://kerodon.net/tag/02LV
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5.3 Locally conically re�neable strati�cations: examples. We give some examples of locally conically
re�neable (hence locally exodromic) strati�cations.

5.3.1 Notation (simplicial complexes). Let (V, S) be an simplicial complex, and regard S as a poset ordered
by inclusion. Write ∆(V,S) for the geometric realization of (V, S). There is a natural strati�cation ∆(V,S) → S
with locally contractible strata; see [HA, De�nition A.6.7].

5.3.2 Example. Let (V, S) be a locally �nite simplicial complex and let ℰ be an admissible presentable∞-category. Then the natural strati�cation ∆(V,S) → S is conical [HA, Proposition A.6.8]. Moreover, [HA,
Theorem A.6.10] shows that

(5.3.3) Π∞(∆(V,S), S) ≃ S .

By Proposition 5.2.9, we see that for any map of posets S → P, the strati�ed space (∆(V,S), P) is locallyℰ-exodromic. That is, any strati�ed space admitting a re�nement by a locally �nite triangulation is locallyℰ-exodromic.

5.3.4 Observation. In light of (5.3.3), given a locally �nite simplicial complex (V, S), the strati�ed space(∆(V,S), S) is categorically �nite if and only if the set S is �nite.

5.3.5 Example. The tree strati�cation of a �nite simplicial complex considered by Favero–Huang [16, §4.4]
is conically re�neable, hence locally exodromic. Moreover, Theorem 5.1.7-(5) and Observation 5.3.4 show
that the tree strati�cation is categorically �nite.

One source of locally exodromic strati�cations comes from subanalytic strati�cations of real analytic
spaces. Recall that subanalytic strati�cations need not be conical; see Figure 1.

5.3.6 De�nition. LetX be a topological space. We say that a strati�cationX → P is locally �nite if for every
point x ∊ X, there is an open neighborhoodU of x such thatU intersects only �nitely many strata of (X, P).
5.3.7 De�nition. A subanalytic strati�ed space is the data of a triple (M,X, P) whereM is a smooth real
analytic space, X ⊂ M is a locally closed subanalytic subset, and X → P is a locally �nite strati�cation by
subanalytic subsets ofM.

Subanalytic strati�ed spaces provide many examples of (locally) categorically �nite strati�ed spaces:

5.3.8 De�nition. Let (X, P) be a locally exodromic strati�ed space.We say that (X, P) is locally categorically
�nite (resp., compact) if there exists an open cover U such that for each U ∊ U, the exodromic strati�ed
space (U, P) is categorically �nite (resp., compact).

5.3.9 Theorem. Let (M,X, P) be a subanalytic strati�ed space. Then:
(1) The strati�ed space (X, P) admits a re�nement by a locally �nite triangulation.

(2) For any admissible∞-category ℰ, the strati�ed space (X, P) is locally ℰ-exodromic.

(3) If X is compact, then (X, P) admits a re�nement by a �nite triangulation. Hence (X, P) is categorically
�nite.

(4) The strati�ed space (X, P) is locally categorically �nite.
(5) IfU ⋐ X is a relatively compact subanalytic open subset, then (U, P) is categorically �nite.
Proof. Item (1) follows from [17, §1.7] combined with [18]. Item (2) follows from (1) and Proposition 5.2.9.
For (3), note that by (1), the strati�ed space (X, P) admits a triangulation by a locally �nite simplicial complex(∆(V,S), S). SinceX is compact, the poset S is �nite. The �nal statement in (3) follows from Theorem 5.1.7-(5)
and Observation 5.3.4.

Now we prove (4). At the cost of shrinkingM, we can assume that X is closed inM. Let x ∊ X and letB ⊂ M be a small ball centered at x such that X ∩ B intersects only �nitely many strata. We claim that(X ∩ B, P) is categorically �nite. Note that since X ∩ B intersects only �nitely many strata, we may assume
that P is �nite. Extend X ∩B → P to a �nite strati�cation B → P▹ sending B ∖ (X ∩B) to the terminal object
of P▹. Since P is closed in P▹, Theorem 5.1.7-(5) reduces the claim to the case where X = B. We thus need

http://www.math.ias.edu/~lurie/papers/HA.pdf#atheorem.A.6.7
http://www.math.ias.edu/~lurie/papers/HA.pdf#atheorem.A.6.8
http://www.math.ias.edu/~lurie/papers/HA.pdf#atheorem.A.6.10
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to show that (B, P▹) is categorically �nite. WriteQ ≔ P▹ and extend B → Q to a �nite strati�cation B → Q⊲
by sending )B to the initial object of Q⊲. Since Q is open in Q⊲, Theorem 5.1.7-(5) reduces the claim to the
case where X = B. An application of (3) now shows that (B, Q⊲) is categorically �nite.

Finally, we prove (5). The closureU is again a subanalytic (see e.g., the discussion following [9, De�nition
3.1]), and it is compact by assumption. In particular, it intersects only �nitely many strata. As before, we
can thus assume that P is �nite. Extend U → P to a �nite strati�cation U → P⊲ sending the boundary)U ≔ U ∖ U to the initial object of P⊲. Then P is open in P⊲, so Theorem 5.1.7-(5) reduces us to verify that(U, P) is categorically �nite, and this follows directly from (3). �

5.3.10 Example. The Bondal–Ruan strati�cation of the n-torus considered by Favero–Huang [10; 16, §5.2]
is subanalytic, hence locally exodromic, categorically �nite, and locally categorically �nite.

Strati�cations of real algebraic varieties are especially well-behaved:

5.3.11 De�nition. An algebraic strati�ed space is the data of a strati�ed space (X, P) where X is (the real
points of) an algebraic variety over R and X → P is a �nite strati�cation by Zariski locally closed subsets.

5.3.12 Warning. Unlike a subanalytic strati�ed space, an algebraic strati�ed space (X, P) is not presented
as a subspace of a smooth algebraic variety. Note that if X is singular, such a presentation may not exist.

5.3.13 Theorem. Let (X, P) be an algebraic strati�ed space. Then:
(1) If X is a�ne, (X, P) admits a categorically �nite conical re�nement (X, R) with R �nite. Hence (X, P) is

categorically �nite.

(2) The strati�ed space (X, P) is locally conically re�neable.
(3) For any admissible∞-category ℰ, the strati�ed space (X, P) is locally ℰ-exodromic and locally categorically

�nite.

(4) The strati�ed space (X, P) is categorically �nite.
Proof. For (1), let us view X as a closed subset of An. Let X be the closure of X in Pn. De�ne Q ≔ (P▹)⊲
and let us extend X → P as a strati�cation Pn → Q by sending X ∖ X to the initial object of Q and Pn ∖ X
to the terminal object of Q. Then, (Pn, Q) is a compact subanalytic strati�ed space. By Theorem 5.3.9-(3),(Pn, Q) admits a re�nement Q′ → Q by a �nite triangulation. Thus, (Pn, Q′) is conically strati�ed with
locally weakly contractible strata. Moreover, Observation 5.3.4 shows that (Pn, Q′) is categorically �nite.
Since P ⊂ Q is locally closed, (X, Q′P) is also conically strati�ed with locally weakly contractible strata.
Moreover, Proposition A.3.17 shows that (X, Q′P) is categorically �nite. Finally, since Q is �nite, so is Q′P.

Item (2) is an immediate consequence of (1). Item (3) follows from (1) and Proposition 5.2.9. Since X
admits a �nite cover by a�ne subsets whose iterated intersections are again a�ne, (4) follows from (1) and
Theorem 5.1.7-(5). �

5.4 Moduli of constructible & perverse sheaves. We now use exodromy and the �niteness results of
§ 5.3 to study derived moduli stacks of constructible and perverse sheaves. We begin by recalling a few
notions from [32, §7].

5.4.1 Recollection. Let B be an animated commutative ring (i.e., simplicial commutative ring). WriteModB for the∞-category ofB-modules andPerfB ⊂ ModB for the smallest stable full subcategory containingB and closed under retracts. The∞-categoryModB is compactly generated with full subcategory of compact
objects PerfB [HA, Proposition 7.2.4.2; SAG, Notation 25.2.1.1]. Also note that the shifts B[n] for n ∊ Z
generateModB under colimits and retracts.

We are interested in the moduli of constructible sheaves with perfect stalks:

5.4.2 Notation. Given a strati�ed space (X, P) and an animated commutative ring B, we writeConshypP,ω (X;ModB) ⊂ ConshypP (X;ModB)
for the full subcategory spanned by the hyperconstructible hypersheaves on (X, P)whose stalks are compact
objects ofModB.

http://www.math.ias.edu/~lurie/papers/HA.pdf#theorem.7.2.4.2
http://www.math.ias.edu/~lurie/papers/SAG-rootfile.pdf#theorem.25.2.1.1
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5.4.3 Recollection. Let X be a topological space and let L∶ ℰ → D be a morphism in PrL. We denote byLhyp ≔ (−)hyp◦L◦−∶ Shhyp(X; ℰ) → Shhyp(X;D)
the induced a morphism in PrL. As recalled in [32, §2.5], the formation of Lhyp commutes with hypersheaf
pullback. For a strati�cation X → P, the functor Lhyp preserves P-hyperconstructible hypersheaves, that is,
restricts to a functor Lhyp ∶ ConshypP (X; ℰ) → ConshypP (X;D) .
5.4.4 Notation. For a morphism of animated commutative rings A → B, we de�neB ⊗hypA (−) ≔ (B ⊗A (−))hyp ∶ Shhyp(X;ModA) → Shhyp(X;ModB) .
5.4.5 Recollection (the derived prestack of constructible sheaves). Let (X, P) be a strati�ed space and letA be an animated commutative ring. Following [32, §7.1], we writeConsP(X)∶ dA� opA → Spc

for the derived prestack de�ned by sending a derived a�ne scheme Spec(B) over A to the maximal sub-∞-
groupoid of ConshypP,ω (X;ModB) and sending a morphism of derived a�ne schemes Spec(C) → Spec(B) overA to the map on maximal sub-∞-groupoids induced byC ⊗hypB (−)∶ ConshypP,ω (X;ModB) → ConshypP,ω (X;ModC) .
5.4.6. Given a morphism of strati�ed spaces f∶ (X, P) → (Y,Q), pullback along f de�nes a map of derived
prestacks ConsQ(Y) → ConsP(X) .

In the setting of exodromy, ConsP(X) is a derived stack:

5.4.7 Observation. Let (X, P) be a strati�ed space with locally weakly contractible strata and let B be an
animated commutative ring. If (X, P) is exodromic, then the exodromy equivalenceFun(Π∞(X, P),ModB) ≃ ConshypP (X;ModB)
restricts to an equivalence Fun(Π∞(X, P), PerfB) ≃ ConshypP,ω (X;ModB) .
5.4.8 Lemma. Let (X, P) be a strati�ed space and let A be an animated commutative ring. If (X, P) is exo-
dromic, then the derived prestack ConsP(X)∶ dA� opA → Spc
satis�es �at hyperdescent. In particular, ConsP(X) is a derived stack.
Proof. Since (X, P) is exodromic, for an animated A-algebra B, we haveConshypP,ω (X;ModB) ≃ Fun(Π∞(X, P), PerfB) .
Hence the right-hand side preserves limits in PerfB. The claim now follows from the fact that the assignmentB ↦ PerfB satis�es �at hyperdescent [SAG, Corollary D.6.3.3 & Proposition 2.8.4.2-(10)]. �

Under compactness assumptions, the derived stack ConsP(X) is even locally geometric:

5.4.9 Theorem. Let (X, P) be an exodromic strati�ed space and let A be an animated commutative ring. If(X, P) is categorically compact, then:
(1) The derived stack ConsP(X) is locally geometric and locally of �nite presentation.

(2) Given a point x∶ Spec(B) → ConsP(X) classifying a constructible sheaf F ∊ ConshypP,ω (X;ModB), the
tangent complex at x is given byx∗TConsP(X) ≃ HomConshypP (X;ModB)(F, F)[1] .
Here, the right hand side denotes theModB-enrichedHom of ConsP(X;ModB).

http://www.math.ias.edu/~lurie/papers/SAG-rootfile.pdf#theorem.D.6.3.3
http://www.math.ias.edu/~lurie/papers/SAG-rootfile.pdf#theorem.2.8.4.2
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Proof. Same proof as [32, Theorem 7.1.8]; in the end, the result follows combining the categorical compact-
ness assumption with [37, Theorem 3.6 & Corollary 3.17]. �

Since coarsenings of conical strati�cations are ourmain source of exodromic strati�ed spaces, it is natural
to study how the moduli stacks of hyperconstructible hypersheaves behave under coarsening. To this end,
we show:

5.4.10 Proposition. Let (X, R) be a categorically compact exodromic strati�ed space with locally weakly
contractible strata. Let �∶ R → P be a map of posets and let A be an animated commutative ring. Then the
induced map of locally geometric derived stacksi ∶ ConsP(X) ↪ ConsR(X)
is a representable open immersion.

Proof. From Proposition 3.6.4, we see that (X, P) is exodromic and categorically compact. Therefore, Theo-
rem 5.4.9 implies that both ConsP(X) and ConsR(X) are locally geometric and locally of �nite presentation.
In particular, the natural map between them is automatically locally of �nite presentation. To prove that i
is an open immersion su�ces to prove that i is étale and that the diagonal map∆i ∶ ConsP(X) → ConsP(X) ×ConsR(X)ConsP(X)
is an equivalence. Theorem 3.3.5 shows that Π∞(X, R) → Π∞(X, P) exhibits Π∞(X, P) as the localization
of Π∞(X, R) at the collection of morphismWP. It follows that for every animated A-algebra B, the map

(5.4.11) ConsP(X)(Spec(B)) → ConsR(X)(Spec(B))
is fully faithful. This immediately implies that ∆i is an equivalence.

To prove that i is an open immersion, we are left to check that i is étale. Notice that i is automatically
locally of �nite presentation. Thus [HAG-II] implies that it su�ces to show that i is formally étale, i.e., that
the cotangent complex of i vanishes. We use the criterion provided in [31, Lemma 2.15]. Since (5.4.11) is
fully faithful, the only thing left to check is that for every animated A-algebra B, the mapConsP(X)(Spec(B)) → ConsP(Spec(Bred)) ×ConsR(Spec(Bred))ConsR(Spec(B))
is surjective at the level of connected components. Therefore, let F∶ Π∞(X, R) → PerfB be a functor and
assume that the induced functor Bred ⊗B F(−)∶ Π∞(X, R) → PerfBred
factors throughΠ∞(X, P). SinceΠ∞(X, R) → Π∞(X, P) is a localization atWP, this is equivalent to say thatBred ⊗B F(−) inverts all arrows inWP. To complete the proof, it is enough to prove that F also inverts all
arrows inWP. Therefore, let 
∶ x → y be a morphism inWP and considerF
 ≔ �b(F(
)∶ F(x) → F(y)) .
By assumption, F(x) and F(y) belong to PerfB, so F
 ∊ PerfB as well. Also, we haveBred ⊗B F
 ≃ �b(Bred ⊗B F(x) → Bred ⊗B F(y)) ≃ 0 ,
So the conclusion follows from the cohomological Nakayama lemma [SAG, Corollary 2.7.4.4]. �

We now turn our attention to the moduli of perverse sheaves.

5.4.12 Notation. Let (X, P) be a strati�ed space, let p∶ P → Z be any function, and let A be an animated
commutative ring. We write pPervP(X) ⊂ ConsP(X)
for the derived subprestack of p-perverse sheaves on (X, P). See [32, §7.7] for details.
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5.4.13 Recollection. Let (X, R) be a strati�ed space, let �∶ R → P be a map of posets, and let A be an
animated commmutative ring. Let p∶ P → Z be any function and write r for the composite p�∶ R → Z.
Recall from [32, Proposition 7.7.10] that if for each p ∊ P, the poset Rp is noetherian, then the square of
derived prestacks

(5.4.14)

pPervP(X) rPervR(X)
ConsP(X) ConsR(X)

is a pullback.

5.4.15 Recollection. Let (X, P) be a strati�ed space, let p∶ P → Z be any function, and let A be an
animated commutative ring. By [32, Proposition 7.7.8], the presheafpPervP(−)∶ Open(X)op → PSh(dA�A)
satis�es hyperdescent.

5.4.16 Theorem. Let (X, R) be a conically strati�ed spacewith locallyweakly contractible strata, let�∶ R → P
be a map of posets, let p∶ P → Z be any function, and let A be an animated commutative ring. Assume that
for each p ∊ P, the poset Rp is noetherian. Then:
(1) The derived prestack pPervP(X) satis�es �at hyperdescent. In particular, pPervP(X) is a derived stack.
(2) IfΠ∞(X, R) has �nitely many equivalence classes of objects, then the morphism of derived stackspPervP(X) ↪ ConsP(X)

is a representable open immersion.

(3) If (X, R) is categorically compact, then the derived stack pPervP(X) is locally geometric and locally of �nite
presentation.

Proof. Write r for the composite p�∶ R → Z. For item (1), since (X, R) and (X, P) are exodromic, by
Lemma 5.4.8 the prestacks ConsP(X) and ConsR(X) satisfy �at hyperdescent. Moreover, [32, Corollary
7.7.16] shows that rPervR(X) satis�es �at hyperdescent. Since the square (5.4.14) from Recollection 5.4.13
is a pullback, pPervP(X) also satis�es �at hyperdescent. Under the condition of item (2), [32, Theorem
7.7.16] shows that the morphism of derived stacksrPervR(X) ↪ ConsR(X)
is representable by an open immersion. Since (5.4.14) is a pullback, the conclusion follows.

For (3), assume that (X, R) is categorically compact. By Proposition 3.6.4, the strati�ed space (X, P) is also
categorically compact. Hence, Theorem 5.4.9 ensures that ConsP(X) and ConsR(X) are locally geometric
and locally of �nite presentation. Moreover, [32, Theorem 7.7.16] shows that rPervR(X) is locally geometric
and locally of �nite presentation. Since (5.4.14) is a pullback, the conclusion follows. �

Our work from §5.3 provides a number of examples where ConsP(X) and pPervP(X) are locally geomet-
ric and locally of �nite presentation:

5.4.17 Corollary. Let (X, P) be a strati�ed space, let p∶ P → Z be any function, and let A be an animated
commutative ring. Assume one of the following conditions:
(1) (X, P) admits a categorically compact conical re�nement.

(2) (X, P) admits a re�nement by a �nite triangulation.

(3) The topological space X is compact and (X, P) admits the structure of a subanalytic strati�ed space in the
sense of De�nition 5.3.7.

(4) (X, P) admits the structure of an algebraic strati�ed space in the sense of De�nition 5.3.11.
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Then the derived prestacks ConsP(X) and pPervP(X) are derived stacks that are locally geometric and locally
of �nite presentation.

Proof. Item (1) follows from Proposition 3.6.4 and Theorems 5.4.9 and 5.4.16. In light of Observation 5.3.4,
item (2) is a special case of (1). Similarly, by Theorem 5.3.9-(3), item (3) is a special case of (2).

Let us now prove (4). Note that by Theorem 5.4.9 and Theorem 5.3.13-(4), the derived prestackConsP(X)
is a derived stack that is locally geometric and locally of �nite presentation. Moreover, since the properties
of being a derived stack, being locally geometric, and being locally of �nite presentation are stable under
�nite limits, Recollection 5.4.15 reduces the claim for pPervP(X) to the case where X is a�ne. To conclude,
note that Theorem 5.3.13-(1) shows that an a�ne algebraic strati�ed space admits a categorically compact
conical re�nement; the claim now follows from (1). �

5.5 A criterion for constructibilitywith respect to a coarsening. Let (X, R) be an exodromic strati�ed
space with locally weakly contractible strata and let �∶ R → P be a map of posets. It is often useful to have
a geometric recognition criterion for when an R-hyperconstructible hypersheaf is P-hyperconstructible.
The goal of this subsection is to explain such a criterion: an R-hyperconstructible hypersheaf F on X isP-hyperconstructible if and only if for each morphism 
∶ x → y in the exit-path∞-categoryΠ∞(X, R) that
lies in a single stratum of the coarser strati�cation (X, P), the induced specialization map on stalksy∗F → x∗F
is an equivalence.4 This criterion is an easy consequence of the exodromy equivalence and localization
formula for the exit-path∞-category of a coarsening.

5.5.1 Notation (cospecializationmaps). Letℰ be a presentable∞-category and let (X, R) be anℰ-exodromic
strati�ed∞-topos.
(1) Write [−]∶ Π∞(X, R)op ↪ ConsR(X) , x ↦ [x]

for the inclusion of the subcategory of atomic objects. For each E ∊ ℰ and x ∊ Π∞(X, R), we write[x] ⊗ E for the canonical object inConsR(X) ⊗ ℰ ⥲ ConsR(X; ℰ) .
(2) Given a morphism 
∶ x → y in Π∞(X, R), we writecosp
R ≔ [
]∶ [y] → [x]

for the corresponding morphism in ConsR(X). We refer to cosp
R as the cospecialization map associated
to 
. Again, for general ℰ and for each E ∊ ℰ, we write cosp
R⊗idE for the corresponding morphism inConsR(X; ℰ).

5.5.2 Observation (specialization maps). Let (X, R) be an exodromic strati�ed space with locally weakly
contractible strata. In light of Observation 5.1.6, given a R-hyperconstructible hypersheaf F and amorphism
∶ x → y in Π∞(X, R), applyingMap(−, F) to the cospecialization mapcosp
R ∶ [y] → [x]
yields a specialization map x∗F → y∗F on stalks.

5.5.3 Recollection. Let D0 be a small∞-category and letW ⊂ Mor(D0) be a class of morphisms. WriteL∶ D0 → D0[W−1] for the localization functor. Then, by the de�nition of localization, the induced pullback
functor L∗ ∶ PSh(D0[W−1]) → PSh(D0)
is fully faithful with image those F∶ Dop0 → Spc that carry morphisms inW to equivalences.

5.5.4 Proposition. Let D0 be a small∞-category,W ⊂ Mor(D0) a class of morphisms, and ℰ a presentable∞-category. Write L∶ D0 → D0[W−1] for the localization functor. Then:

4We do not make use of this result in the present paper, but need it in future work.
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(1) Let F ∊ PSh(D0; ℰ) and let f be a morphism in D0. Then the full subcategory of ℰ spanned by those objectsE ∊ ℰ such that F isよ(f) ⊗ idE-local is closed under colimits and retracts.

(2) An object F ∊ PSh(D0; ℰ) is in the image of the fully faithful pullback functorL∗ ∶ PSh(D0[W−1]; ℰ) ↪ PSh(D0; ℰ)
if and only if for each w ∊ W and E ∊ ℰ, the object F isよ(w) ⊗ idE-local.

Proof. Immediate from Recollection 5.5.3 and the de�nitions. �

5.5.5 Corollary. Let ℰ be a presentable ∞-category, let (X, R) be an ℰ-exodromic strati�ed ∞-topos, let�∶ R → P be a map of posets, let F ∊ ConsR(X; ℰ), and let 
∶ x → y be a morphism inΠ∞(X, R). Then:
(1) The full subcategory of ℰ spanned by those objects E ∊ ℰ such that F is (cosp
R⊗idE)-local is closed under

colimits and retracts.

(2) The R-constructible object F is P-constructible if and only if for each 
 ∊ WP and E ∊ ℰ, the object F iscosp
R⊗idE-local.
Proof. In light of the exodromy equivalence and the localization formula for the exit-path∞-category of a
coarsening (Theorem 3.3.5), this result is a special case of Proposition 5.5.4. �

5.6 Relationship to Lurie’s simplicial model for exit-paths. We conclude with some remarks and
questions regarding the relationship between the exit-path∞-category in the conically re�neable setting
and Lurie’s simplicial model for exit-paths Sing(X, R). See [HA, De�nition A.6.2; 32, §2] for background on
the simplicial model.

5.6.1 Recollection. Let (X, R) be a conically strati�ed space with locally weakly contractible strata. Then
Lurie’s exit-path simplicial set Sing(X, R) is an∞-category [HA, Theorem A.6.4]. Moreover, (X, R) is exo-
dromic in the sense of De�nition 5.1.1 and [32, Theorem 5.4.1] implies that there is an equivalence of∞-categories Π∞(X, R) ≃ Sing(X, R) .
That is, [32, Theorem 5.4.1] provides an explicit simplicial model for the exit-path∞-category.

5.6.2 Observation. Let (X, R) be a conically strati�ed space with locally weakly contractible strata and let�∶ R → P be a map of posets. In general, the exit-path simplicial set Sing(X, P) need not be an∞-category.
Write S̃ing(X, P) for the �brant replacement of Sing(X, P) in the Joyal model structure on simplicial sets
over (the nerve of) P. By construction, the compositeΠ∞(X, R) ≃ Sing(X, R) Sing(X, P) S̃ing(X, P)
carries allmorphisms inWP to equivalences. By Theorem 5.1.7 and the universal property of the localization,
this induces a functor Π∞(X, P) ≃ Π∞(X, R)[W−1P ] S̃ing(X, P) .
Moreover, [20, Lemma 2.5.2] and Theorem 5.1.7-(1) imply that for each p ∊ P, the induced map on strataΠ∞(X, P) ×P {p} → S̃ing(X, P) ×P {p}
is an equivalence of∞-groupoids.

5.6.3. Note that if the functor Π∞(X, P) → S̃ing(X, P) is an equivalence of ∞-categories, then Proposi-
tion 5.2.9 implies that there is an equivalence of∞-categoriesConshypP (X) ≃ Fun(Sing(X, P), Spc) .
That is, even though Lurie’s exit-path simplicial set Sing(X, P)may not be an∞-category, Sing(X, P) still
corepresents hyperconstructible hypersheaves.

http://www.math.ias.edu/~lurie/papers/HA.pdf#atheorem.A.6.2
http://www.math.ias.edu/~lurie/papers/HA.pdf#atheorem.A.6.4
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5.6.4 Question. In the setting of Observation 5.6.2, is the functorΠ∞(X, P) → S̃ing(X, P)
an equivalence of∞-categories? If not, what are some mild conditions on the strati�ed space (X, P) that
guarantee that this functor is an equivalence?

Appendix A Inverting arrows over a poset

Let P be a poset. In Theorem 3.0.1, we are interested in the following situation: we have an∞-category C
and functor F∶ C → P, and we want to form the localization of C at the setWP of morphisms that F carries
to identities in P. There are two goals of this appendix. First, we show that for each p ∊ P, the �ber ofC[W−1P ]
over p coincides with the classifying space of the �ber C×P {p}; see Proposition A.2.2. From this we deduce
that the natural functor C[W−1P ] → P is conservative and that C[W−1P ] is idempotent complete. Second, we
show that if C is �nite (resp., compact), then the localization C[W−1P ] is also �nite (resp., compact). See
Proposition A.3.16.

In §A.1, we review some basic facts about∞-categories with a conservative functor to a poset. Subsec-
tion A.2 proves structural results about the localization C[W−1P ]. In §A.3, we explain various characteriza-
tions of �niteness and compactness in the∞-category of∞-categories with a conservative functor to the
poset P. We use these characterizations to prove stability properties of �nite and compact∞-categories with
over P.
A.1 Layered∞-categories. We start by collecting background material about the types of∞-categories
that arise as exit-path∞-categories of strati�ed spaces.

A.1.1 Recollection. Let F∶ C → P be a functor from an∞-category to a poset. The following are equiva-
lent:
(1) The functor F∶ C → P is conservative.

(2) For each p ∊ P, the �ber C ×P {p} is an∞-groupoid.

A.1.2 Recollection. Let C be an∞-category. The following are equivalent:
(1) There exists a poset P and a conservative functor C → P.
(2) For each x ∊ C, every endomorphism x → x is an equivalence.
If these equivalent conditions are satis�ed, we say that C is a layered∞-category. By the strati�ed homotopy
hypothesis, an∞-category C is layered if and only if C is equivalent to the exit-path∞-category of a strati�ed
space; see [20, Theorem 0.1.1] for a precise formulation of this result.

An important fact is that layered∞-categories are idempotent complete. For this, recall Notation 3.3.6.

A.1.3 Lemma. Let C be layered∞-category. Then:
(1) If e∶ x → x is a morphism in C such that there exists an equivalence e2 ≃ e, then e ≃ idx .
(2) The∞-category C is idempotent complete.

Proof. For (1), note that since C is layered, the morphism e is an equivalence. Since e2 ≃ e, the fact that e
is invertible implies that e ≃ idx. For (2), observe that since C is layered, every idempotent e∶ Idem → C
factors through the maximal sub-∞-groupoid C≃ of C. Hence e descends to a functor Env(Idem) → C≃.
Since Env(Idem) is contractible [HTT, Lemma 4.4.5.10], we conclude that e splits. �

A.2 Strata of localizations. The purpose of this subsection is to prove a fundamental proposition about
the types of localizations that appear in Theorem 3.0.1-(3). To state it, we need to �x some notation.

A.2.1 Notation. Let F∶ C → P be a functor from an∞-category to a poset.
(1) Given a subposet S ⊂ P, we write FS ∶ CS → S for the basechange of F∶ C → P to S.
(2) We writeWP ⊂ Mor(C) for the set of morphisms in C that F sends to equivalences (i.e., identities) in P.
By construction, functor F uniquely extends to a functor C[W−1P ] → P.

http://www.math.ias.edu/~lurie/papers/HTT.pdf#theorem.4.4.5.10
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A.2.2 Proposition. Let F∶ C → P be a functor between∞-categories where P is a poset. Then:

(1) For each locally closed subposet S ⊂ P, the induced functor CS[W−1S ] → C[W−1P ]S is an equivalence.

(2) The induced functor C[W−1P ] → P is conservative. In particular, the ∞-category C[W−1P ] is idempotent
complete.

Since localizations do not generally commute with pullbacks, Proposition A.2.2 is not completely formal.
To prove Proposition A.2.2, we recall the following description of localizations.

A.2.3 Recollection (localizations as pushouts). Let C be an∞-category and letW ⊂ Mor(C) be a class of
morphisms. The localization C[W−1] can be de�ned as the pushout∐w∊W[1] C

∐w∊W ∗ C[W−1] .⌜
Here, the top horizontal functor is the induced by the functors [1] → C that pick out each morphismw ∊ W.

Hence Proposition A.2.2 amounts to commuting the pullback S ×P (−) past the pushout de�ning the local-
ization C[W−1P ]. To explain why we can do this, we recall some categorical notions.

A.2.4 Recollection. A functor F∶ C → D is an exponentiable �bration if the right adjoint pullback functorC ×D (−)∶ Cat∞,∕D → Cat∞,∕C
is also a left adjoint. Note that the class of exponentiable �brations is closed under basechange.

A.2.5 Example [5, Lemma 2.15]. Cartesian and cocartesian �brations are exponentiable �brations. In
particular, right and left �brations are exponentiable �brations.

Recall that for any∞-category C, the unique functor C → ∗ is both a cartesian and a cocartesian �bration.
In this case, the right adjoint to C× (−)∶ Cat∞ → Cat∞,∕C is given by sending ℬ → C to the∞-category of
sections Fun∕C(C,ℬ).
A.2.6 Lemma. Let P be a poset.

(1) IfU ⊂ P is an open subposet, then the inclusionU ↪ P is a left �bration.

(2) If Z ⊂ P is a closed subposet, then the inclusion Z ↪ P is a right �bration.

(3) If S ⊂ P is a locally closed subposet, then the inclusion S ↪ P is an exponentiable �bration.

Proof. For (1), �rst observe that the inclusion {1} ↪ {0 < 1} is a left �bration. Let �U ∶ P → {0 < 1} be the
map sending U to 1 and P ∖ U to 0. Then we have a pullback squareU P

{1} {0 < 1} .
⌟ �U

The claim now follows from the fact that the class of left �brations is closed under basechange.
Item (2) follows from (1) by passing to opposite posets. Item (3) follows from (1), (2), Example A.2.5, and

the fact that exponentiable �brations are closed under composition. �
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Proof of Proposition A.2.2. For (1), consider the commutative diagram∐w∊WS[1] CS
∐w∊WS ∗ C[W−1P ]S S

∐w∊WP[1] C
∐w∊WP ∗ C[W−1P ] P .

Notice that by Recollection A.2.3, the bottom face is a pushout. Moreover, all of the vertical faces are
pullbacks. Since the inclusion S ↪ P is an exponentiable �bration (Lemma A.2.6), the top face is also a
pushout; again applying Recollection A.2.3 completes the proof.

For (2), note that by Recollection A.1.1, to show that C[W−1P ] → P is conservative, we need to show that
each �berC[W−1P ]p is an∞-groupoid. To see this, note that for each p ∊ P, part (1) provides an identi�cationC[W−1P ]p ≃ Cp[W−1p ] .
To complete the proof, observe thatWp is the set of allmorphisms in Cp. �

A.3 Compactness. The goal of this subsection is to characterize the compact objects of Cat∞,∕P as well as
the compact objects of the full subcategory spanned by the conservative functors C → P (Lemma A.3.10
and Corollary A.3.11). We then use this to explain why the assingment C ↦ C[W−1P ] and pulling back to a
locally closed subposet S ⊂ P both preserve compactness; see Propositions A.3.16 and A.3.17. We begin by
introducing some notation.

A.3.1 Recollection (�nite & compact∞-categories). WriteCat�n∞ ⊂ Cat∞ for the smallest full subcategory
closed under pushouts and containing the∞-categories∅, ∗, and [1]. An∞-category C is �nite if C ∊ Cat�n∞ .
In particular, Cat�n∞ is closed under �nite colimits in Cat∞. Equivalently, an∞-category C is �nite if and
only if C is categorically equivalent to a simplicial set with only �nitely many nondegenerate simplicies [40,
Corollary 2.3].

Importantly, the full subcategory Catω∞ ⊂ Cat∞ of compact∞-categories is the smallest full subcategory
containing Cat�n∞ and closed under retracts.

A.3.2 Notation. Let P be a poset and write Catcons∞,∕P ⊂ Cat∞,∕P for the full subcategory spanned by those
objects such that the speci�ed functor C → P is conservative.

We now establish some pleasant features of the inclusion Catcons∞,∕P ⊂ Cat∞,∕P. See [8, §2.2] for a related
discussion.

A.3.3 Observation. Let P be a poset. Then Proposition A.2.2 implies that the functor

Cat∞,∕P → Catcons∞,∕P
given by the assignment C ↦ C[W−1P ] is left adjoint to the inclusion.
We introduce a more convenient notation for this left adjoint.

A.3.4 Notation. Given a poset P, write EnvP ∶ Cat∞,∕P → Catcons∞,∕P for the left adjoint to the inclusion.
A.3.5 Observation. The inclusion Catcons∞,∕P ⊂ Cat∞,∕P also admits a right adjointιP ∶ Cat∞,∕P → Catcons∞,∕P
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de�ned as follows. Given a functor F∶ C → P, let ιP(C) ⊂ C be the largest subcategory containing all objects
such that the composite ιP(C) C PF
is conservative. Equivalently, ιP(C) ⊂ C is the subcategory containing all objects such that a morphismf∶ x → y in C lies in ιP(C) if and only if one of the following disjoint conditions is satis�ed:
(1) The morphism f is an equivalence in C.
(2) The elements F(x) and F(y) of the poset P are not equal.

A.3.6 Observation. By de�nition, that the inclusion ιP(C) → C restricts to an equivalence on maximal
sub-∞-groupoids.

In order to understand when EnvP(C) is compact, we make use of the following general fact:

A.3.7 Recollection [HTT, Proposition 5.5.7.2]. Let f∗ ∶ D ⇄ C ∶f∗ be an adjunction between∞-cate-
gories that admit �ltered colimits. If f∗ preserves �ltered colimits, then f∗ preserves compact objects. As a
consequence, if f∗ admits a further left adjoint f♯, then f♯ preserves compact objects.

A.3.8 Recollection. The right adjoint (−)≃ ∶ Cat∞ → Spc to the inclusion preserves �ltered colimits.

A.3.9 Lemma. Let P be a poset. Then:
(1) The functor ιP ∶ Cat∞,∕P → Catcons∞,∕P preserves �ltered colimits.

(2) The inclusion Catcons∞,∕P ↪ Cat∞,∕P preserves compact objects.

(3) The functor EnvP ∶ Cat∞,∕P → Catcons∞,∕P preserves compact objects.

Proof. To prove (1), let C∙ ∶ A → Cat∞,∕P be a �ltered diagram with colimit C∞. Write F∞ ∶ C∞ → P for
the structure functor, and for each � ∊ A, write �� ∶ C� → C∞ for the leg of the colimit cone. By the explicit
description of �ltered coimits in Cat∞, to show that the natural functorcolim�∊A ιP(C�) → ιP(C∞)
is an equivalence, it su�ces to show that if f∶ x → y is a morphism in C∞ and f is an equivalence orF∞(x) ≠ F∞(y), then f is in the image of one of the canonical functorsιP(C�) C� C∞ .

��
The case where f is an equivalence follows from the fact that the functor (−)≃ ∶ Cat∞ → Spc preserves
�ltered colimits and each inclusion ιP(C) → C restricts to an equivalence on maximal sub-∞-groupoids
(Observation A.3.6).

In the case where F∞(x) ≠ F∞(y), notice that by the explicit description of �ltered coimits in Cat∞,
there exists an index � ∊ A and morphism f′ ∶ x′ → y′ in C� such that f ≃ ��(f′); to complete the proof
of (1), it su�ces to show that f′ is in the subcategory ιP(C�). Since ��(x′) ≃ x and ��(y′) ≃ y and we haveF∞(x) ≠ F∞(y), we deduce that the composite F∞�� ∶ C� → P carries x′ and y′ to distinct elements of P.
Hence the morphism f′ is in the subcategory ιP(C�), as desired.

To �nish the proof, observe that Recollection A.3.7 shows that (1) implies (2) and (3). �

Using Lemma A.3.9, we can now give a characterization of the compact objects of Catcons∞,∕P.
A.3.10 Lemma. Let D be an ∞-category. An object F∶ C → D of Cat∞,∕D is compact if and only if the∞-category C is compact in Cat∞.

Proof. Since the unique functor D → ∗ is an exponentiable �bration (Example A.2.5), Recollection A.3.7
shows that the forgetful functor Cat∞,∕D → Cat∞ preserves compact objects. Hence all that remains to be

http://www.math.ias.edu/~lurie/papers/HTT.pdf#theorem.5.5.7.2
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proven is that if C ∊ Cat∞ is compact, then F∶ C → D is compact in Cat∞,∕D. For this, consider a �ltered
diagram D∙ ∶ A → Cat∞,∕D. Note that we have a pullback squareMapCat∞,∕D(C, colim�∊A D�) MapCat∞(C, colim�∊A D�)

{F} MapCat∞(C,D) .
⌟

Since C is compact in Cat∞, the natural mapcolim�∊A MapCat∞(C,D�) → MapCat∞(C, colim�∊A D�)
is an equivalence. The fact that colimits are universal in Spc completes the proof. �

A.3.11 Corollary. Let P be a poset and let F∶ C → P be a conservative functor from an∞-category. Then
the following are equivalent:
(1) The object F∶ C → P of Catcons∞,∕P is compact.

(2) The object F∶ C → P of Cat∞,∕P is compact.

(3) The∞-category C is a compact object of Cat∞.

Proof. The fact that both the inclusion Catcons∞,∕P ↪ Cat∞,∕P and its left adjoint EnvP preserve compact
objects (Lemma A.3.9) shows that (1) ⇔ (2). Lemma A.3.10 shows that (2) ⇔ (3). �

A.3.12 Remark. Corollary A.3.11 was mentioned in [40, Remark 2.14].

Finiteness is also a well-behaved notion in Cat∞,∕P:
A.3.13 De�nition. Given an∞-category D, we say that an object F∶ C → D of Cat∞,∕D is �nite if the∞-category C is �nite.

Given a poset P, we say that an object F∶ C → P of Catcons∞,∕P is �nite if the∞-category C is �nite.

A.3.14 Notation. For the sake of convenience, let us write [−1] ≔ ∅ for the empty poset.

A.3.15 Observation. Let D be an∞-category. Then the full subcategory

Cat�n∞,∕D ⊂ Cat∞,∕D
spanned by the �nite objects is the smallest subcategory closed under pushouts and containing all objects
of the form �∶ [n] → D where −1 ≤ n ≤ 1. Similarly,

Catω∞,∕D ⊂ Cat∞,∕D
is the smallest full subcategory containing Cat�n∞,∕D and closed under retracts.

We conclude by recording some important operations that preserve �niteness and compactness.

A.3.16 Proposition. Let F∶ C → P be a functor from an∞-category to a poset. If C is a �nite (resp., compact)
object of Cat∞, then the∞-category EnvP(C) = C[W−1P ]
is a �nite (resp., compact) object of Cat∞.

Proof. In light of Observation A.3.15, it su�ces to show that EnvP preserves �nite objects. Moreover, to
prove this, it su�ces to show that for −1 ≤ n ≤ 1 and each map of posets �∶ [n] → P, the localizationEndP([n]) is �nite. If n = −1 or n = 0, then EnvP([n]) = [n], so the claim is clear.

If n = 1, then there are two cases. First, if the map �∶ [1] → P is constant, then the classWP consists of
all morphisms in P, hence EnvP([1]) ≃ ∗ is �nite. Second, if the map �∶ [1] → P is not constant, then the
classWP consists of only the identity morphisms in P, hence EnvP([1]) ≃ [1] is �nite. �
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A.3.17 Proposition. Let P be a poset and let S ⊂ P be a locally closed subposet. Then the basechange functorS ×P (−)∶ Cat∞,∕P → Cat∞,∕S
preserves �nite and compact objects.

Proof. Since the inclusion S ↪ P is an exponentiable �bration (LemmaA.2.6), the functor S×P (−) preserves
colimits. Hence by Observation A.3.15, it su�ces to prove that S ×P (−) preserves �nite objects. Moreover,
to prove this, it su�ces to show that for −1 ≤ n ≤ 1 and each map of posets �∶ [n] → P, the basechangeS ×P [n] is �nite. To conclude, observe that since S ⊂ P is locally closed, S ×P [n] ⊂ [n] is also locally closed;
hence, there exists −1 ≤ m ≤ n such that S ×P [n] ≅ [m]. �

The following application of Proposition A.3.17 is not needed in the present paper, but is quite useful:

A.3.18 Lemma. Let C and D be∞-categories. Then the join C⋆D is �nite (resp., compact) if and only if bothC and D are �nite (resp., compact).

Proof. By de�nition, the join C ⋆ D is the colimit in Cat∞ of the diagramC × D × {0} C × D × {1}
C C × D × [1] D ,

where the outermost functors are the projections. Furthermore, the unique functors C → {0} and D → {1}
induce a functor C ⋆ D {0} ⋆ {1} ≅ [1]
with �bers (C ⋆ D)0 ≃ C and (C ⋆ D)1 ≃ D. In particular, the forward implication follows from the fact
that �nite (resp., compact)∞-categories are stable under �nite products and �nite colimits. The reverse
implcation follows from Proposition A.3.17 applied to the induced functor C ⋆ D → [1]. �

Of particular interest are cones:

A.3.19 Corollary. Let C be an∞-category. Then C is �nite (resp., compact) if and only if the cone C⊲ is �nite
(resp., compact).

Appendix B Complements on∞-topoi

The purpose of this appendix is to prove some fundamental results about∞-topoi that are used in the
main body of the paper. In §B.1, we recall the basics of étale geometric morphisms as well as open and
closed immersions of∞-topoi. In §B.2, we explain how hypercompletion interacts with étale geometric
morphisms. In §B.3, we prove that the hypercompletion of a recollement of∞-topoi is still a recollement
(Proposition B.3.5). We then use this to explain how hypercompletion interacts with locally closed immer-
sions of∞-topoi (Corollary B.3.7 and Lemma 2.4.2).

B.1 Open and closed subtopoi. In this subsection, we recall the notions of open and closed immersions
of∞-topoi and how they give rise to recollements. In order to discuss open immersions, we start with the
more general notion of a étale geometric morphisms. For more background on étale geometric morphisms,
the reader should consult [HTT, §6.3.5].

B.1.1 Recollection (étale geometric morphisms). Let X be an∞-topos andU ∊ X. Then the overcategoryX∕U is an∞-topos. Moreover, the forgetful functor p♯ ∶ X∕U → X admits a right adjoint p∗ ∶ X → X∕U
given by the assignmentX ↦ X × U. Since colimits are universal in X, the functor p∗ admits a further right
adjoint p∗ ∶ X∕U → X. See [HTT, Proposition 6.3.5.1]. We always regard the∞-topos X∕U as an∞-topos
over X via the natural geometric morphism p∗ ∶ X∕U → X.

Let e∗ ∶ W → X be a geometric morphism of∞-topoi. Then the following conditions are equivalent:
(1) There exists an object U ∊ X and an equivalence W ⥲ X∕U of∞-topoi over X.

http://www.math.ias.edu/~lurie/papers/HTT.pdf#subsection.6.3.5
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(2) The functor e∗ admits a left adjoint e♯ ∶ W → X and the induced functore♯ ∶ W → X∕e♯(1W )
is an equivalence of∞-categories.

(3) The functor e∗ admits a conservative left adjoint e♯ ∶ W → X and for all maps X → Z in X, objectsY ∊ W, and maps f♯(Y) → Z, the natural mape♯ (e∗(X) ×e∗(Z)Y) → X ×Z e♯(Y)
is an equivalence.

See [HTT, Proposition 6.3.5.11]. We call a geometric morphism satisfying these equivalent conditions an
étale geometric morphism.

B.1.2 Recollection (open immersions). Let j∗ ∶ U → X be a geometric morphism of∞-topoi. Then the
following conditions are equivalent:
(1) There exists a (−1)-truncated object U ∊ X and an equivalence U ⥲ X∕U of∞-topoi over X.

(2) The geometric morphism j∗ ∶ U → X is étale and j♯(1U) ∊ X is (−1)-truncated.
(3) The geometric morphism j∗ ∶ U → X is étale and the functor j∗ is fully faithful.
We call a geometric morphism satisfying these equivalent conditions an open immersion of∞-topoi. Also
notice that in this situation, j♯ is fully faithful. For open immersions of∞-topoi, we write j! ≔ j♯.
B.1.3 Recollection (closed immersions). Let X be an∞-topos and let U ∊ X be a (−1)-truncated object.
We write X∖U ⊂ X
for the full subcategory spanned by those objects F such that the projection pr2 ∶ F × U → U is an equiva-
lence. The inclusion X∖U ⊂ X is accessible and admits a left exact left adjoint [HTT, Proposition 7.3.2.3]. In
particular, X∖U is an∞-topos and the inclusion X∖U ↪ X is a geometric morphism. We call the∞-toposX∖U the closed complement of the open subtopos X∕U .

We say that a geometric morphism of∞-topoi i∗ ∶ Z → X is a closed immersion if there exists a (−1)-
truncated object U ∊ X such that i∗ factors through X∖U and restricts to an equivalence i∗ ∶ Z ⥲ X∖U .
B.1.4 De�nition. Let f∗ ∶ X → Y be a geometric morphism of∞-topoi. We say that f∗ is a locally closed
immersion if there exists a factorization f∗ ≃ j∗i∗ where i∗ is a closed immersion and j∗ is an open immer-
sion.

B.1.5 Recollection. Let X be a topological space and let j ∶ U ↪ X be an open subspace with closed
complement i ∶ Z ↪ X. Also write U ∊ Sh(X) for the sheaf represented by the open subset U ⊂ X. Then:
(1) The geometricmorphism j∗ ∶ Sh(U) ↪ Sh(X) is an open immersion that identi�es Sh(U)with Sh(X)∕U .
(2) The geometric morphism i∗ ∶ Sh(Z) ↪ Sh(X) is a closed immersion that identi�es Sh(Z)with Sh(X)∖U .

See [HTT, Corollary 7.3.2.10].
As a consequence, locally closed immersions of topological spaces induce locally closed immersions of∞-topoi of sheaves.

The key feature of open and closed immersions is that they give rise to recollements:

B.1.6 Recollection (open-closed recollement). Let X be an∞-topos and U ∊ X a (−1)-truncated object.
Write i∗ ∶ X∖U ↪ X and j∗ ∶ X∕U → X for the complementary closed and open geometric morphisms.
Then the functors i∗ ∶ X → X∖U and j∗ ∶ X → X∕U
exhibit X as the recollement of X∖U and X∕U .
In light of Recollections B.1.5 and B.1.6, we see:

http://www.math.ias.edu/~lurie/papers/HTT.pdf#theorem.6.3.5.11
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B.1.7 Example. LetX be a topological space and let i ∶ Z ↪ X be a closed subspace with open complementj ∶ U ↪ X. Then the functorsi∗ ∶ Sh(X) → Sh(Z) and j∗ ∶ Sh(X) → Sh(U)
exhibit Sh(X) as the recollement of Sh(Z) and Sh(U).

Étale geometric morphisms and closed immersions also behave well under basechange.

B.1.8 Proposition. Let f∗ ∶ X → Y be a geometric morphism of∞-topoi and let V ∊ Y. Then:
(1) The induced square X∕f∗(V) X

Y∕V Yf∗
is a pullback square in RTop∞.

(2) If V is (−1)-truncated, then the induced squareX∖f∗(V) X
Y∖V Yf∗

is a pullback square in RTop∞.

Proof. For (1), see [HTT, Remark 6.3.5.8]. For (2), see [HTT, Proposition 7.3.2.12]. �

B.1.9. As a consequence of Proposition B.1.8 the properties being étale, an open immersion, a closed
immersion, or a locally closed immersion are all stable under basechange in RTop∞.

In general, the functor sending a topological space X to the∞-topos Sh(X) does not preserve pullbacks.
However, Proposition B.1.8 implies that the assignment X ↦ Sh(X) does preserve pullbacks along locally
closed immersions:

B.1.10 Corollary. Let S X
T Y

{̄⌟ f
i

be a pullback square of topological spaces where i is a locally closed immersion. Then the induced square of∞-topoi Sh(S) Sh(X)
Sh(T) Sh(Y)

{̄∗
f∗

i∗
is a pullback square in RTop∞.

Proof. Note that by factoring i as a closed immersion followed by an open immersion, it su�ces to treat
the cases of closed immersions and open immersions separately. Since S = f−1(T), the claim is immediate
from Recollection B.1.5 and Proposition B.1.8. �
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B.2 Hypercompleteness & étale geometric morphisms. The purpose of this subsection is to prove the
following characterization the hypercomplete objects of the slice∞-topos over a hypercomplete object.

B.2.1 Proposition. Let X be an∞-topos and letU ∊ X be a hypercomplete object. Write e∗ ∶ X∕U → X for
the natural geometric morphism. For an object [p∶ X → U] ∊ X∕U , the following are equivalent:
(1) The object p∶ X → U is a hypercomplete object of X∕U .
(2) The object X is a hypercomplete object of X.

In particular, there is a natural identi�cation(Xhyp)∕U = (X∕U)hyp
as full subcategories of X∕U .
B.2.2 Corollary. Let X be an ∞-topos and let U ∊ X. If X is hypercomplete, then the ∞-topos X∕U is
hypercomplete.

To prove Proposition B.2.1, we need a few technical lemmas. The �rst is a slight re�nement of the
statement of [HA, Lemma A.2.6]:

B.2.3 Lemma. Let e∗ ∶ W → X be a geometric morphism of∞-topoi. Assume that e∗ admits a left adjointe♯ ∶ W → X. Then:
(1) For each −2 ≤ n ≤ ∞, the functor e♯ preserves n-connected maps.

(2) The functor e∗ ∶ X → W preserves hypercomplete objects.

B.2.4 Lemma. Let F∶ C → D be a functor between∞-categories.
(1) Let ℐ be an∞-category. Assume that C and D admit ℐ-shaped colimits and that F preserves ℐ-shaped

colimits. If F is conservative, then F re�ects ℐ-shaped colimits.

(2) Assume that C and D admit pullbacks and geometric realizations of simplicial objects and that F preserves
pullbacks and geometric realizations. If F is conservative, then F re�ects e�ective epimorphisms.

Proof. For (1), let X∙ ∶ ℐ▹ → C be a diagram, and assume that the composite diagram F◦X∙ ∶ ℐ▹ → D is a
colimit diagram. Write X∞ for the value of the cone point and let �∶ colimi∊ℐ Xi → X∞ denote the natural
map. Then F(�) factors as a composite of natural mapsF (colimi∊ℐ Xi) colimi∊ℐ F(Xi) F(X∞) .
Since F preserves colimits, the left-hand map is an equivalence; since F◦X∙ is a colimit diagram, the right-
hand map is also an equivalence. Since F is conservative, we deduce that � is an equivalence, i.e., that X∙ is
a colimit diagram, as desired.

Item (2) is immediate from the de�nition of an e�ective epimorphism combined with item (1) and its
dual. �

B.2.5 Lemma. Let X be an∞-topos and let {f∗� ∶ X → X�}�∊A be a jointly conservative family of functors
between∞-topoi that each preserve pullbacks and geometric realizations of simplicial objects. Let−2 ≤ n ≤ ∞
and let �∶ U → V be a morphism in X. Then the following are equivalent:
(1) The morphism � is n-connected.
(2) For each � ∊ A, the morphism f∗�(�) is n-connected.
Proof. Since functors that preserve pullbacks and geometric realizations of simplicial objects preserve n-
connectedness, (1) ⇒ (2). For the implication (2) ⇒ (1), �rst note a morphism � is∞-connected map if and
only if for each n < ∞, the morphism � is n-connected. So it su�ces to treat the case of �nite n. Write Y for
the product of∞-categories

∏�∊A X� andf∗ ∶ X → Y for the functor induced by the functorsf∗� ∶ X → X�
by the universal property of the product. Note that Y is an∞-topos and since limits and colimits in Y are
computed levelwise, f∗ also preserves pullbacks and e�ective epimorphisms. Moreover, the statement (2)
is equivalent to the statement:

http://www.math.ias.edu/~lurie/papers/HA.pdf#atheorem.A.2.6
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(3) The morphism f∗(�) is n-connected.
So we instead prove that (3) ⇒ (1).

We prove the claim by induction on n. The case n = −2 is clear; every morphism is (−2)-connected. For
the case n = −1, recall that a morphism � is (−1)-connected if and only if � is an e�ective epimorphism.
The claim now follows from Lemma B.2.4-(2).

For the inductive step, assume that n ≥ 0, and that we know that for all k ≤ n, the functor f∗ ∶ X → Y
re�ects k-connectedness. Let �∶ U → V be a morphism of X such that f∗(�) is n-connected. That is f∗(�)
is an e�ective epimorphism and the diagonal∆f∗(�) ∶ f∗(U) → f∗(U) ×f∗(V)f∗(U)
is (n−1)-connected. By the base case, � is an e�ective epimorphism.Moreover, since f∗ preserves pullbacks,∆f∗(�) ≃ f∗(∆�) .
The inductive hypothesis then show that ∆� is (n − 1)-connected. Thus � is n-connected, as desired. �

B.2.6 Corollary. Let e∗ ∶ W → X be an étale geometric morphism of∞-topoi and let � be a morphism in W .
Then for each −2 ≤ n ≤ ∞, the morphism � in W is n-connected if and only if e♯(�) is n-connected.
Proof. Since the forgetful functor e♯ ∶ W → X is a conservative left adjoint that preserves pullbacks, this is
a special case of Lemma B.2.5. �

Now we are ready to prove Proposition B.2.1.

Proof of Proposition B.2.1. We start by proving that (1) ⇒ (2). Let �∶ V → V′ be an∞-connected map in X.
We need to show thatMapX(−, X) inverts �. Consider the commutative squareMapX(V′, X) MapX(V′, U)

MapX(V, X) MapX(V,U) .
−◦�

p◦−
−◦�

p◦−
Since � is∞-connected and U is hypercomplete, the right-hand vertical map is an equivalence. Thus to
show that the left-hand vertical map is an equivalence, it su�ces to show that for each map q∶ V′ → U,
the induced map on horizontal �bers is an equivalence.

For this, regard V and V′ as objects of X∕U via the structure maps q� and q, respectively; then � de�nes
a map [q�∶ V → U] → [q∶ V′ → U]
in X∕U . By the de�nition of the mapping spaces in an overcategory, we have a commutative square

(B.2.7)

MapX∕U (V′, X) {q} ×MapX (V′,U)MapX(V′, X)
MapX∕U (V, X) {q�} ×MapX (V,U)MapX(V, X) ,

−◦�
∼

∼
where the horizontal maps are equivalences and the vertical maps are given by precomposition with �.
Since � is an∞-connected map in X, by Corollary B.2.6, � is also an∞-connected map when regarded as a
map V → V′ in X∕U . Since X is a hypercomplete object of X∕U , we deduce that the left-hand vertical map
in (B.2.7) is an equivalence. Thus the right-hand vertical map is also an equivalence, as desired.

Now we prove that (2) ⇒ (1). Assume that X is hypercomplete when regarded as an object of X. Let�∶ V → V′ be an∞-connected map in X∕U , and write q∶ V → V′ for the structure map. We need to show
that the functorMapX∕U (−, X) inverts �. Again consider the square (B.2.7). Since � is an∞-connected map
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of X∕U , Corollary B.2.6 shows that � is also∞-connected when regarded as a map of X. Since U and X
are hypercomplete when regarded as objects of X, the right-hand vertical map in (B.2.7) is an equivalence;
hence the left-hand vertical map is also an equivalence, as desired. �

B.3 The hypercompletion of a recollement. This subsection has two goals. The �rst is to show that the
hypercompletion of a recollement of∞-topoi is still a recollement (Proposition B.3.5). The second is to show
that hypercompletion preserves pullbacks along locally closed immersions of∞-topoi (Proposition B.3.8).

We begin by using Proposition B.2.1 to describe the hypercomplete objects of a locally closed subtopos.
To do this, we �rst observe that the pushforward along a closed immersion preserves∞-connectedness and
detects hypercompleteness.

B.3.1 Lemma. Let i∗ ∶ Z → X be a closed immersion of∞-topoi and � a map in Z. For each −2 ≤ n ≤ ∞,
the following are equivalent:
(1) The map � is an n-connected map of Z.
(2) The map i∗(�) is an n-connected map of X.

Proof. First we show that (2) ⇒ (1). Let j∗ ∶ U ↪ X denote the open complement of Z. Since i∗ and j∗ are
jointly conservative, by Lemma B.2.5 we need to show that if � is n-connected, then i∗i∗(�) and j∗i∗(�) aren-connected. Since i∗ is fully faithful, i∗i∗(�) ≃ �. Thus our assumption on � says that i∗i∗(�) is n-connected.
Also, j∗i∗ is constant with value the terminal object, hence j∗i∗(�) is an equivalence.

To see that (2) ⇒ (1), note that since � ≃ i∗i∗(�), the claim immediately follows from the fact that i∗
preserves n-connected maps. �

B.3.2 Lemma. Let i∗ ∶ S → X be a fully faithful geometric morphism of∞-topoi. If i∗ preserves∞-connected
maps, then an object F ∊ S is hypercomplete if and only if i∗(F) ∊ X is hypercomplete.

Proof. Since pushforwards preserve hypercompleteness, it su�ces to show that if i∗(F) is hypercomplete,
then F is hypercomplete. Let �∶ V → V′ be an∞-connected map of S. By assumption, the morphism i∗(�)
is also∞-connected. Since i∗(F) is hypercomplete, we deduce that the induced map−◦i∗(�)∶ MapX(i∗(V′), i∗(F)) → MapX(i∗(V), i∗(F))
is an equivalence. Since i∗ is fully faithful, the map−◦�∶ MapS(V′, F) → MapS(V, F)
is also an equivalence. �

B.3.3 Proposition. Let i∗ ∶ S ↪ X be a locally closed immersion of ∞-topoi. Then an object F ∊ S is
hypercomplete if and only if i∗(F) ∊ X is hypercomplete.

Proof. Since pushforwards preserve hypercompleteness, it su�ces to show that if i∗(F) is hypercomplete,
then F is hypercomplete. By writing i∗ as the composite of a closed immersion followed by an open immer-
sion, we are reduced to treating the cases where i∗ is a closed or an open immersion.

If i∗ is an open immersion, note that by Lemma B.2.3, the functor i∗ preserves hypercompletenss. Sincei∗ is fully faithful and i∗(F) is hypercomplete, we deduce that i∗i∗(F) ≃ F is hypercomplete.
If i∗ is a closed immersion, then Lemma B.3.1 shows that i∗ preserves∞-connected maps. The claim

now follows from Lemma B.3.2. �

B.3.4 Corollary. Let i∗ ∶ S ↪ X be a locally closed immersion of∞-topoi. If X is hypercomplete, then S is
hypercomplete.

We are now ready to show that the hypercompletion of a recollement remains a recollement:

B.3.5 Proposition. Let X be an∞-topos and letU ∊ X be a (−1)-truncated object. Write i∗ ∶ X∖U ↪ X andj∗ ∶ X∕U ↪ X for the natural geometric morphisms. Then:
(1) There are natural identi�cations(X∕U)hyp = (Xhyp)∕U and (X∖U)hyp = (Xhyp)∖U

as full subcategories of X.
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(2) The functors i∗,hyp ∶ Xhyp → (X∖U)hyp and j∗,hyp ∶ Xhyp → (X∕U)hyp
exhibit Xhyp as the recollement of (X∖U)hyp and (X∕U)hyp.

Proof. For (1), note that the left-hand identi�cation is a special case of Proposition B.2.1. For the right-hand
identi�cation, note that Corollary B.3.4 implies that(X∖U)hyp = Xhyp ∩ X∖U
as full subcategories of X. Since U is hypercomplete and Xhyp ⊂ X is closed under �nite products, unpack-
ing de�nitions we see that Xhyp ∩ X∖U = (Xhyp)∖U .

Finally, (2) is an immediate consequence of (1) and the open-closed recollement associated to a (−1)-
truncated object. �

B.3.6 Example. LetX be a topological space and let i ∶ Z ↪ X be a closed subspace with open complementj ∶ U ↪ X. From Example B.1.7 and Proposition B.3.5, we deduce that the functorsi∗,hyp ∶ Shhyp(X) → Shhyp(Z) and j∗,hyp ∶ Shhyp(X) → Shhyp(U)
exhibit Shhyp(X) as the recollement of Shhyp(Z) and Shhyp(U).

In the remainder of this subsection, we use Proposition B.3.5 to prove some compatibilities between
hypercompletion and pulling back along locally closed immersions. Note that since the inclusion of hyper-
complete∞-topoi into all∞-topoi does not preserve limits, these results do not immediately follow from
formal considerations.

B.3.7 Corollary. Let i∗ ∶ S ↪ X be a locally closed immersion of∞-topoi. Then the natural squareShyp Xhyp
S X

ihyp∗

i∗
is a pullback square in RTop∞.

Proof. By factoring i∗ as the composite of a closed immersion followed by an open immersion, it su�ces to
treat the cases of closed and open immersions separately. These cases follow from Proposition B.3.5-(1) and
the explicit description of the pullbacks along open and closed immersions of∞-topoi (Proposition B.1.8).

�

B.3.8 Proposition. Let S X
T Y

{̄∗⌟
i∗

be a pullback square of∞-topoi where i∗ is a locally closed immersion. Then the induced squareShyp Xhyp

Thyp Yhyp

{̄hyp∗

ihyp∗
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is also a pullback square in RTop∞.

Proof. Consider the commutative cube of∞-topoiShyp Xhyp
S X

Thyp Yhyp
T Y .

{̄hyp∗
{̄∗

ihyp∗
i∗

By assumption, the front vertical face is a pullback square. Since i∗ and {̄∗ are locally closed immersions,
Corollary B.3.7 shows that the top and bottom horizontal faces are pullback squares. By the gluing lemma
for pullbacks, the back vertical face is also a pullback square. �

In general, the functor sending a topological spaceX to the∞-topos Shhyp(X) does not preserve pullbacks.
However, the assignment X ↦ Shhyp(X) does preserve pullbacks along locally closed immersions:

B.3.9 Corollary. Let S X
T Y

{̄⌟ f
i

be a pullback square of topological spaces where i is a locally closed immersion. Then the induced square of∞-topoi Shhyp(S) Shhyp(X)
Shhyp(T) Shhyp(Y)

{̄hyp∗
fhyp∗

ihyp∗
is a pullback square in RTop∞.

Proof. By Corollary B.1.10, the claim is true before hypercompletion. Proposition B.3.8 shows that the claim
remains true after hypercompletion. �
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