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ABSTRACT. We show that compact subanalytic stratified spaces and algebraic stratifications of real varieties
have finite exit-path co-categories, refining classical theorems of Lefschetz-Whitehead, Lojasiewicz, and Hiron-
aka on the finiteness of the underlying homotopy types of these spaces. These stratifications are typically not
conical; hence we cannot rely on the currently available exodromy equivalence between constructible sheaves
on a stratified space, which requires conicality as a fundamental hypothesis. Building on ideas of Clausen and
@rsnes Jansen, we study the class of exodromic stratified spaces, for which the conclusion of the exodromy theo-
rem holds. We prove two new fundamental properties of this class of stratified spaces: coarsenings of exodromic
stratifications are exodromic, and every morphism between exodromic stratified spaces induces a functor be-
tween the associated exit path co-categories. As a consequence, we produce many new examples of exodromic
stratified spaces, including: coarsenings of conical stratifications, locally finite subanalytic stratifications of real
analytic spaces, and algebraic stratifications of real varieties. Our proofs are at the generality of stratified co-topoi,
hence apply to even more general situations such as stratified topological stacks. Finally, we use the previously
mentioned finiteness results to construct derived moduli stacks of constructible and perverse sheaves.
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0 INTRODUCTION

0.1 Motivation. Let (X, P) be a stratified space. MacPherson observed the following generalization of the
monodromy equivalence: provided the stratification of X is sufficiently nice, the category of constructible
sheaves of sets on (X, P) is equivalent to the category of functors from the exit-path category of (X, P) to
Set. Treumann [38] provided the first general account of this phenomenon, and Treumann’s result has
since been generalized by Lurie [HA, Theorem A.9.3], Lejay [25], and Porta-Teyssier [32]. To contextualize
the results of this paper, let us first recall the most general theorem of this form currently available. Write
Conslllyp(X ) for the co-category of hyperconstructible hypersheaves' of spaces on X. If the stratification
of (X, P) is conical (see [32, Definition 2.1.9]) and the strata are locally weakly contractible, the exodromy
theorem? [32, Theorem 5.4.1] provides an equivalence of co-categories

0.1.1) @y p i Cons’P(X) = Fun(Il,(X, P), Spe) .

Date: January 23, 2024.
n this introduction, the reader can safely disregard the adjective “hyper”. Hypersheaves are used in [21; 25; 32] to relax the
geometric assumptions needed for the theorem.
2The term ‘exodromy’ was first introduced in [8] as a combination of ‘monodromy’ and ‘exit-paths’.
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Here I1 (X, P) is Lurie’s exit-path co-category of (X, P), introduced in [HA, Definition A.6.2]. The objects
of IT, (X, P) are the points of X. Roughly speaking, the 1-morphisms are exit-paths flowing from lower to
higher strata (and once they exit a stratum are not allowed to return), the 2-morphisms are homotopies
of exit-paths respecting stratifications, etc. The functor ®x p carries a sheaf F to the functor informally
described by sending a point x € X to the stalk F,, and each exit-path x — y to a specialization map
F, — F,, together with higher coherences relating these data. Conicality has played an essential role in
almost all exodromy theorems available in the literature. First, it is crucial in proving that the geometrically
defined object I, (X, P) is indeed an co-category [HA, Theorem A.6.4]. Second, it is used at various points
in the proof of the equivalence (0.1.1). Many stratifications naturally arising in geometry fail to be conical:
typical examples are general subanalytic stratifications of real analytic manifolds, such as those arising from
the study of the Stokes phenomenon for algebraic differential equations [33]. Deep work of Thom, Mather,
and Verdier among others on analytic stratified spaces has shown that conical (in fact, Whitney) refinements
are always available [17]; however, it is sometimes essential to work with a fixed stratification. The purpose
of this article is to generalize the exodromy equivalence to many naturally occurring non-conically stratified
spaces, paying particular attention to the conically refineable situation.

0.2 Exodromic stratified spaces. To state the results of this paper, we need to briefly introduce the
concept of an exit-path co-category without reference to any particular simplicial model. As highlighted
by Ayala-Francis-Rozenblyum [6, Problem 0.0.9] and explained by Clausen-@rsnes Jansen [14; 28; 29],
one should be able to trade off the conicality of a stratified space (X, P) and Lurie’s simplicial model for the
exit-path co-category for the following three requirements of the co-category Cons?,yp(X ):

0.2.1 Definition (cf. [14, Definition 3.5]). A stratified space s: X — P is exodromic if the following
conditions are satisfied:

(1) The co-category Conslg,yp(X ) is atomically generated.
(2) The subcategory Consﬁyp(X ) C Shhyp(X ) is closed under both limits and colimits.

(3) The pullback functor s*"P : Fun(P, Spc) ~ Sh™P(P) — Cons™P(X) preserves limits.
P

Let us comment tl}}ese requirements. Concerning (1), note that the exodromy theorem guarantees that
the co-category ConsPyp(X ) can be written as an co-category of presheaves. Atomic generation is an intrinsic
way to formulate this property: given a presentable co-category C, an object ¢ € € is atomic if the functor

Map,(c,—): € — Spc

preserves all colimits. Write €3 C € for the full subcategory spanned by the atomic objects. Then € is said
to be atomically generated if the unique colimit-preserving extension

PSh(C*) —» €

of @3 C € along the Yoneda embedding is an equivalence (see §1.1 for more background on this notion).
In the setting of Definition 0.2.1, we write I, (X, P) for the opposite of the full subcategory of Conshyp(X )
spanned by atomic objects. We refer to I1 (X, P) as the exit-path co-category of (X, P). The second feature
is that the subcategory Cons yp(X ) € Sh™P(X) is closed under both limits and colimits. This is in some
sense a categorical regularlty condition, which is akin to but weaker than conicality: see [32, Corollary
5.4.4] for a proof in the conical setting, and see Definition 2.4.10 and Example 2.4.11 for other examples
of regularity properties enjoyed by the conical situation. The third feature is that, by construction, the exit-
path oco-category of (X, P) is equipped with a functor to the stratifying poset P. Given conditions (1) and
(2), condition (3) guarantees that the stratification of X equips I1, (X, P) with a functor IT (X, P) — P; see
Recollection 1.1.11.

0.3 The stability theorem. The analysis of the conical situation carried out in [32] shows that conically
stratified spaces with locally weakly contractible strata are exodromic in the sense of Definition 0.2.1. How-
ever, the class of such stratified spaces does not have many stability properties; for example, a coarsening
of a conical stratification need not be conical. As previously mentioned, in subanalytic geometry and real
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algebraic geometry conical refinements always exist, at least locally. The following is the main result of this
paper, and in particular it implies that every subanalytic or real analytic stratified space is exodromic:

0.3.1 Theorem (stability properties of exodromic stratified spaces; Theorem 5.1.7).

(1) Stability under pulling back to locally closed subposets: If (X, P) is an exodromic stratified space, then for
each locally closed subposet S C P, the stratified space (X Xp S, S) is exodromic and the induced functor

M (X Xp S,S) > I (X,P) Xp S
is an equivalence. As a consequence, the induced functor 11 (X, P) — P is conservative.

(2) Functoriality: The exodromy equivalence is functorial in all stratified maps between exodromic stratified
spaces. That is, for every stratified map f : (X,P) — (Y, Q) between exodromic stratified spaces, under the
exodromy equivalence the pullback functor

frohyp Consgyp(Y) - Cons};yp(X )
is induced by a functor of exit-path co-categories
He(X, P) = Nk (Y, Q).

(3) Stability under coarsening and localization formula: Let (X, R) be an exodromic stratified space and let
¢ . R — P be a map of posets. Write Wp for the collection of morphisms in I1 (X, R) that the composite
IT,(X,R) - R — P sends to equivalences. Then the stratified space (X, P) is exodromic and the natural
Sfunctor I1 (X, R) - I (X, P) induces an equivalence

(X, RW5'] > I (X, P).
(4) van Kampen: The property of a stratified space being exodromic can be checked locally.

(5) Stability of finiteness/compactness: The property of an exit-path co-category being finite (vesp., compact)
is stable under pulling back to a locally closed subposet, is stable under coarsening, and can be checked on
a finite open cover.

Together, the items in Theorem 0.3.1 provide robust techniques to produce new examples of exodromic
stratified spaces starting from conically stratified spaces. We will explain many new examples of stratified
spaces momentarily. Before proceeding further, we comment on how Theorem 0.3.1 relates to existing
results, and the our proof methods.

0.3.2 Existing Results. Item (1) was proven by Clausen-@rsnes Jansen in a slightly different topological
setting [14, Proposition 3.6-(1)], and by @rsnes Jansen for topological stacks [29, Proposition 3.13-(1)]. Item
(4) is an easy consequence of the theory, and, in the same settings, was previously observed by Clausen—
Orsnes Jansen [14, Proposition 3.6-(2)] and @rsnes Jansen [29, Proposition 3.13-(2)]. Two early instances of
(2) were proven in the conically stratified setting by Lurie [HA, Corollary A.9.4] in the case where P = x,
and Ayala-Francis—Rozenblyum [6, Theorem 3.3.12] under some additional hypotheses on the stratifying
posets. Recently, @rsnes Jansen [29, Proposition 3.20] generalized the argument given by Ayala-Francis-
Rozenblyum; however the hypotheses are still somewhat restrictive.

The first main contribution of Theorem 0.3.1 is that our results have no restrictions on the stratifiying
posets. The second is that we prove functoriality of the exodromy equivalence in all maps of stratified spaces.
This is a new result and may be somewhat surprising; with previous methods, even functoriality in the
conical case was a nontrivial result, first proven in [32, Proposition 6.2.3]. The third is item (5) on the
stability of finiteness/compactness; its proof requires a careful understanding of the localization formula
from (3) and it generalizes classical finiteness results for homotopy types of real analytic manifolds. See
Remark 0.4.4.

0.3.3 Methods. The final main contribution is that our result is actually even more general than Theo-
rem 0.3.1. The point is that the conditions in Definition 0.2.1 only depend on the datum of the geometric
morphism of co-topoi

Sh™P(X) - Fun(P, Spc) .
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This is an example of a stratified co-topos, as introduced in the work of Barwick-Glasman-Haine [8]. Con-
sequently, Definition 0.2.1 makes sense at the generality of stratified co-topoi. See §2, in particular Defini-
tion 2.2.10.

We prove Theorem 0.3.1 by proving its natural generalization to stratified co-topoi. See Theorem 3.0.1
for a precise statement. This generalization gives added flexibility; for example, it immediately applies to
stratified topological stacks. It also subsumes all results of this form that we are aware of, for example, the
stability results proven by Clausen-@rsnes Jansen [14] and @rsnes Jansen [29]. The topos-theoretic result
has the added benefit of providing a common framework for the various contexts where exodromy was
previously considered (e.g., sheaves vs. hypersheaves).

0.4 Applications of the stability theorem. We now state our main applications of Theorem 0.3.1. Since
every conically stratified space with locally weakly contractible strata is exodromic and the class of conically
stratified spaces with locally weakly contractible strata is stable under passing to open subsets, we deduce:

0.4.1 Corollary (Proposition 5.2.9). If a stratified space (X, P) locally admits a refinement by a conical
stratification with locally weakly contractible strata, then (X, P) is exodromic.

A theorem of Verdier guarantees that a locally finite subanalytic stratification of a real analytic space admits
a refinement that is Whitney stratified [39, Théoréme 2.2]. Since Whitney stratifications are conical [27; 36],
a little more work on top of Theorem 0.3.1 shows:

0.4.2 Theorem (Theorem 5.3.9). Let (X, P) be a real analytic manifold equipped with a locally finite stratifi-
cation by subanalytic subsets. Then:

(1) The stratified space (X, P) is exodromic.

(2) IfX is compact, then the exit-path co-category Il (X, P) is finite.

0.4.3 Theorem (Theorem 5.3.13). Let X be an algebraic variety over R and let (X, P) be a finite stratification
of X by Zariski locally closed subsets. Then:

(1) The stratified space (X, P) is is exodromic.

(2) The exit-path co-category I, (X, P) is finite.

0.4.4 Remark. Theorem 0.4.2-(2) and Theorem 0.4.3-(2) extend results of Lefschetz-Whitehead [24], L.o-
jasiewicz [26], and Hironaka [22] on the finiteness of the underlying homotopy types of compact subanalytic
spaces and real algebraic varieties.

As an application, we use Theorems 0.4.2 and 0.4.3 to prove representability results for moduli stacks of
constructible and perverse sheaves. Let A be an animated commutative ring (i.e., simplicial commutative
ring). Given a stratified space (X, P), we write Consp(X) for the derived prestack over A sending a derived
affine A-scheme Spec(B) to the co-groupoid of hyperconstructible hypersheaves of B-modules on (X, P)
with perfect stalks. See Recollection 5.4.5 and [32, §7.1]. Given a function p : P — Z, we write

PPervp(X) C Consp(X)
for the derived subprestack of p-perverse sheaves on (X, P). See [32, §7.7] for details.
0.4.5 Theorem (Corollary 5.4.17). Let (X, P) be a stratified space and let A be an animated commutative
ring. Assume one of the following conditions:
(1) (X, P)isacompact real analytic manifold equipped with a stratification by subanalytic subsets.
(2) (X, P)isan algebraic variety over R equipped with a finite stratification by Zariski locally closed subsets.
Then the derived prestacks Consp(X) and PPervp(X) are derived stacks that are locally geometric and locally
of finite presentation.

0.5 Examples. We conclude the introduction with some examples of non-conical stratifications to which
our results apply. First we demonstrate how to compute the exit-path co-category of a coarsening in a simple
situation.
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0.5.1 Example. Consider a circle stratified by a point, half-open interval, and open interval, as depicted
on the right-hand side of Figure 1. This stratification of S! is not conical. However, the stratification of S! by

two points and two half-open intervals appearing on the left-hand side of Figure 1 is a conical stratification
that refines the stratification on the right-hand side. The exodromy theorem in the concical case shows that

Figure 1. A non-conical stratification of S is pictured on the right. On the left is a conical
refinement of the right-hand stratification.

the exit-path co-category of the left-hand stratification of S! is equivalent to the poset
°
° °

Thus Theorem 0.3.1-(3) implies that the exit-path co-category of the right-hand stratification is equivalent
to the localization of the poset (0.5.2) at the morphism - — «. This localization is simply the category given

by a noncommutative triangle
°

o — 0.

(0.5.2)

0.5.3 Example (see Examples 5.3.5 and 5.3.10). Favero and Huang [16] recently proved an exodromy result
for certain non-conical stratifications naturally arising in mirror symmetry. Of particular interest are the tree
stratification on a finite simplicial complex [16, §4.4] and the Bondal-Ruan stratification of the n-torus [10;
16, §5.2]. The tree stratification is a coarsening of the natural stratification on a finite simplicial complex,
which is conical. Moreover, the Bondal-Ruan stratification is subanalytic. Thus Theorems 0.3.1 and 0.4.2
give an alternative perspective on Favero and Huang’s exit-path description of constructible sheaves on
these stratified spaces.

More examples arise naturally from the study of the Stokes phenomenon for algebraic differential equa-
tions. See [33] for more on this topic, as well as a systematic use of the results of this paper.

0.6 Linear overview. In §1, we provide background on atomically generated co-categories, locally con-
stant objects of co-topoi, and monodromy that we need for the rest of the paper. In §2, be begin by recalling
the theory of stratifications of co-topoi introduced in [8, §8.2] as well as constructible objects. We then
explain what it means for a stratified co-topos to be exodromic, see Definition 2.2.10. We also prove a few
basic results about the class of exodromic stratified co-topoi. In § 3, we prove a stability theorem for the
class of exodromic stratified co-topoi, see Theorem 3.0.1. This is the main technical result of the paper,
and implies the analogous result for stratified spaces stated in this introduction (Theorem 0.3.1). Section 4
explains when exodromy (with coefficients in the co-category of spaces) implies exodromy with coefficients
in other presentable co-categories. The key takeaway is that exodromy with coefficients in a compactly
assembled co-category is automatic (see Corollary 4.1.15). We need this result in order to prove our repre-
sentability result for the derived moduli of constructible and perverse sheaves (Theorem 0.4.5). Section 5
is dedicated to applications of our stability theorem for exodromic stratified oco-topoi (Theorem 3.0.1). We
deduce Theorem 0.3.1, provide many natural examples of exodromic stratified spaces coming from geometry
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and topology, and prove all of the results stated in §0.4. In Appendix A, we prove a number of categori-
cal facts needed to control the localizations of exit-path co-categories we consider. Specifically, the results
proven in Appendix A are needed to prove items (3) and (5) of Theorem 0.3.1. In Appendix B, we collect
some background on open and closed subtopoi and recollements. We then explain the relationship between
hypercompletion and recollements (see Proposition B.3.5). We need these results in a variety of places, for
example, to ensure that the definition of a constructible object of a stratified co-topos recovers the more
classical notion of a constructible (hyper)sheaf on a topological space.

0.7 Notational conventions. We use the following standard notation.

(1) We write Cat,, for the large oo-category of small co-categories, and write Spc C Cat, for the full
subcategory spanned by the spaces (i.e., co-groupoids or anima). We write CAT,, for the (very large)
oo-category of large oo-categories.

(2) We write Pr® for the oo-category of presentable co-categories and right adjoints and Pr" for the co-cat-
egory of presentable co-categories and left adjoints.

(3) We write RTop_ for the co-category of co-topoi and geometric morphisms, i.e., right adjoints f, whose
left adjoint f* is left exact. We write LTop  for the co-category of co-topoi and left exact left adjoints.

(4) Given a small co-category €, we write PSh(C) := Fun(C, Spc) for the co-category of presheaves of spaces
on C.

(5) For an integer n > 0, we write [n] for the poset {0 < --- < n}

We later introduce notational conventions for (hyper)sheaves and constructibility; these are consistent with
the notational conventions in our previous works [21; 32].

0.8 Acknowledgments. We thank David Ayala, Clark Barwick, Marc Hoyois, Jesse Huang, Jacob Lurie,
Guglielmo Nocera, Marco Volpe, and Mikala Orsnes Jansen for enlightening discussions around the contents
of this paper.

PH gratefully acknowledges support from the NSF Mathematical Sciences Postdoctoral Research Fellow-
ship under Grant #DMS-2102957 and a grant from the Simons Foundation (816048, LC).

1 BACKGROUND ON ATOMIC GENERATION, LOCALLY CONSTANT OBJECTS, AND MONODROMY

In this section, we recall the necessary background on atomically generated co-categories (§1.1), tensor
products of presentable co-categories (§1.2), and locally constant objects of co-topoi and monodromy (§1.3).

1.1 Recollections on atomic generation. We begin by recalling the background on atomically generated

oo-categories needed in this paper. In particular, we provide a useful way to check that a full subcategory

of an atomically generated co-category is also atomically generated and compute its generators (Proposi-

tion 1.1.13). For more on this topic, we refer the reader to [Ker, Tag 03WR; HTT, §5.1.6; 14, §2.2]. We begin

with some definitions.

1.1.1 Definition. Let € be a presentable co-category. An object ¢ € € is atomic” if the functor
Map,(c,—): € — Spc

preserves colimits. We write G2 C € for the full subcategory spanned by the atomic objects.

1.1.2 Observation. The subcategory G C € is always small and idempotent complete. However, contrary
to what happens to the full subcategory €® C € spanned by compact objects, the co-category G typically
does not have finite colimits.

1.1.3 Definition. Let C be a presentable co-category. We say that a small full subcategory C, C C atomically
generates C if the unique colimit-preserving extension

PSh(C,) — C

3 Atomic objects are also referred to as completely compact objects [HTT, Definition 5.1.6.2].
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of Gy C € along the Yoneda embedding is an equivalence. We say that C is atomically generated if there
exists a small full subcategory C, C C that atomically generates C.

1.1.4 Remark. The unique colimit-preserving extension PSh(C;) — C of the inclusion G, C € is left
adjoint to the restricted Yoneda functor
y: € —PSh(Cy), ¢~ Mapy(—,c).
Hence G, atomically generates C if and only if y is an equivalence.
1.1.5 Example [HTT, Proposition 5.1.6.8]. Let C, be a small co-category. Then, the atomic objects of

PSh(@,) are the retracts of representable functors. In particular, the unique atomic object of Spc is the point
k.

1.1.6 Observation. If C, C C atomically generates C, then G, C G, Moreover, by [Ker, Tag 040X], the
inclusion €, C G exhibits € as the idempotent completion of €,. As a consequence, all of the functors
given by extending the obvious inclusions along colimits

PSh(G,) ———— PSh(e™)
\ ] /

are equivalences. In particular, G2 also atomically generates €.

1.1.7 Definition. Let L: D — C be a left adjoint functor of co-categories. We say that L is atomic if the
right adjoint € — D to L is also a left adjoint.

1.1.8 Observation. If L : D — € is an atomic functor between presentable co-categories, then L preserves
atomic objects, i.e., L(D) c C*. If R denotes the right adjoint to L, then the square

PSh(E) —L pSh(D2t)

l l

_
e = D
commutes.

The converse is true if € and D are atomically generated:

1.1.9 Recollection [14, Lemma 2.6-(3)]. Let L: D — C be a left adjoint between atomically generated
presentable co-categories. Then L is atomic if and only if L preserves atomic objects.

In this paper, we repeatedly use the fact that the co-category of atomically generated presentable co-cate-
gories and atomic functors is equivalent to the co-category of idempotent complete co-categories:

1.1.10 Notation. Write Pr™*" c Pr" for the non-full subcategory with objects the atomically generated
oo-categories and morphisms atomic left adjoints. Write

idem

Cat,,  C Cat,

for the full subcategory spanned by the idempotent complete co-categories.

idem

1.1.11 Recollection [14, Proposition 2.7]. Consider the functor PSh: Cat,, — pr- sending a small
idempotent complete co-category €, to PSh(C,) with functoriality given by left Kan extension. This functor
restricts to an equivalence

PSh: Catlde™ =, pplat
with inverse given by

(—)2t: priat = catide™
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1.1.12 Notation. Let C be an atomically generated presentable co-category. To simplify notation later on,
we write C®X := (C*)°P for the opposite of the full subcategory of € spanned by the atomic objects. Thus
there is a natural equivalence

€ ~ Fun(C%, Spc) .

The proof of Theorem 0.3.1 relies on the fact that a full subcategory of an atomically generated co-category
that is closed under limits and colimits is also atomically generated:

1.1.13 Proposition. Let D be an atomically generated presentable co-category and leti: C < D be the

inclusion of a full subcategory. If C is closed under both limits and colimits in D, then:

(1) The co-category C is presentable and the inclusioni: C < D admits both a left adjoint L: D — Canda
right adjointR: D — C.

(2) The co-category C is atomically generated by L(D).

(3) Let W;, C Mor(D) be the collection of L-equivalences. Let W C W, N Mor(D) be a subset of morphisms
with the property that C coincides with the subcategory of W-local objects of D. Then the functor

L: D3 - et
exhibits G as the idempotent completion of the localization D*[W~1].

Proof. Point (1) is a direct consequence of the reflection theorem of Ragimov-Schlank [34, Theorem 1.1].
To prove (2), first note that by Observation 1.1.8, the functor L preserves atomic objects. Hence [HTT,
Proposition 5.1.6.10] implies that the functor

PSh(L(D*)) —» €

given by the left Kan extension of the inclusion L(D) C € along the Yoneda embedding is fully faithful.
To complete the proof of (2), we need to show that this functor is also essentially surjective. Equivalently,
we need to show that L(D?) generates € under colimits. For this, let ¢ € €. Since D is atomically generated,
there exists a diagram d, : A — D2 and an equivalence

i(c) ~ colimd,, .
© = cglimd.

Applying the left adjoint L, we find that
¢ ~ L(i(c)) ~ colim L(d,) .
aecA

Thus L(D?) generates € under colimits, as desired.
Now we prove (3). Combining (2) with Observation 1.1.6 shows that the inclusion L(D") C €% exhibits
G as the idempotent completion of L(D3). Thus it suffices to prove that the functor

(1.1.14) L: D - (D

exhibits L(D) as the localization of D' at W. To see this, we apply the three criteria of [13, Proposition
7.1.11]. By definition, the functor (1.1.14) is essentially surjective. Moreover, upon passing to presheaves,
precomposition with (1.1.14) is identified with i: ¢ < D via the restricted Yoneda functor from Re-
mark 1.1.4. Hence, precomposition with (1.1.14) is fully faithful with image contained in the full subcategory
of presheaves F e PSh(D?) that invert W. Via the restricted Yoneda functor, presheaves F € PSh(D?) that
invert W correspond to W-local objects of D, that is objects of €. Thus, [13, Proposition 7.1.11] applies and
concludes the proof of (3). O

1.2 Sheaves with coefficients & tensor products of presentable co-categories. We now fix our con-
ventions for sheaves with coefficients in a presentable co-category. For this, we make use of the tensor
product of presentable co-categories; we refer the reader to [HA, §4.8.1] for a background.

1.2.1 Notation. Let XX be an co-topos and let € be a presentable co-category. We write Sh(XX; &) for the
tensor product of presentable co-categories

Sh(X;8) =X ®E.


http://www.math.ias.edu/~lurie/papers/HTT.pdf#theorem.5.1.6.10
http://www.math.ias.edu/~lurie/papers/HA.pdf#subsection.4.8.1
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Since the tensor product (—) ® & defines a functor Pr} - PrX, the assignment X' — Sh(X; £) defines a
functor
Sh(;&): RTop, — Pr*

1.2.2 Notation (sheaves on co-sites). Let (G, 7) be an co-site and € be a presentable co-category. We write
PSh(G; €) := Fun(C°?, &)
for the co-category of £-valued presheaves on C. We also write
Sh.(C; &) € PSh(C; &)
for the full subcategory spanned by £-valued presheaves that satisfy r-descent. When £ = Spc, we write
Sh.(€) = Sh.(€; Spc) .

1.2.3. The oo-categories PSh(C; &) and Sh.(C; €) are naturally identified with the tensor products of pre-
sentable co-categories PSh(C)® & and Sh,(C) ® € [SAG, Remark 1.3.1.6 & Proposition 1.3.1.7]. This justifies
Notation 1.2.1.

1.2.4 (hypersheaves). Let (G, 7) be an co-site. In this paper, we often make use of the theory of hypersheaves.
When ¢ is the oo-category of spaces, hypersheaves can be defined intrinsically in the co-topos Sh.(C) as
hypercomplete objects, that i Is, objects that are local with respect to co-connected maps. Hypersheaves thus
form a full subcategory Sh yp(C’) C Sh;(@). It is then possible to define hypersheaves with coefficients in &
as the tensor product
sh™?(e; &) = sh™ @) ® €.

Each of the inclusions

Sh™P(@) c PSh(€) and  Sh™P(€) C Sh.(€)
admits a left exact left adjoint adjoint. We refer the reader unfamiliar with hypercomplete objects and
hypercompletion to [HTT, §§6.5.2-6.5.4] or [8, §3.11] for further reading on the subject.

1.2.5 Notation (sheaves on topological spaces). Let X be a topological space and let £ be a presentable
oo-category. We write Open(X) the poset of open subsets of X, ordered by inclusion. We regard Open(X) as
a site with the covering families given by open covers. We write

Sh(X; &) := Sh(Open(X); &) and  Sh™P(X;&) := Sh™P(Open(X); €).
1.2.6 Notation (functoriality). Let f, : X — Y be a geometric morphism. We write f* for its left exact
left adjoint. If f, is an étale geometric morphism, we denote by f the left adjoint to f*. Fix a presentable

oo-category €. Then the functoriality of the tensor product in Prt provides us with a colimit-preserving
functor

f*®&: Sh(Y; &) — Sh(X; &) .
When there is no risk of confusion, we simply write f* instead of f* ® €. Similarly, we write f for its right
adjoint, and we apply a similar convention for f.

1.3 Locally constant objects & monodromy. We now recall the basics of locally constant objects in
oo-topoi and monodromy. We also prove a few foundational results that we need later in the paper, but are
not available elsewhere. For more background, we refer the reader to [HA, §A.1; 1, §3.1].

1.3.1 Notation (constant objects and global sections). Let XX be an oo-topos. We write
Fy.: X — Spc
for the global sections functor given by
U~ Map,(1,U).

The global sections functor admits a left exact left adjoint I'). : Spc — X called the constant sheaf functor.
If the co-topos X is clear from the context, we write I'* and T',, for F} and 'y ,, respectively.
Given a presentable co-category &, we say that an F object of Sh(X; &) is constant if F lies in the image
of the functor
I"eE&: &€ Sh(X;¢&).


http://www.math.ias.edu/~lurie/papers/SAG-rootfile.pdf#theorem.1.3.1.6
http://www.math.ias.edu/~lurie/papers/SAG-rootfile.pdf#theorem.1.3.1.7
http://www.math.ias.edu/~lurie/papers/HTT.pdf#subsection.6.5.2
http://www.math.ias.edu/~lurie/papers/HTT.pdf#subsection.6.5.4
http://www.math.ias.edu/~lurie/papers/HA.pdf#section.A.1
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1.3.2. Note that Spc is the terminal co-topos [HTT, Proposition 6.3.4.1], so T, is the unique geometric
morphism X — Spc.

1.3.3 Recollection (products of co-topoi). The product in RTop , is given by the tensor product in PrX;
see [HA, Example 4.8.1.19; 3, Theorem 2.1.5]. In particular:
1) Iff*: X' - Xand g*: Y — Y are left exact left adjoints between co-topoi, then
gAY -IQY

is also a left exact left adjoint between oco-topoi.

(2) The functor
F}@I‘;: Spc~Spc®Spc > X ®Y

is the constant sheaf functor.

1.3.4 Definition (locally constant objects). Let XX be an co-topos and let £ be a presentable co-category.

An object F e Sh(X; €) is locally constant if there exists an effective epimorphism []._, U; » 1y such that
for each i € I, the image of F under the natural pullback functor

Sh(X; &) — Sh(Xy;; €)

iel

is a constant object. We write
LC(X; E) C Sh(X; &)
for the full subcategory spanned by the locally constant objects. When £ = Spc, we simply write LC(X) C X
for LC(X; Spe).
1.3.5 Observation. Given a geometric morphism of co-topoi f, : X — Y, the pullback functor f*: Y - X
carries LC(Y; &) to LC(X; &).
This recovers the usual notion of local constancy for (hyper)sheaves on topological spaces:
1.3.6 Example. Let X be a topological space and let XX be either Sh(X) or Shhyp(X ). An object F € Sh(X; &)

is locally constant if and only if there exists an open cover {U;};; of X such that each restriction F|y;, is
constant. See [25, Proposition 1.18].

1.3.7 Definition (monodromic co-topos). We say that an co-topos XX is monodromic or locally of constant
shape if the constant sheaf functor I'* : Spc — X admits a left adjoint

Ty: X - Spc.
In this case, we write I1,(X) := T'y(1y) and call IT,(X) the shape of X'
The following result of Lurie justifies the terminology in Definition 1.3.7:

1.3.8 Recollection (monodromy). Let X’ be a monodromic co-topos. Then the full subcategory LC(X) C X
is closed under limits and colimits. Moreover, there is a natural equivalence

LC(X) = Fun(I1,,(X), Spc)
See [HA, Proposition A.1.6 & Theorem A.1.15]. Furthermore, for any presentable co-category &, there is an
equivalence
LC(X)® & » LC(X;E).
See [1, Proposition 3.1.7]. In particular, LC(XX; €) € Sh(X; €) is closed under limits and colimits.
1.3.9 Example (monodromy in topology). Let X be a topological space.
(1) If X is locally weakly contractible, then the co-topos Shhyp(X ) is monodromic. The functor
Iy : Shhyp(X ) = Spc
is given by extending the functor sending an open U C X to the underlying homotopy type of U

along colimits. In particular Hoo(Shhyp(X )) coincides with the underlying homotopy type of X. See [21,
Proposition 2.4].


http://www.math.ias.edu/~lurie/papers/HTT.pdf#theorem.6.3.4.1
http://www.math.ias.edu/~lurie/papers/HA.pdf#theorem.4.8.1.19
http://www.math.ias.edu/~lurie/papers/HA.pdf#atheorem.A.1.6
http://www.math.ias.edu/~lurie/papers/HA.pdf#atheorem.A.1.15
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(2) If X is paracompact and locally of singular shape in the sense of [HA, Definition A.4.15], then the oco-
topos Sh(X) is monodromic. Again, the functor I'; : Sh(X) — Spc is given by extending the functor
sending an open U C X to the underlying homotopy type of U along colimits. In particular I, (Sh(X))
coincides with the underlying homotopy type of X. See [HA, Theorem A.4.19].

An intriguing fact is that any co-topos étale over a monodromic co-topos is also monodromic:

1.3.10 Observation. Let X' be a monodromic co-topos and let U € X. Then the slice co-topos Xy is
monodromic. To see this, note that the composite

forget Lo
Xy — X — Spc

is left adjoint to the constant sheaf functor. As a consequence, we see that
Heo(X ) = T y(U) .
We now explain the functoriality of the monodromy equivalence. To do so, we need the following lemma.
1.3.11 Lemma. Let K, L € Spc and let
f*: Fun(L, Spc) —» Fun(K, Spc)

be a functor. The following are equivalent:

(1) There exists a map of spaces f : K — L such that f* is equivalent to the functor given by precomposition
with f.

(2) The functor f* preserves limits and colimits.

(3) The functor f* is left exact and preserves colimits.

Proof. Since every space is an idempotent complete co-category (see Lemma A.1.3), the equivalence (1)
< (2) follows from Recollection 1.1.11. Clearly (2) = (3). For the remaining implication (3) = (2), let f,
denote the right adjoint to f*. By assumption, f, is a geometric morphism. Note that by the straighten-
ing/unstraightening equivalences

Fun(K, Spc) =~ Spc /K and Fun(L, Spc) =~ Spc /L
the unique geometric morphisms to the terminal co-topos
Fun(K, Spc) — Spc and Fun(L, Spc) — Spc

are étale. Hence [HTT, Corollary 6.3.5.9] implies that f,, is an étale geometric morphism; in particular, f*
admits a left adjoint. O

1.3.12 Corollary. Let f, : X — Y be a geometric morphism between monodromic co-topoi. Then the functor
1 LC(X) - LC(Y)
preserves limits and colimits.

Proof. Since X and Y are monodromic, LC(X) € X and LC(Y) C Y are closed under limits and colimits.
The claim now follows from the monodromy equivalences for X and ¥ combined with Lemma 1.3.11. 0O
. . mon . .
1.3.13 Notation. Write RTop_~ C RTop_ for the full subcategory spanned by the monodromic co-topoi.
1.3.14 Notation. Write Pr®* c Pr® for the (non-full) subcategory of Pr® with objects the atomically
generated presentable co-categories and morphisms functors that are both left and right adjoints.

1.3.15. Note that the equivalence Pr" ~ (Pr®)op given by passing to right adjoints restricts to an equivalence

PrL,at ~ (PrR,at)op .


http://www.math.ias.edu/~lurie/papers/HA.pdf#atheorem.A.4.15
http://www.math.ias.edu/~lurie/papers/HA.pdf#atheorem.A.4.19
http://www.math.ias.edu/~lurie/papers/HTT.pdf#theorem.6.3.5.9
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1.3.16 Observation (functoriality of the shape). The assignment X — IT1,(X) refines to a functor
M, : RTop*" — Spc C Cat'd™
Specifically, this functor is given by the composite

LC(- _)ex .
=) (PrR,at)op ~ PrL,at =) Catgem

RTop " <

k]

where the left-hand functor sends XX to the co-category LC(XX) with functoriality given by pullback, and the
right-hand functor sends an atomically generated co-category € to the co-category € = (C*')°P given by
the opposite of the subcategory of atomic objects.

We conclude with a Kiinneth formula for the shape of a product of monodromic co-topoi.

1.3.17 Recollection. The natural equivalence

Spc ® Spc = Spc
is induced by the functor

Spc X Spc — Spc

(K,L) » KXL.
1.3.18 Observation. Let X and ¥ be monodromic co-topoi. Since the inclusions
LC(X)o X and LC(Y) o Y
are both left and right adjoints, the functor
LCX)QLC(Y) - X @Y

induced by the functoriality of the tensor product is also fully faithful and both a left and right adjoint.

1.3.19 Proposition (Kiinneth formula for monodromic co-topoi). Let X and Y be monodromic co-topoi.
WriteT'yy: X — SpcandT'yy: Y — Spc for the left adjoints to the constant sheaf functors. Then:

(1) The functor
Fyrs®@Typ: X ® Y — Spe ® Spe ~ Spc
is left adjoint to the constant sheaf functor Spc - X ® Y. In particular, the co-topos X ® Y is monodromic.
(2) The natural map I (X ® Y) — I (X) X 1, (Y) is an equivalence.
(3) The natural fully faithful functor
LCX)RLC(Y) - X ®Y
has image LC(X ® Y).

Proof. For (1), note that by the functoriality of the tensor product of presentable co-categories, I'y g @ 'y 4
is left adjoint to the functor

F}@FZ: Spc~SpcR®Spc > X R Y.

By Recollection 1.3.3-(2), I'}, ® F; is the constant sheaf functor; hence I'y 4y ® I'y 4 is left adjoint to the
constant sheaf functor, as desired.
For (2), note that by Recollections 1.3.3 and 1.3.17, the functor

Fys®@Tyg: X ® Y — Spc ® Spe ~ Spc
is induced by the functor

X XY — Spc
(F,G) = Ty y(F) X Ty4(G).
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In particular, applying 'y 4 ® T'y 4 to the terminal object 14gy = 1y ® 1y, we have natural identifications

Heo(X ® Y) = Ty @ Ty p)(1y ® 1y)
=Ty y(1y) X Typ(1y)
= Mo (1) X T (Y) -
Item (3) is an immediate consequence of (2) and the formula

Fun(G, Spc) ® Fun(D, Spc) ~ Fun(€ x D, Spc) . O

2 EXIT-PATH co-CATEGORIES

In this section, we introduce exodromic stratified co-topoi and their exit-path co-categories. See Defini-
tion 2.2.10. These definitions are topos-theoretic generalizations of Clausen and @rsnes Jansen’s definition
in the topological setting [14, Definition 3.5].

In §2.1, we start by reviewing the basics of the theory of stratified oco-topoi introduced in [8]. In §2.2, we
explain the basics of constructible objects in stratified co-topoi; we also define exodromic stratified co-topoi
their exit-path co-categories. In §2.3, we discuss stratified morphisms that induce morphisms on the level
of exit-path co-categories. In §2.4, we conclude with some results on the interaction between exodromic
stratified co-topoi and hypercompletion.

2.1 Stratified co-topoi & stratified spaces. We now recall the theory of stratifications of co-topoi intro-
duced in [8, §8.2]. This theory directly generalizes the theory of stratifications of topological spaces, but also
applies to more general contexts such as stratifications of schemes and topological stacks. The starting point
for the theory is the observation that hypersheaves on a poset P equipped with the Alexandroff topology are
just functors out of P:

2.1.1 Recollection [4, Example A.11; 8, Example 3.12.15]. Let & be a presentable co-category and let P be
a poset. Regard P as a topological space with the Alexandroff topology. Then there is a natural equivalence
of co-categories

Fun(P, &) = ShP(P; &) .

2.1.2 Warning. It is necessary that we work with hypersheaves in Recollection 2.1.1; in general, Sh(P) is
not hypercomplete. See [4, Example A.13].

2.1.3 Example [21, Lemma 5.21]. If P is a noetherian poset, then Sh(P) is hypercomplete, hence
Sh(P) ~ Fun(P, Spc) .

2.1.4 Definition (stratified co-topos). Let X be an co-topos and let P be a poset. A P-stratification of X is a
geometric morphism

s, : X — Fun(P, Spc) .

To simplify notation, we often abusively denote a stratified co-topos by (X, P).

Morphisms of stratified co-topoi are commutative squares. Here is the easiest way to formulate this.
2.1.5 Notation. We write Poset for the category of posets.
2.1.6 Definition. The co-category of stratified co-topoi is the pullback

StrTop,, —— Poset

l - lFun(—,Spc)

Fun([1], RTep_) —— RTop,, .

Here, the bottom horizontal functor sends a geometric morphism s, : X — 2 to its target P.
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2.1.7. Said differently, given stratified co-topoi s, : X — Fun(P,Spc) and ¢, : Y — Fun(Q, Spc), a mor-
phism of stratifed oo-topoi (X, P) — (Y, Q) consists of a commutative square of geometric morphisms

X I Y

.| |

Fun(P, Spc) B S— Fun(Q, Spc)

such that the pushforward functor ¢,, is induced by a map of posets ¢ : P — Q (equivalently, ¢* preserves
limits). To simplify notation, we abusively denote a morphism of stratified co-topoi by f, : (X, P) - (Y,Q).

It is often convenient to pull back a P-stratified co-topos to a locally closed subposet of P:

2.1.8 Recollection (locally closed subposets). Let P be a poset. Then a subset S C P is locally closed in the
Alexandroff topology if and only if S is an interval: given p,q € S with p < q, S contains all x € P such that
p<x<qg.

2.1.9 Notation. Lets, : X — Fun(P, Spc) be a stratified co-topos and leti: S < P be a locally closed
subposet. We write X5 for the pullback

iS,*
Xy —" S X

)

Fun(S, Spc) — Fun(P, Spc) .

computed in RTop . Observe that ig , and i, define a morphism of stratified co-topoi (X, S) < (X, P). For
each p e P, we call X, :== Xyp, the p-th stratum of (X, P).

2.1.10. Note thatif S C P is open, then ig , is an open immersion of co-topoi and if S C P is closed, then
is « is a closed immersion of co-topoi. Hence for S C P locally closed, ig , is a locally closed immersion of
oo-topoi. (See Appendix B for background on locally closed immersions of co-topoi.)

2.1.11 Observation. Let (f,,¢): (X,P) —» (Y, Q) be a morphism of stratified co-topoi and let T C Q be
a locally closed subposet. Write P := ¢~1(T), so that Py is a locally closed subposet of P. Then we have a
commutative cube of co-topoi and geometric morphisms

fT*

Xp, : Yr
i \ ) iT,*
lPT,*
~ I
X Y
Fun(P7, Spc) Fun(T, Spc)
Fun(P, Spc) Fun(Q, Spc)

¢*

In particular, the induced geometric morphism on pullbacks fr . : Xp, — Yr refines to a morphism of
stratified co-topoi

(fr @lp)e) : (Xp,, Pr = (Y7, T) .
In this paper, our main examples of stratified co-topoi come from stratified topological spaces.

2.1.12 Example (stratified co-topoi attached to stratified spaces). Lets: X — P be a stratified space.
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(1) Then
s Sh™P(X) — Sh™P(P) ~ Fun(P, Spc)
is a P-stratified co-topos.
(2) If P is noetherian, then
s, © Sh(X) — Sh(P) =~ Fun(P, Spc)

is a P-stratified oo-topos.

2.1.13 Example. Lets: X — P be a stratified topological stack in the sense of [29, Definition 3.1]. If P is
noetherian, then s, : Sh(X) — Fun(P, Spc) is a P-stratified co-topos.

2.1.14 Notation. Let (X, P) be a stratified space and S C P a locally closed subposet. Write Xg := X Xp S.
Then X is naturally an S-stratified space. Moreover, the inclusions Xg < X and S < P define a morphism
of stratified spaces ig : (X,S) & (X, P).

An important fact is that pulling back to a locally closed subposet commutes with taking (hyper)sheaves:
2.1.15 Lemma. Let (X, P) be a stratified space and S C P a locally closed subposet.
(1) The natural geometric morphism Shhyp(X 5) — Shhyp(X )5 is an equivalence.
(2) If P is noetherian, then the natural geometric morphism Sh(Xg) — Sh(X)s is an equivalence.

Proof. Immediate from Recollection 2.1.1, Example 2.1.3, Corollary B.1.10, Corollary B.3.9, and the defini-
tions. O

Another useful fact is that in the noetherian setting, pulling back to strata is jointly conservative:

2.1.16 Lemma. Let (X, P) be a stratified co-topos. If the poset P is noetherian, then the pullback functors

fiz: - xp}pep

are jointly conservative.

Proof. Let ¢ be a morphism in X such that for each p € P, the morphism i,(¢) is an equivalence; we need
to show that ¢ is an equivalence. For each p € P, write

Py,:={qeP|g>p} and  P,,:=Py,\{p}.
Since the open subsets {P; ,},p cover P, it suffices to show:
(x) For each p e P, the restriction ij, (¢) is an equivalence in XX Py,

We prove () by noetherian 1nduct10n on p € P. We need to show that if the restriction lP (¢) is an
equivalence for each g > p, then iy (qb) is an equivalence. Note that

Popnipt=Po,= | ] Prq.
qu>p

Hence the inductive hypothesis implies that the restriction lP

(¢) is an equivalence. By assumption i; ()
is also an equivalence. By recollement, the restriction functors’

2% o 53k .
ip: xPZp - X, and lP>p : IPZP - JCP>p

are jointly conservative, completing the proof. O



16 PETER J. HAINE, MAURO PORTA, AND JEAN-BAPTISTE TEYSSIER

2.2 Constructible objects & exit-path co-categories. We now recall the basics of constructible objects
of stratified co-topoi introduced in [8, §9.4]. We also define exit-path co-categories at this level of generality.

2.2.1 Definition (constructible objects). Let (XX, P) be a stratified co-topos and let € be a presentable co-
category. An object F € Sh(X; &) is P-constructible if for each p e P, the restriction i;(F) € Sh(Xp; &) is
locally constant. We write

Consp(X; ) € Sh(X; €)
for the full subcategory spanned by the P-constructible objects. If £ = Spc, we simply write Consp(X) C X
for Consp(X; Spc).

2.2.2 Remark. Our terminology differs from the terminology used in [8, §9.4]. There, Barwick-Glasman-
Haine use the term formally constructible objects for what we call constructible objects; their constructible
objects are formally constructible objects that satisfy additional finiteness hypotheses. The reason for this
is that [8] is mostly about co-topoi coming from algebraic geometry, where these finiteness hypotheses are
necessary for a well-behaved theory.

2.2.3 Observation. Given a morphism of stratified co-topoi f, : (X,P) - (Y, Q), the pullback functor
f* 1Y — X carries Consg(Y; €) to Consp(X; €).

It is often useful to write the oo-category of constructible objects as a pullback:

2.2.4 Observation. The oo-category Consp(XX; &) is the pullback

Consp(X; &) —— [ LC(X,;€)

T

Sh(x; &) —— []shx,:©)
HP 'p peP

We use similar notation for constructible sheaves on stratified topological spaces.
2.2.5 Notation. Let (X, P) be a stratified topological space and let £ be a presentable co-category.
(1) For the natural stratified co-topos (:t, P) = (Sh™P(X), P), we write
Cons?yp(X; &) = Consp(X;E) .
(2) If P is noetherian, then for the natural stratified co-topos (X, P) = (Sh(X), P), we write
Consp(X; &) := Consp(X;E).
Definition 2.2.1 recovers the usual notion of constructibility:

2.2.6 Observation. Let (X, P) be a stratified topological space and let £ be a presentable co-category. In
light of Example 1.3.6 and Lemma 2.1.15:

(1) An objectF € Shhyp(X ; €) is P-hyperconstructible in the sense of [21, Definition 5.2] if and only if F is
P-constructible in the sense of Definition 2.2.1.

(2) Assume that P is noetherian. An object F € Sh(X; &) is P-constructible in the sense of [21, Definition
5.2] if and only if F is P-constructible in the sense of Definition 2.2.1.

2.2.7 Example. Let P be a poset. Then every hypersheaf on P is P-constructible, i.e.,
Cons??(P) = Sh™P(P).
In light of Recollection 2.1.1, we deduce that Cons?,yp(P) ~ Fun(P, Spc).

2.2.8 hConvention. Let P be a poset. We almost always implicitly identify the co-categories Shhyp(P; &),
Conspyp (P), and Fun(P, &).
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For the next result, recall Notation 1.1.12.
2.2.9 Lemma. For every poset P, we have natural equivalences
Consf:,yp(P)eX ~ Fun(P,Spc)* =P.

Proof. By Lemma A.1.3, P is idempotent complete. Hence the claim follows from Recollections 1.1.11
and 2.1.1. 0

The following definition is a generalization of [14, Definition 3.5; 29, Definition 3.10]:
2.2.10 Definition (exodromic stratified co-topos & exit-path co-category). A stratified co-topos
s, . X — Fun(P, Spc)

is exodromic if the following conditions are satisfied:
(1) The oo-category Consp(X) is atomically generated.

(2) The subcategory Consp(X) C X is closed under both limits and colimits.

(3) The pullback functor s* : Fun(P, Spc) — X preserves limits.
In this case we write
I, (X, P) := Consp(X)™
for the opposite of the full subcategory of Consp(XX) spanned by atomic objects (see Notation 1.1.12). We
refer to IT (XX, P) as the exit-path co-category of (X, P).

The importance of the last condition of Definition 2.2.10 is that it provides a functor from the exit-path
oo-category of (X, P) to the poset P.

2.2.11 Observation. Lets, : XX — Fun(P, Spc) be an exodromic stratified co-topos. Then the left adjoint

s;: : Consp(X) — Fun(P, Spc)
to s* supplied by condition (3) of Definition 2.2.10 is atomic. By Observation 1.1.8 and Lemma 2.2.9, the
pPp y Y

functor S; restricts to a functor

% Mo (X,P) > P.
Now, some important examples.

2.2.12 Example. In light of Recollection 1.3.8, a trivially stratified co-topos I',, : X — Spc is exodromic if
and only if X is monodromic in the sense of Definition 1.3.7.

2.2.13 Example (exodromy for conically stratified spaces). Let (X, P) be a conically stratified topological
space in the sense of [HA, Definition A.5.5].

(1) If the strata of (X, P) are locally weakly contractible, then the stratified co-topos (Shhyp(X ), P) is exo-
dromic. Moreover, the exit-path co-category HOO(Shhyp(X ), P) is given by Lurie’s simplicial model for
exit-paths Sing(X, P). See [32, Theorem 5.4.1].

(2) If P is noetherian and X is paracompact and locally of singular shape, then the stratified co-topos
(Sh(X), P) is exodromic. Again, the exit-path co-category I, (Sh(X), P) is given by Lurie’s simplicial
model for exit-paths Sing(X, P). See [HA, Theorem A.9.3].

Orsnes Jansen has also given incredible computations of exit-path co-categories of some important com-
pactifications naturally arising in geometry:

2.2.14 Example (the work of @rsnes Jansen [30; 28]).

(1) LetG be a connected reductive linear algebraic group defined over Q whose center is anisotropic over Q.
Let T C G(Q) be a neat arithmetic subgroup. Write X for the symmetric space of maximal compact sub-
groups of G(R) with I'-action given by conjugation. @rsnes Jansen showed that the co-topos of sheaves
on the reductive Borel-Serre compactification I'\XRBS is exodromic and gave an explicit description of
its exit-path co-category. See [30, Theorem 4.3].


http://www.math.ias.edu/~lurie/papers/HA.pdf#atheorem.A.5.5
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(2) Let g,n > 0 be such that 2g — 2 + n > 0. Write M for the moduli stack of stable genus g nodal
curves with n marked points (also called the Dellgne—M umford—Knudsen compactification). Write M, mp
for its underlying topological stack. The topological stack M " has a natural stratification by the poset
of stable genus g dual graphs w1th n marked points. @rsnes Jansen showed that the co-topos of sheaves
on the topological stack M ,, is exodromic. Moreover, the exit-path co-category is equivalent to the
opposite of the Charney—Lee category of stable genus g curves with n marked points [11; 12; 15]. See
[28, Corollary 6.6 & Theorem 6.7].

Another feature of Definition 2.2.10 is that the inclusion of constructible objects admits both a left and

right adjoint:

2.2.15 Notation (constructibilization). Let (X', P) be an exodromic stratified co-topos. Since Consp(X) C X
is closed under limits and colimits, [34, Theorem 1.1] implies that Consp(XX) is presentable and the inclusion
l.x,P . COHSP(I) oS X

has both a left adjoint Ly p and a right adjoint Ry p. We refer to these adjoints as the left and right con-
structibilization functors, respectively. In particular, Consp(XX) is a localization of XX, and it coincides with
the full subcategory of X' spanned by Ly p-equivalences.

2.2.16 Example (equational criterion for constructibility). Let (X, P) be a conically stratified topological
space with locally weakly contractible strata. Then [32, Corollary 5.4.7] provides an explicit set of generating
Lx p-equivalences in terms of conical charts. When P = #, we can take as a generating set all the inclusions
U c V between weakly contractible open subsets.

A very important fact is that exodromic stratified co-topoi are automatically monodromic:

2.2.17 Lemma (exodromy implies monodromy). Let s, : X — Fun(P, Spc) be an exodromic stratified
oo-topos. Then:

(1) The co-topos XX is monodromic.
(2) The full subcategory LC(XX') C Consp(X) is closed under limits and colimits.

Proof. First we prove (1). In light of Recollection 1.3.8, we need to show that the constant sheaf functor
I'*: Spc — X preserves limits. Note that I'* factors as a composite

Spc —— Fun(P, Spc) SEAN Consp(X) — X,

where the left-most functor is the constant functor. The constant functor Spc — Fun(P, Spc) preserves
limits, and by assumption both s* and the inclusion Consp(X) C X preserve limits. Hence I'* preserves
limits, as desired.

For (2), note that both LC(XX') and Consp(XX) are closed under limits and colimits in X. O

For later use, let us record the following:

2.2.18 Corollary. Let (XX, P) be a stratified co-topos and let € be a presentable co-category. If (X, P) is exo-
dromic, then the terminal object of Sh(XX'; &) is constant (hence P-constructible).

Proof. By Lemma 2.2.17, we know that I'* : Spe — X is both a left and right adjoint. By the functoriality of
the tensor product, the induced functor I'* ® & is also both a left and a right adjoint. In particular, I* ® &
preserves the terminal object; hence the terminal object of Sh(XX; £) is constant. O

2.3 Exodromic morphisms. We now discuss the functoriality of exit-path co-categories. The main point
of this subsection is that given a morphism f,, : (X, P) — (Y, Q) between exodromic stratified co-topoi, it
is not a priori clear if f, induces a functor

Mo (X, P) = N (Y, Q)

on exit-path co-categories.
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2.3.1 Observation (constructible x-pushforward). Let f, : (X,P) — (Y, Q) be a morphism between exo-
dromic stratified co-topoi. Since the functor f*: Y — X preserves colimits, we deduce that

f*: Consg(Y) — Consp(X)
preserves colimits as well. In particular, it admits a right adjoint
f5: Consp(X) — Consg(Y).
Unraveling the definitions, we see that f? is related to the pushforward functor f, by the formula
fi=Rygof.oixp,
where Ry g is the right constructibilization functor of Notation 2.2.15. In particular, if f, takes P-constructible
objects to Q-constructible objects, then f ~ f..
The following is a generalization of [14, Definition 3.5-(3)]:
2.3.2 Definition. Let f, : (X,P) - (Y, Q) be a morphism between exodromic stratified co-topoi. We say
that f, is exodromic if the left adjoint
f*: Consp(Y) — Consp(XX)
also preserves limits. In this case, we denote its left adjoint by
f; : Consp(X) — Consg(Y) .
As a consequence of the equivalence Catff:,em ~ Pr"? of Recollection 1.1.11, the functor f E restricts to a
functor
F& (X, P) = o (Y, Q) -
The following are two important examples of exodromic morphisms:

2.3.3 Example. Let ¢ : P — Q be a map of posets. Equip both P and Q with the identity stratifications.
Then Recollection 2.1.1 shows that the morphism of stratified co-topoi

¢.. . (Fun(P, Spc), P) - (Fun(Q, Spc), Q)
is exodromic.

2.3.4 Example. Let f, : X' — Y be a geometric morphism of co-topoi. If X and ¥ are monodromic, then
Corollary 1.3.12 shows that the morphism of trivially stratified co-topoi

Jet (%) = (Y, %)
is exodromic.

In fact, we will see that Definition 2.3.2 is superfluous: one of the goals of § 3 is to show that every mor-
phism between exodromic stratified co-topoi is exodromic. However, this is not obvious; see Theorem 3.2.3
for details.

We conclude this subsection with a few useful observations about exodromic morphisms.

2.3.5 Observation. Let f, : (X,P) — (Y, Q) be a morphism of stratified co-topoi. Assume the following:
(1) (Xx,P)and (Y, Q) are exodromic.

(2) f*: Y - X admits a left adjoint fﬂ X - Y.

Then f, is exodromic. Moreover, the functors

f; : Consp(X) — Conso(Y) and fe: X =Y

are related by the formula

fi = Lyqofioixp,
where Ly ( is the left constructibilization functor of Notation 2.2.15. In particular, if fy carries P-constructible
objects to Q-constructible objects, then there is a canonical identification f g ~ fy.
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2.3.6 Observation (pullback functoriality). Let f, : (X, P) - (Y, Q) be a morphism between exodromic
stratified co-topoi. If f, is exodromic, then Observation 1.1.8 yields a commutative square

Fun(I1., (Y, Q), Spc) i Fun(I1., (X, P), Spc)

zl |

Consy(Y) T Consp(X),

where the vertical equivalences exhibit the exit-path co-categories I1, (Y, Q) and I1, (XX, P) as the opposites
of the subcategories of atomic objects of the targets.

2.3.7 Observation (ff-pushforward functoriality). As a consequence of Observation 2.3.6, there is also a
commutative square

Fun(IT., (X, P), Spc) f—'» Fun(TT, (Y, Q), Spc)

zl |

Consp(X) Consg(Y),

fC

#
where f7™ denotes left Kan extension along f*. Since left Kan extension commutes with the Yoneda em-
bedding, we also deduce that there is a commutative square

€X,0p
M (X, P)® — 11 (Y, Q)P

[ [

Consp(X) — Consp(Y) ,
#

where the vertical functors are the inclusions of the subcategories of atomic objects.

2.4 Exodromy & hypercompletion. Let (X, P) be an exodromic stratified co-topos. The goal of this sub-
section is to show that the hypercompletion X'™P with the induced stratification is also exodromic, the co-
categories Consp(X) and Consp(XMP) coincide, and the exit-path co-categories IT, (', P) and 1, (X™P, P)
coincide. We do not accomplish this in complete generality, however, we prove that this the case under an
additional assumption on (X, P); see Definition 2.4.10 and Proposition 2.4.14. This assumption is satisfied,
for example, when P is noetherian and XX is the co-topos of sheaves associated to a conically stratified space
for which exodromy is already known.

2.4.1 Notation. Lets, : X — Fun(P, Spc) be a stratified co-topos. Then the composite
e e o 2, Fun(P, Spc)
defines a P-stratification of X'™P, We always regard the hypercompletion of a stratified co-topos with this
induced stratification. Also note that since the co-topos Fun(P, Spc) is hypercomplete, the stratification
xhYP — Fun(P, Spc)

coincides with the geometric morphism silyp obtained by applying the hypercompletion functor to the
stratification s,.

We start by showing that if (X, P) is exodromic, then every P-constructible object of X is hypercomplete.
For this, we need a few lemmas.

2.4.2 Lemma. Let (XX, P) be a stratified co-topos and S C P a locally closed subposet. Then the natural
geometric morphism
(XMP — (AMP)g

is an equivalence of S-stratified oo-topoi.
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Proof. This is a special case of Proposition B.3.8. O
2.4.3 Lemma. Let X and Y be co-topoi and let f*: Y — X be a functor that preserves both limits and
colimits. Let G € Y.

(1) IfG is hypercomplete, then f*(G) is hypercomplete.

(2) If G is the limit of its Postnikov tower, then f*(G) is the limit of its Postnikov tower.

Proof. Item (1) is the content of [HA, Lemma A.2.6]. For (2), note that since f* is a left exact left adjoint,
[HTT, Proposition 5.5.6.28] shows that for each n > 0, we have

« Y X
f*‘cSnzISnf*.

Since G is the limit of its Postnikov tower and f* preserves limits, we see that
* ~ * 1 y
7@ = £+ ( lim <2,))
~ TG x4
- nlellilr‘gp f Tsn(G)
~ i X
~ ,,lslgngSnf*(G)‘ O

2.4.4 Corollary. Let (X, P) be an exodromic stratified co-topos.
(1) IfF e Consp(X), then F is the limit of its Postnikov tower in X. In particular, we have

Consp(X) C XP .

(2) We have
Consp(X) € Consp(XhyP)

as full subcategories of 2’MYP,
(3) The functor s* : Fun(P, Spc) — X factors through XMYP.
(4) The constant sheaf functor I : Spc — X factors through X"P c X.

Proof. Note that since (XX, P) is exodromic, the co-category Consp(X) is an co-topos and the inclusion
Consp(X) C X preserves limits and colimits. Hence (1) is a special case of Lemma 2.4.3-(2). For (2), note that
the inclusion (XMP, P) < (X, P) is a morphism of stratified co-topoi. Hence the hypercompletion functor
X — XMP carries Consp(X) to Consp(XMP). By (1), every object of Consp(X) is already hypercomplete,
hence

Consp(X) C Consp(XP)

as full subcategories of X"YP,
Item (3) is an immediate consequence of item (1) and the fact that s* factors through Consp(X). Item (4)
is immediate from (3) and the fact that I'* factors as the composite

Spc —— Fun(P, Spc) AR Consp(X) «— X,
where the left-most functor is the constant functor. O

2.4.5 Observation. Let (XX, P) be an exodromic stratified co-topos. Corollary 2.4.4 implies that the left
constructibilization functor Ly p : X — Consp(XX) factors as a the composite of hypercompletion X' — X hyp
with a localization

L};Z;; : XYP - Consp(X) .

In turn, Cor}lsp(x ) can be identified with the full subcategory of X™P spanned by objects that are local with
respect to nyllz—equivalences.hHence amorphism ¢ : F — G in X is an Ly p-equivalence if and only if its
hypercompletion ¢"P is an ny Ig-equivalence.

Our next goal is to show that if X' is monodromic, then X'™P is also monodromic and LC(X) = LC(XMP).
For this, we need the following lemma.


http://www.math.ias.edu/~lurie/papers/HA.pdf#atheorem.A.2.6
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2.4.6 Lemma. Let X be an co-topos and write i, : X™P < X for the inclusion.

(1) Amorphism f : U — V in XWP is an effective epimorphism if and only if i, (f) is an effective epimorphism
in .

(2) The functori, : XWP < X preserves coproducts.

Uy = lyhyp inX by the induced map

H i*(Uoc) - 1y

acA

(3) Given an effective epimorphism ]_[0(E "

is an effective epimorphism in X.

Proof. For (1), first assume that i, (f) is an effective epimorphism. Then since i* preserves effective epimor-
phisms and i, is fully faithful, f ~ i*i,(f) is also an effective epimorphism. Conversely, assume that f is an
effective epimorphism. Note that

k(N =75"().

Since the property of a morphism being an effective epimorphism only depends on the 0-truncation [HTT,
Proposition 7.2.1.14] and f is an effective epimorphism, we deduce that i.(f) is an effective epimorphism.
Item (2) is the content of [SAG, Lemma D.6.7.2]. Finally, (3) is immediate from (1) and (2). O

2.4.7 Lemma. Let X be an co-topos. If every constant object of XX is hypercomplete, then:
(1) Foreach U € X, every constant object of X,y is hypercomplete.

(2) Every locally constant object of X is hypercomplete.
(3) The inclusion XMP & X carries LC(X™YP) to LC(X).
(4) We have LC(XMP) = LC(X) as full subcategories of X.

Proof. For (1), write p*: X — Xy for the pullback functor. Observe that the constant sheaf functor
Spc — Xy factors as a composite

Spc LT L2ox U -
Since the pullback functor p* is both a left and a right adjoint, Lemma 2.4.3 shows that p* preserves
hypercompleteness. Hence the claim follows from the assumption that every constant object of X is hyper-
complete.

For (2), let L € LC(X) and choose an effective epimorphism ]_[aE 4 Ug > 1y such that for each a € A,
the pullback L X U, is a constant object of X' ;y_. Then by (1), for each a € A, the object L X U, € Xy,
is hypercomplete. The claim now follows from the fact that hypercompleteness is a local property [HTT,
Remark 6.5.2.22].

For (3), let L € LC(X™P); we wish to show that L € LC(X'). Choose an effective epimorphism

o HUa > lohyp = 1y
acA

in P such that for each « € A4, the pullback
LXUgq € (XMP) gy = (X /gy )P

is constant. By Lemma 2.4.6-(3) the effective epimorphism ¢ : [ _, Uy » 1y inX hyp js also an effective

epimorphism in the larger co-topos X'. Hence it suffices to show that each L X U, is also a constant object

of the larger co-topos X'y . For this, note that by (1), every constant object of X', is hypercomplete.
Item (4) is immediate from items (2) and (3). O

2.4.8 Proposition. Let X' be a monodromic co-topos. Then:


http://www.math.ias.edu/~lurie/papers/HTT.pdf#theorem.7.2.1.14
http://www.math.ias.edu/~lurie/papers/SAG-rootfile.pdf#theorem.D.6.7.2
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(1) The composite
iy Ty
axpP <X, ¥ — Spe
is left adjoint to the constant hypersheaf functor Spc — X™WP. In particular, X"™P is monodromic.

(2) The inclusion XMP < X carries LC(XMP) to LC(X). Moreover, we have LC(X™WP) = LC(X) as full
subcategories of X.

(3) The natural map T, (X™P) — I, (X) is an equivalence.

Proof. For (1), note that since I'* : Spc — X factors through X hyP for F e XWP and K « Spc, we have
natural equivalences

Mapg,,.(Tyi.(F), K) = Map,(i.(F), I* (K))
~ Mapxhyp(F, I'“(K)).

Item (2) is a special case of Lemma 2.4.7. Finally, by (2), the pullback functor LC(X) — LC(X™P) is an
equivalence (in fact, the identity). Hence (3) follows from the definition of the shape. O

2.4.9 Warning. Let X' be a monodromic co-topos and F € X. If the hypercompletion of F is a locally
constant object of X'™P, then it is not necessarily the case that F is a locally constant object of XX.

Let (XX, P) be an exodromic stratified co-topos. Corollary 2.4.4-(2) shows that Consp(X) C Consp(XP).
In the case of a trivial stratification, we have just seen that this inclusion is an equality. For a general
stratification, we do not know if this holds; we offer the following simple sufficient condition for this to
hold. This condition covers many concrete cases of interest.

2.4.10 Definition. Let (X, P) be a stratified co-topos. We say that (XX, P) is weakly conical if for every locally
closed subset S C P, the functor

iS,* Xy > X
takes Consg(XX') to Consp(X).

This definition is motivated by the following:

2.4.11 Example. Let (X, P) be a conically stratified space with locally weakly contractible strata. Then
(Shhyp(X ), P) is weakly conical by [32, Proposition 6.8.1]; this ultimately relies on [32, Lemma 5.3.4], which
is the hard step needed to prove the exodromy equivalence in the conical setting. On the other hand, con-
sider the non-conical stratification of a circle pictured on the right-hand side of Figure 1: in this case, the
pushforward of a constant sheaf on the open stratum is not hyperconstructible with respect to the given
stratification. Thus, this property is a special feature of the conical situation.

2.412 Lemma. Let (X, P) be a weakly conical exodromic stratified co-topos. Let ¢ : F; — F, be a Ly p-
equivalence (see Notation 2.2.15). Then for every locally closed subset S C P, the morphism ig(¢) is an Ly s-
equivalence.

Proof. We have to show that for all G € Consg(Xs), the map iz(¢) induces an equivalence
Map, (i5(F2), G) — Map, (i5(F1).G).

By adjunction, this follows immediately from the fact that ¢ is a P-equivalence and that ig ,.(G) € Consp(X).
O

2.4.13 Lemma. Let (X, P) be an exodromic stratified co-topos. If the inclusion X™P < X carries Consp(XPYP)
to Consp(X), then:

(1) We have Consp(X™P) = Consp(X) as full subcategories of X.
(2) The stratified co-topos (X™P, P) is exodromic.

(3) The natural functor I, (X™P, P) — T1 (X, P) is an equivalence of co-categories.
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Proof. Since (X, P) is exodromic, Corollary 2.4.4-(2) guarantees that
Consp(X) C Consp(XMyP)

Our assumption guarantees that this inclusion is an equality.
For (2), note that by (1) and the assumption that (XX, P) is exodromic, the co-category Consp(XP) is
atomically generated. In light of Corollary 2.4.4-(3), all that remains to be shown is that the full subcategory

Consp(X™P) ¢ ahyp

is closed under limits and colimits. Again by (1), we have Consp(XX hyP) = Consp(:X'). Moreover, since (X, P)
is exodromic, Consp(XX') C X is closed under limits and colimits. The claim now follows from the fact that
2P is a localization of X.

Item (3) is immediate from items (1) and (2) and the definition of the exit-path co-category of an exo-
dromic stratified co-topos. U

The following is the main result of this subsection.

2.4.14 Proposition. Let (XX, P) be a stratified co-topos. Assume that P is noetherian and that (X, P) is both
exodromic and weakly conical. Then:

(1) The inclusion XWP & X carries Consp(X™P) to Consp(X).
(2) The stratified co-topos (X™P, P) is exodromic.
(3) The natural functor I, (X™P, P) — T1 (X, P) is an equivalence of co-categories.

Proof. First note that by Lemma 2.4.13, it suffices to prove (1). Since (XX, P) is exodromic, Corollary 2.4.4-(2)
guarantees that

Consp(X) C Consp(XMyP)
We prove the other inclusion by noetherian induction, observing that the case P = * has already been dealt

with in Proposition 2.4.8-(1). Fix F € Consp(X™P)and p € P. Set Q := P ,. Then Q is an open subset of P;
in particular ié preserves hypercomplete objects. Thus,

. ey h
lg(F) ~ lg P(F) e Consp(DCQyp) .

In other words, we can assume without loss of generality that p is a minimal element of P. N .
Now set S := Py, . Again, S is an open subset of P. Moreover, X hyp is the recollement of X pyp and X Syp.

In particular, for each F € Consp(X™P), there is a pullback square

Fe— ip,* i;,hyp(F)

(2.4.15) J - 1

.. . .xhyp. .
i54lg(F) — ip. iy ig.ig(F).

s
Thanks to Observation 2.4.5, it is enough to prove that for every L?g’lg-equivalence ¢: G, = G, in XMP, the
object F is ¢-local. By virtue of the pullback square (2.4.15), it suffices to prove that the other three terms
are ¢-local. The inductive hypothesis guarantees that

i5(F) = i0P(F)

belongs to Consg(XXs). Since (XX, P) is weakly conical, it follows that iS,*i;(F ) € Consp(X); in particular,
is,*i;(F) is ¢-local. As for the other two terms, first recall from Observation 2.4.5 that ¢, seen as a morphism
in X', is an Ly p-equivalence. In particular, Lemma 2.4.12 guarantees that i;,(¢) is an pr-equivalence.
Applying Observation 2.4.5 once more, we deduce that

[P ($) = (i5(g))MP
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isan L};Cyp-equivalence as well. Thus, it immediately follows from adjunction that i p’*i;’hyp(F ) is ¢-local. To
p

conclude, observe that since is,*ig(F) € Consp(X), then
s e h
i%is.i5(F) € LC(Xp) = LC(X,) .
In particular we have

Shyp. e aw
lp "S,*l;(F) = l;ls,*lg(F) P

and the conclusion follows. U
We conclude with a question about generalizing Proposition 2.4.14.

2.4.16 Question. Let (X, P) be an exodromic stratified co-topos. Does the inclusion XWP < X carry
Consp(XMP) to Consp(X)? (If so, then (XMP, P) is exodromic and IT,,(X™P, P) = I1 (X, P).)

3 STABILITY PROPERTIES OF EXODROMIC STRATIFIED 00-TOPOI

The goal of this section is to prove the following ‘stability theorem’ for the class of exodromic stratified
oo-topoi:
3.0.1 Theorem (stability properties of exodromic stratified co-topoi).

(1) Stability under pulling back to locally closed subposets: If (X, P) is an exodromic stratified co-topos, then
for each locally closed subposet S C P, the stratified co-topos (X, S) is exodromic and the induced functor

Mo (Xs,S) = (X, P)Xp S
is an equivalence. In particular, the induced functor I, (X, P) — P is conservative. See Corollary 3.1.17.
(2) Every morphism between exodromic stratified co-topoi is exodromic. See Theorem 3.2.3.

(3) Stability under coarsening and localization formula: Let (X, R) be an exodromic stratified co-topos and
let¢ : R — P be a map of posets. Write Wp for the collection of morphisms in I1 (X, R) that the composite
I, (X,R) - R — P sends to equivalences. Then the stratified co-topos (X, P) is exodromic and the natural
Sfunctor I1 (X, R) — I, (X, P) induces an equivalence
oo (X, R)[W5'] = T (X, P)
See Theorem 3.3.5.

(4) van Kampen: Existence of exit-path co-categories can be checked by descent. See Proposition 3.4.2 for a
precise formulation.

(5) Kiinneth formula: Let (X, P) and (Y, Q) be exodromic stratified co-topoi. If P and Q are noetherian, then
the stratified co-topos (X ® Y, P X Q) is exodromic and there are natural equivalences of co-categories
Consp(X) ® Consg(Y) = Conspyo(X @ Y)
and
M, (X ®Y,PxQ)=> I (X,P)xI1,(Y,Q).
See Proposition 3.5.5.
(6) Stability of finiteness/compactness: The property of an exit-path co-category being finite (resp., compact)

is stable under pulling back to a locally closed subposet, is stable under coarsening, and can be checked on
a finite cover. See §3.6 for a precise formulation.

Subsection 3.1 proves (1), §3.2 proves (2), §3.3 proves (3), §3.4 proves (4), §3.5 proves (5), and §3.6 proves
(6). Before moving on, we also pose two question related to Theorem 3.0.1. First:

3.0.2 Question. Can one prove the Kiinneth formula without the extra noetherian hypothesis?

Second, as noted earlier (see Observation 1.3.10), if X is a monodromic co-topos and U € XX, then the slice
oco-topos X/ is also monodromic. We have not listed the analogous stability property for exodromic co-topoi
in Theorem 3.0.1; we do not know if it is true. Thus we ask:
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3.0.3 Question. Let (XX, P) be a stratified co-topos and U € X. Then composing the natural geometric
morphism X ,; — X with the stratification of X' gives X'y a natural P-stratification. Is the stratified oco-
topos (X, P) exodromic?

3.1 Stability under pulling back to locally closed subposets. Let (X, P) be an exodromic stratified
oo-topos. The purpose of this subsection is to show that for each locally closed subposet S C P, the stratified
co-topos (Xg, S) is exodromic, the inclusion ig . : (Xs,S) < (X, P) is exodromic, and the natural functor

M (Xs,S) - M (X,P)Xp S

is an equivalence (see Corollary 3.1.17). This result generalizes [14, Proposition 3.6-(2); 29, Proposition 3.13-
(1)] to the setting of exodromic stratified co-topoi; the proof is essentially the same as theirs, just adapted to
our more general setting. A key step is to show that both constructible objects and functors out of exit-path
oo-categories satisfy recollement. We refer the reader to [HA, §A.8; SAG, §7.2; 2, §6.1; 35, §2] for background
on recollements.

We start by proving a general recollement result for co-categories of functors out of an co-category with
a functor to a poset.

3.1.1 Notation. Let F: C — P be a functor from an co-category to a poset. Given a full subposet S C P,
we write Cg := C Xp S.

3.1.2 Observation. In the setting of Notation 3.1.1, note that since the inclusion S C P is fully faithful, its
basechange Cg — C is fully faithful with image those objects lying over S.

3.1.3 Proposition. Let F: C — P be a functor from an oco-category to a poset, and let Z C P be a closed
subposet with open complement U = P~ Z. Writei: C; & Cand j: Cy < C for the inclusions. Then the
restriction functors

i*: Fun(G, Spc) — Fun(C,, Spc) and j*: Fun(C, Spc) —» Fun(Cy;, Spc)
exhibit Fun(C, Spc) as the recollement of Fun(C,, Spc) and Fun(Cy;, Spc).
Proof. Note that since every object of € belongs to either Cy; or €, and equivalences in Fun(C, Spc) are
detected pointwise, the functors j* and i* are jointly conservative. Hence the only nontrivial point to check

is that the composite j*i, is constant with value the terminal object of Fun(Cy;, Spc).
For this, consider the pullback square of co-categories

|

|

@U ? C.
Since i is a right fibration (Lemma A.2.6), i is a proper functor in the sense of [14, Definition 2.22]. (See also
[HTT, §4.1.2; 13, §4.4].) Hence proper basechange [14, Theorem 2.27] implies that the exchange transfor-
mation

j¥i, - a,b*
is an equivalence. To complete the proof, notice that the functor

b* : Fun(€y, Spc) — Fun(g, Spc) ~ *

is the unique functor and the functor a,, : * — Fun(Cy, Spc) picks out the terminal object. (]

We now turn to showing that constructible objects satisfy recollement. Let us introduce a special class of
coefficients we are interested in:

3.1.4 Definition. We say that a presentable co-category & is compatible with recollements if for every
recollement datum of co-topoi

":X—>2 and XU,


http://www.math.ias.edu/~lurie/papers/HA.pdf#section.A.8
http://www.math.ias.edu/~lurie/papers/SAG-rootfile.pdf#section.7.2
http://www.math.ias.edu/~lurie/papers/HTT.pdf#subsection.4.1.2
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the induced functors
"FRE I XRESZIRE and JFREXRE-URE
exhibit X ® & as the recollementof Z ® Eand U ® &.

3.1.5 Recollection. It follows respectively from [19, Corollary 2.18 and Proposition 2.26] that if £ is either
compactly generated or stable, then it is compatible with recollements.

3.1.6 Observation (see Recollection B.1.6 and Proposition B.1.8). Let (X, P) be a stratified co-topos and
let Z C P be a closed subposet with open complement U = P\ Z. Then the functors

l}%—»ﬂ(z and li‘,%—»DCU
exhibit XX as the recollement of X, and X;.

3.1.7 Lemma. Let (X, P) be a stratified oo-topos and let Z C P be a closed subposet with open complement
U = P~ Z. Let £ be a presentable oo-category. Assume that & is compatible with recollements and that the
terminal object in Sh(X; €) is P-constructible. Then:

(1) IfF € Consy(Xy; &), then iy (F) € Consp(X; &).
(2) IfG € Consz(Xz; E), then iz .(G) € Consp(X; E).
(3) The composite iy;iy . : Consz(Xz; &) — Consy(Xy; ) is constant with value the terminal object.
(4) The functors
iz, 1 Consp(X;E) — Consz(Xz; E) and i; + Consp(X; &) — Consy(Xy; €)
are jointly conservative.

Proof. All of these claims essentially follow from Recollection 3.1.5. For (1), note that since ij;iy (F) ~ F,
it suffices to show that i7,i;; \(F) is locally constant on . By recollement, the functor

is constant with value the initial object, which is U-constructible. For (2), note that since iz ,(G) ~ G, it
suffices to show that ijiz ,.(G) is U-constructible on Xy . Again by recollement, the functor

is constant with value the terminal object. Since i7; : Sh(X; &) — Sh(Xy; €) is a right adjoint and since the

terminal object in Sh(XX'; £) is P-constructible by assumption, it follows that the terminal object in Sh(Xy; &)
is U-constructible. In particular, if; iz , carries Consz(Xz; €) to Consy(Xy; €), thus proving at the same time
(2) and (3). Item (4) is immediate from recollement. O

3.1.8 Lemma. Let (X, P) be a stratified co-topos and let U C P be an open subposet. Let & be a presentable
oo-category. Assume that € is compatible with recollements and that the terminal object of Sh(X; €) is P-
constructible. Then:

(1) Write @ for the initial object of Consz(X; £) and set
ker(i}) := {X e Consp(X) | i5(X) ~ @}.
Then the induced functor
iy, Consy(Xy) < ker(iy)
is an equivalence.
(2) Write  for the terminal object of Consy(Xy; €) and set
ker(if)) := {X € Consp(X; &) | if}(X) =~ =}.

Then the induced functor
iz Consz(Xz; &) < ker(if))

is an equivalence
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Proof. In both cases, it suffices to check essential surjectivity. So let X e ker(i7,) and consider the counit
c: iy,i;;(X) — X in Consp(X; ). By Lemma 3.1.7-(4), it suffices to show that i*(c) and i7,(c) are equiv-
alences. The former follows from the full faithfulness of i;;;, and the latter follows from the definition
of ker(i7). For (2), the same argument applies, starting with the unit u: F — iz ,i7(F) in place of the
counit. O

3.1.9 Lemma. Let (XX, P) be a stratified co-topos and let Z C P be a closed subposet with open complement
U = P~ Z. Let & be a presentable co-category. Assume that & is compatible with recollements and that the
terminal object of Sh(X'; £) is P-constructible. Then:

(1) If Consp(X; &) is presentable, then Consp(Xz; £) and Consp(Xys; €) are also presentable.

(2) If Consp(X; €) is closed under colimits in Sh(X; &), then the functor if; : Consp(X; ) — Consy(Xy; E)
preserves colimits.

(3) IfConsp(X; &) is closed under finite limits in Sh(X; &), then the functoriy, : Consp(X; ) — Consz(Xz; E)
is left exact.

(4) If Consp(X; &) is presentable and closed under colimits and finite limits in Sh(X'; €), then the functors i;,
and ij; exhibit Consp(X; €) as the recollement of Consz (X z; €) and Consy(Xy; ).

Proof. For (1), notice that Lemma 3.1.7-(2) implies that Cons;(Xz; &) is a localization of Consp(X'; £). More-
over, Lemma 3.1.8-(2) immediately implies that Cons;(X; €) is closed under weakly contractible colimits
inside Consp(X; £); in particular

Consz(X; &) C Consp(X;E)
is closed under filtered colimits. Thus, the co-categorical reflection theorem [34, Theorem 1.1] implies that
Consyz(X; €) is presentable. Then, Lemma 3.1.8-(1) implies that Consy(Xys; £) is presentable.

Item (2) follows from the given assumption, the full faithfulness of Consy(Xy; €) inside of Sh(Xy; £),
and the fact thatif; : Sh(X; €) — Sh(Xy; €) preserves colimits and preserve constructible objects. A similar
argument shows (3) as well.

We are left to prove (4). In virtue of Lemma 3.1.7, all we are left to do is to check that ij; admits a right
adjoint and that i, is left exact. The first statement follows from (1), (2), and the adjoint functor theorem,
while the second follows directly from (3). O

*

In what follows, we will need to use the fact that given an open immersion of co-topoi j,: U < Y,
the co-topos U is naturally identified with the slice ¥, ;). Hence we recall some basic results about slice
oo-categories.

3.1.10 Recollection. Leti: € < D be a fully faithful functor of co-categories and let ¢ € €. Then:
(1) The induced functori: €. = D/ is fully faithful.
(2) Ifi: € & D admits a left adjoint L: D — €, theni: €/ — D/ admits a left adjoint given by the
induced functor
L: Dyie) = Cyrie) = Cre -

(3) Ifi: € & D admits arightadjointR: D — €, theni: €/, — D) admits a right adjoint given by the
induced functor
R Djie) = Crrice) = Ce -
See [HTT, Proposition 5.2.5.1].
3.1.11 Lemma. Let D be an oo-category, C C D a full subcategory, and c € C. Then the natural square

Cre — Dy

|

C— D

is a pullback square of oo-categories. Here the vertical functors are the forgetful functors.
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Proof. Consider the commutative cube

Cre Fun([1], €
D)o ‘ Fun([1], D)
(s, t)J
€ x{c} CxC \ (s.0)
D x {c} DXD.

By definition, the front and back vertical faces are pullbacks. Since € C D is a full subcategory, the right-hand
vertical face is a pullback. Hence the left-hand vertical face is also a pullback. O

Let us now give an alternative description of constructible objects in a stratified co-topos obtained by
pulling back to an open subposet.

3.1.12 Lemma. Let (X, P) be a stratified co-topos and let U C P be an open subposet. Then:
(1) The square

Consy(Xy) —— Xy
Consp(X) — X
is a pullback square of co-categories.

(2) Thereis a commutative square

COHSU(xU) — XU

iy, ll lliu,!

Consp(X) /iy, 1) = Xiy,(1)

where the vertical functors are equivalences and the horizontal functors are the natural inclusions.
Proof. For (1), note that it suffices to show that the fully faithful functor
iy, : Consy(Xy) < Consp(X) Niy,(Xy)

is essentially surjective. For this, let G € Xy be such that iy ,(G) is P-constructible. Write Z := P\ U. Then
i7iy(G) = @ and if;iy (G) is U-constructible. Hence G € Consy (Xy), completing the proof.

For (2),note thatiy , : Xy < X isanopenimmersion of co-topoi, the exceptional left adjoint iy, : Xy <
X induces an equivalence Xy = X, ) fitting into a commutative triangle

ry ————— ‘x/lU'(l)

\ ,/orget

Since iy (1) € Consp(XX), the claim follows from item (1) combined with Lemma 3.1.11. O

3.1.13 Proposition (recollement). Let s, : X — Fun(P,Spc) be an exodromic stratified co-topos and let
Z C P be a closed subposet with open complement U = P \ Z. Then:
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(1) The functors
iz, : Consp(X) — Consz(Xz) and if; + Consp(X) — Consy(Xy)
exhibit Consp(X) as the recollement of Consz(X'7) and Consy (Xy).
(2) The stratified co-topos (X, U) is exodromic, the morphism iy, . (Xy,U) < (X, P) is exodromic, and
the induced functor
Xy, U) = M (X, P)y
is an equivalence.
(3) The stratified oo-topos (X, Z) is exodromic, the morphism iz .. . (Xz,Z) < (X, P) is exodromic, and the
induced functor
Hoo(XZ9Z) - Hoo(X’P)Z
is an equivalence.
Proof. Since the terminal object of X is P-constructible, (1) follows directly from Lemma 3.1.9-(4). For (2),

let us first prove that Consy(Xyy) is closed under limits and colimits in Xy;. By Lemma 3.1.12-(2), we have
a commutative square

COHSU(.IU) — ‘XU

iy, ll Zliu,!

Consp(x)/iu,!(l) R x/iu,z(l)

where the vertical functors are equivalences. Since (X, P) is exodromic, the inclusion Consp(XX’) C X admits
both a left and right adjoint. Hence Recollection 3.1.10 shows that the inclusion Consy (X)) C Xy admits
both a left and right adjoint. Write sy , : Xy — Fun(U, Spc) for the induced stratificationand j: U < P
for the inclusion. All we are left to show is that the co-category Consy(Xy) is atomically generated by
(X, P)y and that the pullback functor sy, : Fun(U,Spe) — Consy(Xy) preserves limits. To see that
Consy(Xy) is atomically generated by I, (X, P)y, notice that since i%iy (1) = @ and if;iy (1) = 1, the
fully faithful functor
iy . Consy(Xy) < Consp(X) ~ Fun(I1, (XX, P), Spc)

has image those functors F : II, (X, P) — Spc such that the composite
Mo (X,P); —— (X, P) —— Spe

is constant with value the initial object. Now note that this full subcategory coincides with the image of the
fully faithful functor
Fun(Tl (X, P)y, Spe) < Fun(Tl (X, P), Spe)

given by left Kan extension along the inclusion IT (X, P)y © I (X, P).
To see that sj; : Fun(U, Spc) — Consy(Xy) preserves limits, notice that we have a commutative square

Fun(P, Spc) AN Fun(U, Spc)

1k

Consp(X) — Consy(Xy) .
U

Since j, is fully faithful, we see that there are equivalences
S 85 e 2 i
Since the functors i;, s*, and j, all preserve limits, we deduce that s*U preserves limits, as desired.
For (3), recall from Lemma 3.1.8-(1) that

(3.1.14) Consz(X,) ~ ker <lz, : Consp(X) — ConsU(DCU)) .



EXODROMY BEYOND CONICALITY 31

Since (X, P) is exodromic by assumption, (X, U) is exodromic by (2), and i[*] preserves limits and colimits,
we deduce that Consz(X';) C X is closed under limits and colimits. Proposition 3.1.3 and the identifica-
tion (3.1.14) show that the oco-category Consz(XX;) is atomically generated by I1,(X, P); and the functor
iz, © Consp(X) — Consz(X) preserves limits and colimits.

Write s, . © X; = Fun(Z, Spc) for the induced stratification and i : Z < P for the inclusion. All that
remains to be shown is that the pullback functor s, : Fun(Z, Spc) — Consz(X'z) preserves limits. For this,
notice that we have a commutative square

Fun(P, Spc) =, Fun(Z, Spc)

1k

Consp(X) —— Consz(X7) .
iz

Since i, is fully faithful, we see that there are equivalences

N A B M
Since the functors i;, s*, and i, all preserve limits, we deduce that s} preserves limits, as desired. O

3.1.15. In the setting of Proposition 3.1.13, the recollement takes the following form:

Z4 iy,
L N P A |
Consz(Xy) «— i3 Consp(X) if, —— Consy(Xy) .
N —_— >
5.

Here the functors iz ., i7, iy, and ij; agree with the ones at the level of the co-topoi Xz, Xy, and X. The
functor i, , does not necessarily agree with the pushforward iy, : Xy < X, and the functor i; , is ‘extra’
in the sense that it does not come for free from the theory of recollements. ’

For the next result, we need the following useful characterization of when a functor of exit-path co-cate-
gories is fully faithful in terms of the constructible pushforwards:

3.1.16 Lemma. Let f,: (X,P) - (Y,Q) be a morphism between exodromic stratified oco-topoi. If f, is
exodromic, then the following are equivalent:

(1) The functor f* : T (X,P) - 11 (Y, Q) is fully faithful.

(2) The functor f ; . Consp(X) — Consq(Y) is fully faithful.

(3) The functor 5 : Consp(X) — Consg(Y) is fully faithful.

Proof. Immediate from the fact that a functor F : € — D is fully faithful if and only if either of the functors
F\,F, : Fun(C,Spc) — Fun(D, Spc)

given by left or right Kan extension along F is fully faithful. O

By writing a locally closed immersion of posets as the composite of a closed immersion and an open immer-
sion, we deduce the main result of this subsection:

3.1.17 Corollary (stability under pulling back to locally closed subposets). Let (X, P) be an exodromic

stratified oco-topos and let S C P be a locally closed subposet. Then:

(1) The stratified co-topos (Xs, S) is exodromic and the morphism of stratified co-topoi ig .. : (Xs,S) < (X, P)
is exodromic.

(2) The co-topos Xg is monodromic.

(3) The natural functor T1(Xs, S) — I (X, P)s is an equivalence.

(4) The functors ig,ﬂ, ig,* : Consg(Xg) — Consp(X) are both fully faithful.
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(5) The natural functor I1,(X, P) — P is conservative.

Proof. Choose an open subposet U C P containing S such that S is closed in U. For (1), apply Proposi-
tion 3.1.13-(2) to both the open inclusion U C P and closed inclusion S C U. Item (2) follows from (1) and
Lemma 2.2.17. For (3), applying Proposition 3.1.13-(3) to the closed inclusion S C U and the open inclusion
U C P, we see that there are equivalences
Hoo(xS’S) = Hoo(xU’ U) Xu S

= (Hoo(x,P) XP U) XU S

>~ HOO(I, P)S .
By Observation 3.1.2, the natural functor I1 (XX, P)s — I (X, P) is fully faithful; hence Lemma 3.1.16

shows that (4) follows from (3). For (5), note that by Recollection A.1.1, we need to show that each fiber
(X, P), is an co-groupoid. Since each p € P is locally closed, item (1) shows that

Hoo(x9P)p = Hoo(xp:{p}) .

The conclusion now follows from the fact that IT,, (X5, {p}) is an co-groupoid (Recollection 1.3.8). O

We conclude by recording a few consequences of Corollary 3.1.17. First, we can describe the objects of
the exit-path co-category.

3.1.18 Observation (the objects of IT, (XX, P)). Let (X, P) be an exodromic stratified space. Corollary 3.1.17
implies that there is a natural identification

Mo (X, P~ = [ ] Meo(2X,)
peP

between the maximal sub-co-groupoid of 1, (X', P) and the coproduct of the shapes of the co-topoi X,.
Second, equivalences of constructible objects can be checked by pulling back to strata:

3.1.19 Corollary. Let (X, P) be an exodromic stratified oo-topos and let {S. }4< 4 be a collection of locally closed
subposets of P such that Uo{E 4 Sa = P. Then the restriction functors
{i* : Consp(X) — Consg_ (xsa)}

Sa acA

are jointly conservative.

Proof. Since each p e P is locally closed, by further restricting to the strata, it suffices to show that the
restriction functors

{if, : Consp(X) = LC(xp)}

peP

are jointly conservative. By Corollary 3.1.17, the stratified co-topos (X, {p}) is exodromic and the inclusion
ips ' (Xp,{pH) < (X, P) is exodromic. Hence the claim follows from the identification of the restriction

functor i; : Consp(X) — LC(Xp) with the functor

Fun(I1, (X, P), Spe) — Fun(I1,,(X},), Spc)

given by precomposition with the inclusion 1 (X ) = [T (X, P), < (X, P). O

Finally, the oo-category of constructible objects with arbitrary presentable coefficients is still presentable:

3.1.20 Lemma. Let (X, P) be a stratified oco-topos and let € be a presentable co-category. If for each p € P,
the stratum X , is monodromic, then the the co-category Consp(X'; €) is presentable and closed under colimits
in Sh(X; &).
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Proof. By definition, Consp(XX; &) fits into a pullback square of co-categories

Consp(X;E) —— H LC(IP; &)

T

Sh(x;&) —— []sh,:©)
HP p peP

Since each X p is monodromic, by Recollection 1.3.8, LC(XX s &) is presentable and closed under limits and
colimits in Sh(X; €). The fact that the forgetful functor pr- - CAT,, preserves limits [HTT, Proposition
5.5.3.13] completes the proof. O

3.1.21 Corollary. Let (X, P) be an exodromic stratified topos. Then for any presentable co-category &, the
oo-category Consp(XX; &) is presentable and closed under colimits in Sh(X; €).

Proof. Combine Corollary 3.1.17 and Lemma 3.1.20. O

3.2 All morphisms are exodromic. We now use Corollary 3.1.17 to show that every morphsim between
exodromic stratified co-topoi is exodromic. We start by proving this in the special case where the target is
trivially stratified.

3.2.1 Lemma. Let f,: (X,P) — (Y,*) be a morphism of stratified co-topoi, where the target is trivially
stratified. If the stratified co-topoi (X, P) and (Y, x) are exodromic, then the morphism f ., is exodromic.

Proof. Since (X, P) is exodromic, Lemma 2.2.17-(1) shows that the trivially stratified co-topos (X, *) is
exodromic. The morphism f, factors as a composite

(X,P) — (X,%) — (Y, %).

By Lemma 2.2.17-(2), the left-hand morphism is exodromic, and by Example 2.3.4 the right-hand morphism
is exodromic. Hence the composite is exodromic. O

For the following result, we introduce the following variant of Notation 2.1.9.

3.2.2 Notation. Let (', R) be a stratified co-topos and ¢ : R — P be a map of posets. Given p € P, we
write R, := ¢~1(p) for the full subposet of R given by the fiber of ¢ over p. Note that X p = Xg, Hence
the stratum X', is naturally a R,-stratified co-topos and the geometric morphism i, , : X, < X defines a
morphism of stratified co-topoi (X, R,) < (X, R).

3.2.3 Theorem (all morphisms are exodromic). Let f, : (X, P) = (Y, Q) be a morphism between exodromic
stratified oco-topoi. Then f is exodromic.

Proof. By Corollary 3.1.19, the functors
i;‘,q : Consp(X) — Conqu (xq)}
q<Q

are jointly conservative. Moreover, since the subposet P, C P is locally closed, by Corollary 3.1.17-(1) these
functors also preserve limits and colimits. Hence it suffices to show that for each g € Q, the composite iy, f*
preserves limits and colimits. !

As in Observation 2.1.11, write f : (Xy,Pq) = (Yy,{q}) for the induced morphism of stratified co-topoi.
Note that we have a commutative square

Consy(Y) S A Consp(X)

o i
lg l Pq

LC(Y,) f—Z) Conqu(xq).
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Again by Corollary 3.1.17-(1), the functor iy preserves limits and colimits. To complete the proof, note that by
Corollary 3.1.17-(1) the stratified co-topoi (X4, P4) and (Y, {q}) are exodromic; hence Lemma 3.2.1 shows
that functor f ; preserves limits and colimits. Thus f, ;i; preserves limits and colimits. O

We can now cleanly state the functoriality of exit-path co-categories. For this, recall Notation 1.3.14
and Definition 2.1.6.

3.2.4 Notation. Write StrTop:j C StrTop_, for the full subcategory spanned by the exodromic stratified
co-topoi.

3.2.5 Observation (functoriality of exit-path co-categories). The assignment (XX, P) — I (XX, P) refines

to a functor )
(-, —): StrTopS: — Cat'd™
Specifically, this functor is given by the composite

_yex .
StrTopZ( _Cons | (PrR,at)op ~ pri® ( 3 Catgem ’

where the left-hand functor sends (X, P) to the oco-category Consp(XX) with functoriality given by pullback,
and the right-hand functor sends an atomically generated co-category € to the co-category C = (G3!)°P
given by the opposite of the subcategory of atomic objects.

3.3 Stability under coarsening. Let (X, R) be an exodromic stratified co-topos, andlet¢: R — P be a
map of posets. In this subsection, show that (X, P) is also exodromic and express I1, (XX, P) as a localization
of [T, (X, R).

3.3.1 Observation. Let (X, R) be a stratified co-topos and let ¢ : R — P be a map of posets. Since the
morphism of stratified co-topoi (X, R) — (XX, P) is the identity on the underlying co-topos X, the pullback
along (X, R) — (X, P) is simply the inclusion

Consp(X) & Consg(X).

3.3.2 Lemma. Let (XX, R) be a stratified co-topos and let ¢ : R — P be a map of posets. If (X, R) is exodromic,
then the following conditions are equivalent:

(1) The stratified co-topos (X, P) is exodromic.
(2) The full subcategory Consp(XX) C Consg(X) is closed under both limits and colimits.

Proof. Note that by Observation 3.3.1 we immediately have (1) = (2).

To show is that (2) = (1), we check the three conditions of Definition 2.2.10. First note that since (X, R)
is exodromic, the co-category Consg(X) is atomically generated. Hence (2) and Proposition 1.1.13 imply
that the full subcategory Consp(XX) is atomically generated and the inclusion

Consp(X) € Consg(X)
admits both a left and a right adjoint. Since (XX, R) is exodromic, the full subcategory
Consgp(X) c X

is closed under limits and colimits; hence Consp(X) C X is also closed under limits and colimits.
Write ¢, : X — Fun(R, Spc) for the stratification, and s, : ' — Fun(P, Spc) for the composite ¢,.t,. All
that remains to be shown is that the pullback functor

s* : Fun(P, Spc) — Consp(X)

preserves limits and colimits. For this, note that we have a commutative square

Fun(P, Spc) ——— Fun(R, Spc)

Consp(X) ———— Consg(X).
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Here, the bottom horizontal functor is the inclusion, which is also the pullback along the refinement map
(X,R) - (X, P). The functor ¢* preserves limits and colimits; by assumption both the bottom horizontal
functor and t* preserve limits and colimits. Hence s* also preserves limits and colimits. O

To compute the exit-path co-category of a coarsening, we also make use of the following:

3.3.3 Lemma. LetF: C - Dand G: D — & be functors between co-categories. Write W C Mor(C) for the
collection of morphisms that GF carries to equivalences in . If F is a localization and G is conservative, then
F induces an equivalence

CW 1] = D.

Proof. Since F is a localization, it suffices to show that given a morphism f in €, the morphism F(f) is an
equivalence if and only if f € W. To see this, note that since G is conservative, F(f) is an equivalence if and
only if GF(f) is an equivalence. O

For the proof of stability under coarsening, recall Notations 2.1.9 and 3.2.2. We also introduce the follow-
ing notation:

3.3.4 Notation. Let (X, R) be a stratified co-topos and ¢ : R — P be a map of posets. If (X, R) is exodromic,
write Wp C Mor(I1,, (XX, R)) for the collection of morphisms sent to equivalences by the composite

N (X,R) > R—>P.
3.3.5 Theorem (stability under coarsening). Let (X, R) be an exodromic stratified co-topos, andlet¢ : R — P

be a map of posets. Then:
(1) The stratified co-topos (X, P) is exodromic.
(2) The natural functor TI (X, R) — T, (X, P) induces an equivalence 1, (X, R)[W;l] = M (X, P).
Proof. First we prove (1). Since (X, R) is exodromic, Corollary 3.1.21 shows that the subcategory
Consp(X) C Consg(X)
is closed under colimits. To prove closure under limits, let F, : A — Consp(XX) be a diagram. Write
F_o = Liergl F,
for the limit computed in Consg(X'). We have to prove that for each p € P, the restriction i (F_,) is locally
constant. Again by Corollary 3.1.17-(1), the functor
i; : Consg(X) — Const(xp)
preserves limits. Therefore,

ip(F ) = lim ip(Fy)
By assumption, each i,(Fy) is a locally constant object of X. Since X', = X' R, by Corollary 3.1.17-(2), the
trivially stratified co-topos (X, {p}) is exodromic. Hence the subcategory
LC(Xp) C X,
is closed under limits (Recollection 1.3.8). Therefore, iZ(F _ o) is locally constant, as desired.
For item (2), note that (1) and Proposition 1.1.13 imply that the induced functor 1, (X, R) — I (X, P)
exhibits IT, (X, P) as the idempotent completion of the localization of I1, (X, R) at the class of morphisms

that the functor I1, (X, R) — I1,, (XX, P) carries to equivalences. Moreover, Corollary 3.1.17-(5) implies that
the induced functor I1 (X', P) — P is conservative. Hence Lemma 3.3.3 shows that the induced functor

M (X,R) - I (X,P)

exhibits T, (X, P) as the idempotent completion of the localization T, (X ,R)[W;l]. Corollary 3.1.17-
(5) shows that the natural functor I1(X,R) — R is conservative. Thus Proposition A.2.2 shows that
M (X ,R)[W;l] is already idempotent complete, concluding the proof. O
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3.3.6 Notation. Write Env : Cat,, — Spc for the left adjoint to the inclusion Spc C Cat,,. For an co-cate-
gory G, we can compute Env(C) as the localization ¢[€~!] at all morphisms in € [14, Corollary 2.10].

3.3.7 Corollary. Let (XX, P) be an exodromic stratified co-topos. Then there is a natural equivalence
Env(IT, (X, P)) = I (X).
Proof. Apply Theorem 3.3.5 to the map of posets P — . (]

3.4 Checking exodromy locally. We now observe that the existence of an exit-path co-category can be
checked by descent. This generalizes [14, Proposition 3.6-(2); 29, Proposition 3.13-(2)] to the setting of
stratified co-topoi. We first recall two fundamental facts about co-topoi.

3.4.1 Recollection.

(1) The co-category LTop  has all limits and colimits. Moreover, the forgetful functor LTop . — CAT,,
preserves limits. See [HTT, Proposition 6.3.2.3 & Corollary 6.3.4.7].

(2) A colimit in an co-category X with pullbacks is van Kampen if the functor
XP - CAT,, , U Xy

transforms it into a limit in CAT,,. A presentable co-category XX is an co-topos if and only if all colimits
in X are van Kampen; see [HTT, Proposition 5.5.3.13, Theorem 6.1.3.9(3), & Proposition 6.3.2.3; 23].

3.4.2 Proposition (van Kampen). Let A be an co-category and let (X.,P,) : A — StrTop_ be a diagram of
stratified oco-topoi. Let (X, Py,) be a cone under (X, P.). Assume that the following conditions are satisfied:

(1) Foreach a € A, the stratified co-topos (X, P,) is exodromic.
(2) The natural pullback functors

Xy — lim X, and Consp (X) — lim Consp (X,)
aeA°P o aeA°P «

are equivalences.
Then the stratified co-topos (X, Py ) is exodromic and the natural functor

colim Moy (s Pe) > T (Leos Poo)
ae
is an equivalence of co-categories. Here the colimit is formed in Catiiem.

L,at idem

Proof. Immediate from the definitions and the equivalence Pr"" ~ Cat,,  of Recollection 1.1.11. O

3.4.3 Remark (on idempotent completion). Let P be a poset and write Catzgfl/sp C Cat,, /p for the full
subcategory spanned by those objects such that the specified functor ¢ — P is conservative. The forgetful
functor

Cat,, ;p — Cat,,

preserves colimits. The inclusion Cat), < Cat,, /p preserves colimits (Observation A.3.5). Hence, the

forgetful functor
cons

Catoo’/P — Cat

preserves colimits. By Lemma A.1.3, every object of Cat‘;gn/sp is idempotent complete. Hence in Proposi-

tion 3.4.2, if the diagram of stratifying posets is constant, then the colimit in Cat, is already idempotent
complete.

3.4.4 Corollary. Let (X, P) be a stratified co-topos and let U, : A — X be a diagram with colimgy U, ~ 1.
If for each a € A, the stratified co-topos (X y_, P) is exodromic, then the stratified co-topos (X, P) is exodromic
and the natural functor

colim (1, P) = Mo (X, P)

is an equivalence of co-categories.

Proof. Immediate from Proposition 3.4.2 and the fact that colimits in an co-topos are van Kampen (Recol-
lection 3.4.1-(2)). O
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3.5 The Kiinneth formula. We now prove a Kiinneth formula for the exit-path co-category of the product
of exodromic stratified co-topoi. For this subsection, it may be useful to review Recollection 1.3.3 on products
of co-topoi and tensor products of presentable co-categories. One key input is the Kiinneth formula in the
unstratified setting (Proposition 1.3.19).

We start by noting that the product of stratified co-topoi is naturally stratified:

3.5.1 Definition (stratification of a product). Lets,: X — Fun(P,Spc) and ¢, : ¥ — Fun(Q, Spc) be
stratified co-topoi. We write (X ® Y, P X Q) for the stratified co-topos

5, ®t,: X ®Y — Fun(P, Spc) ® Fun(Q, Spc) ~ Fun(P x Q, Spc) .

3.5.2 Observation. In the setting of Definition 3.5.1, assume that (X, P) and (Y, Q) are exodromic stratified
oo-topoi. Then:

(1) Since s* and t* preserve limits and colimits,
s*@t*: Fun(P xQ,Spc) > X ® Y
preserves limits and colimits.

(2) Since the inclusions Consp(XX) < X and Cons,(Y) < Y are both left and right adjoints, the induced
functor

Consp(X) ® ConsQ(y) -XRY
is fully faithful and both a left and right adjoint.

3.5.3 Lemma. Let (X, P) and (Y, Q) be exodromic stratified co-topoi. The inclusion
Consp(X) ® Consy(¥) &> X @ Y
factors through Conspyo(X ® Y).

Proof. Let (p,q) € P X Q. Note that by the definition of Consp(X) ® Cons,(Y), the composite

* *

i Qi
(3.5.4) Consp(X) ® Consg(Y) —— X @Y — X, ® Y,

factors through LC(X},) ® LC(Y,). By Proposition 1.3.19, we have
LC(X,) ® LC(Yy) = LC(X, ® Yy)
as full subcategories of X, ® Y. Hence the functor (3.5.4) factors through LC(X, ® Y,), as desired. I

3.5.5 Proposition (Kiinneth formula for exodromic stratified co-topoi). Let s, : X — Fun(P,Spc) and
t, 1 Y - Fun(Q, Spc) be exodromic stratified co-topoi. If P and Q are noetherian, then:

(1) The natural fully faithful functor
Consp(XX) ® Consg(Y) < Conspyo(X @ Y)

is an equivalence.

(2) The stratified co-topos (X ® Y, P X Q) is exodromic and the natural functor
(X @ Y,P X Q) = (X, P) X o (Y,Q)
is an equivalence of co-categories.

Proof. We now proceed by noetherian induction. First, let us prove that when Q = x, the functor we just
constructed

X : Consp(X) ® LC(Y) — Consp(X ® Y)
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is an equivalence. When P = , the conclusion follows from Proposition 1.3.19-(3). Otherwise, notice that

Lemma 4.1.10 implies that the question is local on P. We can therefore reduce ourselves to prove that [X] is
an equivalence for posets of the form Py ,. In this case, consider the following diagram:

LC(Xp) ® LC(Y) «——— Consp(X) ® LC(Y) —— ConsP>P(DC>p) ® LC(Y)
D X Jg

LCX, ® Y)

Consp(X ® ¥)

Consp>p(DC>P ®Y).

Since Y is monodromic, LC(Y) is compactly generated and therefore the top row is a recollement. By
Lemma 3.1.9-(4), the bottom line is also a recollement. The inductive hypothesis guarantees that the outer
vertical functors are equivalences. Therefore, Lemma 4.1.8-(4) implies that the same goes for the middle
one. We now repeat the same argument proceeding by noetherian induction on the length of Q and for
arbitrary P. Reasoning as above, we reduce ourselves to consider the following diagram:

Consp(X) ® LC(Y) «—— Consp(X) ® Consy(Y) —— Consp(X) @ ConsQ>q(y>q)

X X X

Conspyg(X @ Yg) «———— Conspyo(X ® ¥) Conspr>q(DC ® Ysq) -
Once again, since (X, P) is exodromic, Consp(XX') is compactly generated and therefore the top row is a
recollement. The same goes for the bottom row. Thus, the conclusion follows from the previous step, the
inductive hypothesis and Lemma 4.1.8-(4).

For (2), note that by Observation 3.5.2, the pullback functor s*®t* preserves limits and colimits. Moreover,
by (1), ConsPXQ(JC ® Y) is atomically generated and closed under limits and colimits in X ® Y. Hence,
(X ® Y, P x Q) is exodromic. Finally, the equivalence

Consp(X) ® Consp(Y) = Conspyo(X @ Y)

shows that

3.6 Stability properties of categorical finiteness & compactness. As explained in [32, §7], the com-
pactness of exit-path co-categories can be used to prove that moduli stacks of constructible and perverse
sheaves are locally geometric. Hence knowing when a stratified co-topos has compact exit-path co-catego-
ry is of great utility. To complete this section, we explain why the classes of exodromic stratified co-topoi
with finite or compact exit-path co-category are stable under coarsening. In § 5, we use the results of this
subsection to extend the representability results from [32, §7] beyond the conical situation.

Recall from [32, Definition 2.2.1] the following:

3.6.1 Definition. Let (X', P) be an exodromic stratified co-topos. We say that (XX, P) is:
(1) Categorically finite if I1, (X, P) is a finite object of Cat,,. (See Recollection A.3.1.)
(2) Categorically compact if I1 (X, P) is a compact object of Cat,.

3.6.2 Lemma. Let (XX, P) be an exodromic stratified co-topos and S C P a locally closed subposet. If (X, P) is
categorically finite (vesp., compact), then (X, S) is categorically finite (resp., compact).

Proof. This is a special case of Proposition A.3.17. O

3.6.3 Lemma. Let (X, P) be a stratified co-topos and let Uy, ..., U, € X be a finite set of objects such that
the induced map U U --- U U, — 1 is an effective epimorphism. Assume that forall1 <i; < --- <i < n,
the stratified co-topos (X JUpy X--XUy, 5 P) is exodromic and is categorically finite (resp., compact). Then (X, P) is
exodromic and is categorically finite (resp., compact).
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Proof. Immediate from Corollary 3.4.4 and the fact that both finite and compact co-categories are closed
under finite colimits in Cat,. O

3.6.4 Proposition. Let (XX, R) be an exodromic stratified co-topos and let ¢ : R — P be a map of posets. If
(X, R) is categorically finite (resp., compact), then (X, P) is categorically finite (resp., compact).

Proof. The fact that (X, P) is exodromic follows from the stability of the class of exodromic stratified co-topoi
under coarsening (Theorem 3.3.5-(1)). By Theorem 3.3.5-(2), there is an equivalence

M, (X, P) ~ Ho(X, R)[W51].

Since IT,, (XX, R) is a finite (resp., compact), the claim now follows from Proposition A.3.16. O

4 EXODROMY WITH COEFFICIENTS

This section concerns exodromy with coefficients in co-categories other than the co-category of spaces.
In §4.1, we explain when the exodromy equivalence holds for sheaves with coefficients in more general
presentable co-categories. In particular, exodromy with coefficients in Spe implies exodromy with coeffi-
cients in any compactly assembled co-category; see Corollary 4.1.15. Subsection 4.2 treats exodromy with
coefficients in the co-category Pr" of presentable co-categories; these results are needed in forthcoming
work of the second- and third-named authors [33].

4.1 Exodromy with coefficients in a presentable co-category. We are also interested in when the exit-
path oco-category corepresents constructible objects with coefficients in a presentable co-category €. The
following slight generalization of the discussion in [32, §6.1] captures this more general situation.

4.1.1 Observation. Let (X, P) be an exodromic stratified co-topos and let £ be a presentable co-category.
Since the oo-category Consp(XX) is presentable and the inclusion

Consp(X) & X
is both a left and a right adjoint, tensoring with £ gives a fully faithful functor
X : Consp(X) ® & & Sh(X; &)
that is both a left and a right adjoint.

4.1.2 Lemma. Let £ be a presentable co-category, and let (X, P) be an exodromic stratified co-topos. Then
the functor

X: Consp(X) ® & & Sh(X; &)
factors through Consp(X; ) C Sh(X; &).

Proof. The functoriality of the tensor product in Pr- implies that for each p € P, there is a commutative
square

Consp(X)® & —— Sh(X)® &
i ®idg ¥ ®ide
LC(X,) ® & —— Sh(X,) ® €.

Since the strata of (X, P) are monodromic (Corollary 3.1.17-(2)), the natural functor
LC(X,) ® € = LC(Xp; 6)

is an equivalence (Recollection 1.3.8). The claim is now immediate. O
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4.1.3. In the setting of Lemma 4.1.2, we have a commutative triangle
Consp(X) ® & ——— Consp(X;E)
(4.1.4) \ [
Sh(X; &) .

4.1.5 Definition. Let &£ be a presentable co-category and let (X, P) be a stratified co-topos. We say that
(&, P) is &-exodromic if the following conditions are satisfied:

(1) The stratified co-topos (XX, P) is exodromic.
(2) The functor [X: Consp(X) ® & & Consp(X; E) is an equivalence.
We collect some basic properties of £-exodromic stratified co-topoi.

4.1.6 Observation. Let (XX, P) be an exodromic stratified co-topos. Since equivalences of co-categories are
stable under retracts, the class of presentable co-categories & for which (XX, P) is £-exodromic is also stable
under retracts.

4.1.7 Lemma. Let & be a presentable co-category and let (X, P) be a £-exodromic stratified co-topos. Then
the equivalence

X : Consp(X) ® & = Consp(X; E)

induces a canonical equivalence
Fun(T1,, (XX, P), €) ~ Consp(X; &) .
Proof. Indeed, we have the following canonical equivalences:
Consp(X) ® € ~ Fun(I1,(X,P),Spc) ® &
~ Fun(IT, (X, P), &) . [HA, Proposition 4.8.1.17]
The conclusion follows. O
We now prove an analogue of Corollary 3.1.17. We first need the following lemma:

4.1.8 Lemma. Let X; and X, be co-categories with finite limits and an inital object. Let

i* ]*
2 ! X ! u,
d | |
2 X — u,

S5
L 2

be a commutative diagram where each of the horizontal rows exhibits X; as the recollement of Z; and U;.

(1) IfF is essentially surjective, then Fy and Fy, are essentially surjective.

(2) IfFy preserves the initial object, then the right-hand square is horizontally left adjointable. In this case, if
F is fully faithful (resp., an equivalence), then the same is true of Fy,.

(3) If Fy preserves the terminal object, then the left-hand square is horizontally right adjointable. In this case,
if F is fully faithful (resp., an equivalence), then the same is true of Fy.

(4) Assume that F is left exact. If Fy and Fy, are equivalences, then F is also an equivalence

Proof. For (1), we prove that Fy, is essentially surjective; the proof of the essential surjectivity of Fy is
identical. Since F is essentially surjective, given u € U, there exists x € X'y and an equivalence j, ,(u) ~ F(x).
Hence the full faithfulness of j, , and the commutativity of the right-hand square show that

u = jyja(u) = j5(F(x)) = Fy(ji(x)) .
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We now prove (2); item (3) follows by a dual argument. Consider the exchange transformation
a: joFu—Fjy.

Since the bottom line is a recollement, to prove that « is an equivalence it suffices to check that j3(a)
and i (c) are equivalences. We first deal with the former. Since the right-hand square commutes, we have
J3F i1y = Fyjiju,, so the conclusion follows from the full faithfulness of both j;, and j,,. As for ij(a),
recall that the theory of recollements shows that both i j,, and if j;, are constant with value the initial
object. Also, since the left-hand square commutes, we have i;F j; | =~ Fzij j; . Since Fz preserves the initial
object, it follows that both the source and target of i5(«) are constant with value the initial object; hence
i;(a) is an equivalence.

From the horizontal left adjointability of the right-hand square and the full faithfulness of j; , and j,,, it
immediately follows that if F is fully faithful, then Fy, is also fully faithful. Finally, if F is an equivalence,
then we have just seen that Fy, is fully faithful and (1) shows that Fy, is also essentially surjective.

We are left to prove (4). Since Fy and Fy, are equivalences, they preserve both the initial and the terminal
object. Then (4) follows from the above adjointability statements and [HA, Proposition A.8.14]. O

4.1.9 Proposition. Let (XX, P) be a stratified co-topos and let € be a presentable co-category. Let S C P be a
locally closed subposet. If (X, P) is E-exodromic and & is compatible with recollements (Definition 3.1.4), then
(X, S) is also E-exodromic.

Proof. Itisenough to prove thatif U C P is an open subposet with closed complement Z, then both (X, U)
and (X7, Z) are &-exodromic. First of all, we already know from Corollary 3.1.17 that these stratified co-topoi
are exodromic. Consider now the following commutative diagram:

ir,®E iZ®¢
Consy(Xy) ® € «——— Consp(X) ® & ——— Consz(Xz) ® &

o " [e

Consy(Xy; &) «——— Consp(X;E) ——— Consz(Xz;E) .
iy iz

Since (XX, P) is £-exodromic, the middle vertical functor is an equivalence. Morever, because because (X, P)
is exodromic, the functor

Consp(X) ® € - Sh(X) ® & ~ Sh(X; &)

preserves both limits and colimits. Combining Corollary 2.2.18 and Lemma 3.1.9-(4), we see that the bottom
row exhibits Consp(XX; &) as a recollement of Consy(Xy; £) and Consz(Xz; ). On the other hand, since
€ is compatible with recollements, the top row is a recollement as well. Clearly, [X;; preserves the initial
object. On the other hand, since [X];; is compatible with the inclusion into

Sh(X;) ® & ~ Sh(X,; E)

and since the terminal object in Sh(X5; &) is Z-constructible thanks to Corollary 2.2.18, we conclude that
Xz preserves the terminal object as well. Thus, Lemma 4.1.8 implies that [X|;; and [X]; are equivalences. [

To explain why &£-exodromicity can be checked locally, we need descent for the tensor decomposition
Consp(X) ® € ~ Consp(X;E).
For this, we make use of the following lemma.

4.1.10 Lemma. Let A be a small co-category and let C, : A — CAT, be a diagram of oo-categories. Assume
that for each a € A, the co-category C, is presentable and that for each morphism o« — 3 in A, the transition
Jfunctor C, — Cp is both a left and a right adjoint. Then:

(1) The limits of C, when computed in Pr¥, Pr", or CAT,, all agree.
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(2) For any presentable co-category &, the natural morphism
IimEQRC, - ERLmMC,
acA aecA

in Pr is an equivalence. (Here, both limits are computed in Pr-)

Proof. Item (1) follows from the fact that both of the forgetful functors Prt - CAT,, and Prt - CAT,,
preserve limits [HTT, Proposition 5.5.3.13 & Theorem 5.5.3.18]. Item (2) follows from (1), the equivalence
Pri ~ (PrL)OP, and the fact that the functor

E®(-): Prt - prt
preserves limits [HA, Remark 4.8.1.24]. O
4.1.11 Proposition. Let & be a presentable co-category, let A be an co-category, and let
(X.,P.): A— StrTop_,

be a diagram of stratified co-topoi. Let (X o, Py, ) be a cone under (X, P,). Assume that the following conditions
are satisfied:

(1) Foreach a € A, the stratified co-topos (X, P,) is E-exodromic.
(2) The natural pullback functors
Xy — lim X, and Consp (X) — lim Consp (X,)
aeA°P o aeA°P «
as well as
Consp_ (X €) — lii;np Consp (Xy; E)
aeA° a

are equivalences.

Then the stratified co-topos (X, Py, ) is E-exodromic.

Proof. Proposition 3.4.2 implies that (XX, P) is exodromic. Consider the following commutative square

Consp (X)) ® E — lilgnp Consp (X,)® &
aeA°l @

| |

Consp (X5 &) —— lilanp Consp (X4;E)
aeA° &

Since each (X, P,) is £-exodromic, the left vertical functor is an equivalence. Also, by assumption, the
bottom horizontal functor is an equivalence. Thus it suffices to show that the top horizontal functor is an
equivalence. By Lemma 4.1.10, it suffices to show that for every morphism ¢ — f in A, the pullback
functor

Consp_(Xy) — Conspﬁ(xﬁ)

isboth a left and a right adjoint. By assumption (X, Pg) and (X, P,) are exodromic, so this is an immediate
consequence of Theorem 3.2.3. O

4.1.12 Corollary. Let (XX, P) be a stratified co-topos and let € be a presentable co-category. Let U, : A — X
be a diagram with colimgeq U, = 1. If for each a € A, the stratified co-topos (X y,, P) is E-exodromic, then
the stratified co-topos (X, P) is also E-exodromic.

Proof. By Recollection 3.4.1 and Proposition 4.1.11, it suffices to show that the natural pullback functor
(4.1.13) Consp(X; &) —» Hixnp Consp(X/y,; €)

aeA° a
is an equivalence. Notice that for every map a — (8 in AP, the induced pullback functor

x/Utx d X/Uﬁ


http://www.math.ias.edu/~lurie/papers/HTT.pdf#theorem.5.5.3.13
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is both a left and a right adjoint. Therefore, Lemma 4.1.10 implies that the pullback functor
Sh(X; &) — alel,%p Sh(X,y_; €)

is an equivalence. This immediately implies that (4.1.13) is fully faithful. To conclude, it is enough to
observe that F e Sh(X; €) is P-constructible if and only if for every a € A, the restriction of F to X' /y_ is
P-constructible.

4.1.14 Recollection (compactly assembled co-categories). A presentable co-category & is compactly as-
sembled if € is a retract in Pr* of a compactly generated co-category [SAG, Definition 21.1.2.1 & Theorem
21.1.2.18]. If £ is a presentable stable co-category, then € is compactly assembled if and only if € is dualizable
in the symmetric monoidal co-category of presentable stable co-categories and left adjoints equipped with
the Lurie tensor product [SAG, Proposition D.7.3.1].

4.1.15 Corollary. Let (X, P) be a exodromic stratified co-topos and let € be a presentable co-category. Then:
(1) If & is compactly assembled, then (I, P) is E-exodromic.

(2) If & is stable and P is noetherian, then (X, P) is E-exodromic.

Proof. For (1), note that by Observation 4.1.1, it suffices to prove the claim in the case that £ is compactly
generated. In this case, the proof of [30, Theorem B.9] works verbatim.

We now prove (2). For p € P, we write X', , for X' Psp Since the sets {P5 },ep form an open cover of P, by
Corollary 4.1.12 it suffices to show that for every p € P the stratified co-topos (X, P»,) is £-exodromic.
We prove this statement by noetherian induction. When P is a single element, the conclusion follows from
Recollection 1.3.8. We are then reduced to showing that if for every g > p the stratified co-topos (X4, P»4)
is &-exodromic, then (X >p> PZp) is also &-exodromic. Note that

Pspyn{p}=Ps, = U Psy.
q>p
Thus, Corollary 4.1.12 implies that (X ,, P ) is €-exodromic.
Now consider the following diagram:

LC(Xp) ® &€ «——— Consp(X) @ & —— Consp>p(x>P) ®E
: I :
LC(X ;&) «—— Consp(X; &) ——— Consp>p(x>p;8).
The inductive hypothesis implies that the exterior vertical functors are equivalences. Since € is stable,
Consp(X; &) is closed under finite limits in Sh(XX; €). Thus, Corollary 3.1.21 implies that the assumptions
of Lemma 3.1.9-(4) are satisfied. It follows that the bottom line is a recollement. Since & is stable, it is

compatible with recollements; therefore, the top line is also a recollement. Thus, Lemma 4.1.8-(4) implies
that the middle functor is an equivalence as well. O

4.2 Exodromy with coefficients in Pr". Let (XX, P) be an exodromic stratified oo-topos. Recall that
we write CAT,, for the (very large) co-category of large co-categories. Working in a sufficiently large
Grothendieck universe, CAT,, is compactly generated. Therefore, combining Lemma 4.1.7 with Corol-
lary 4.1.15, we obtain an equivalence

(4.2.1) Consp(X; CAT,,) ~ Fun(IT, (X, P), CAT,,) .

. . ., . . L . L. .
In many situations it is convenient to replace CAT., by Pr~; however, since Pr™ is not itself presentable,
one needs some extra care.

4.2.2 Definition. Let (XX, P) be a stratified co-topos. The co-category of Pr'-valued sheaves on X is
Sh(X; PrY) := Fun"™(x°p, Pr") .
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4.2.3 Observation. Recall from [HTT, Proposition 5.5.3.13] that the forgetful functor prt > CAT,, pre-
serves limits. Since Sh(X; CAT,,) := X ® CAT,, [HA, Proposition 4.8.1.17] supplies a canonical functor

Sh(X; Pr™) — Sh(XX; CAT,,) .

4.2.4 Definition. Let (XX, P) be a stratified co-topos. The co-category of Pr'-valued P-constructible sheaves
on X is the fiber product

Consp(X; PrL) := Sh(X; PrL) @ X Consp(X; CAT,,) .

(X;CAT,)

Although the above definition might seem ad hoc (because the restriction to strata are computed in
CAT,, rather than in Pr"), it is justified by the following result:

4.2.5 Proposition. Let (XX, P) be an exodromic stratified co-topos. Then the equivalence (4.2.1) induces an
adjoint equivalence

®: Consp(X;Pr") s Fun(Il(X,P),Pr): ¥.
Proof. Under the identification
Consp(X; CAT,,) ~ Consp(X) ® CAT,, ~ Fun'™(Consp(X)°P, CAT,,),
the equivalence (4.2.1) is realized by the functor
@ : Fun'™(Consp(X)°P, CAT,,) — Fun(IT, (X, P), CAT,,)
given by restriction along the inclusion I1 (X, P) & Consp(XX)°P. The inverse of @ is the functor
¥ : Fun(Il,,(X,P), CAT,) — Fun'™(Consp(X)°P, CAT,)

given by right Kan extension along the same inclusion. Consider the composite
Consp(X; Pr') — Consp(X; CAT,) -2, Fun(I1. (X, P), CAT,,) .

Unraveling the definitions, we see that this functor takes F € Consp(2; Pr") seen as a limit-preserving
functor

F: Consp(X)°P — Prt

to the restriction of F to I, (XX, P). In particular, this composite factors through Fun(IT, (X, P), PrL). Com-
mitting a slight abuse of notation, we still denote the resulting functor as

®: Consp(X; PrL) — Fun(I1, (X, P), PrL) .

Similarly, since the forgetful functor Pr- > CAT,, preserves limits by [HTT, Proposition 5.5.3.13] we see
that ¥ induces a well defined functor

¥ : Fun(Il (X, P), Pr") — Consp(X; Prl).

Since the pair (®, ¥) is an adjoint equivalence and the forgetful functor Prt — CAT,, is faithful and full on
equivalences, we deduce that unit and counits at the level of CAT, induce a unit and a counit transformation
at the level of Pr", and therefore that they form an adjoint equivalence. O

4.2.6 Corollary. Let f, : (X,P) — (Y, Q) be a morphism of exodromic stratified co-topoi. Then the functor
f*: Consy(Y; CAT,,) — Consp(XX'; CAT,,)
induces a well defined functor

f*: ConsQ(y;PrL) — Consp(JC;PrL)
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making the square
Consq(¥; Pr) —— Fun(I,(Y,Q), Pr")

f*J |_°Hoo(f)

Consp(X; PrL) — Fun(I1 (X, P), PrL)
commutative.

Proof. Recall from Theorem 3.2.3 that f, is exodromic. Since CAT,, is compactly generated, it follows from
Corollary 4.1.15 that the diagram

Consy(Y; CAT,,) —— Fun(I1 (¥, Q), CAT,,)

f*l l_onoo(f)

Consp(X; CAT,,) —— Fun(II(X, P), CAT,,)
commutes. Since the functor —oIl (f) clearly lifts to a functor
—oTlo(f): Fun(Il,(¥,Q), Pr") — Fun(Il,, (X, P), Pr"),
it follows from Proposition 4.2.5 that the same is true of f*. U
4.2.7 Warning. The use of constructible sheaves in Corollary 4.2.6 is fundamental. For instance, the functor
f*: Sh(Y;CAT,,) — Sh(X; CAT,,)
generally does not carry Sh(Y; Pr") to Sh(x; Prh).

4.2.8 Notation. Let Pr™® c Pr" for the non-full subcategory with objects compactly generated presentable
oo-categories and morphisms left adjoints that preserve compact objects.

4.2.9. Recall from [7, Proposition 2.8.4] that Pr-® is compactly generated. In particular for an exodromic
stratified co-topos (X, P), Lemma 4.1.7 with Corollary 4.1.15 provide an adjoint equivalence

®®@ : Consp(X; Pr®) s Fun(Il (X, P), Pr®) : @)
The natural functor Pr® — Pr" induces by composition a map
j 1 Fun(Il (X, P), Pr™®) - Fun(Il, (X, P), Pr").
However, since the functor Pr® — Pr' does not preserve limits, we do not get an induced functor
Sh(X; Pr®) — Sh(xX; Pr").
On the other hand, we have:
4.2.10 Corollary. There exists a canonical functor
Consp(X; Pr®) — Consp(X; PrY)
which makes the square

Lw (Dg?jl)" Lw
Consp(X; Pr—*) ——— Fun(Il (X, P),Pr—®)

J j
Consp(x;PrL) — Fun(T1. (X, P), Pr")
X.P

commute.

Proof. Thanks to Proposition 4.2.5, it is enough to define the left vertical map as Wy poj o@?;. O
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5 APPLICATIONS & EXAMPLES

In this section, we apply the stability properties of § 3 to stratified co-topoi arising from topology. In
§ 5.1, we introduce the topological context for our results and state the stability theorem in this context
(Theorem 5.1.7). Importantly, as a consequence of Theorem 3.0.1 and the exodromy theorem for conically
stratified spaces [32], we deduce that for any stratified space (X, P) that locally admits a conical refine-
ment, the stratified co-topos (Shhyp(X ), P) is exodromic (see Proposition 5.2.9). Many examples fall into
this framework; see §5.3. Of particular interest are stratified spaces coming from subanalytic geometry and
real algebraic geometry. Under mild assumptions, we prove that in these geometric settings, the exit-path
oo-categories are finite (Theorems 5.3.9 and 5.3.13). In §5.4, we use exodromy combined with these finite-
ness results to prove representability results for moduli stacks of constructible and perverse sheaves (see
Theorems 5.4.9 and 5.4.16 and Corollary 5.4.17). This generalizes previous work of Porta-Teyssier in the
conical situation [32, §7]. For use in a future paper, in §5.5, given an exodromic stratified co-topos (X, R)
and map of posets ¢ : R — P, we provide a recognition criterion for when R-constructible objects are P-
constructible. In § 5.6, we conclude by posing some questions about the relationship between our work and
Lurie’s simplicial model for exit-path co-categories in the setting of conically refineable stratifications.

5.1 Consequences for stratified topological spaces. To fix a topological context to apply Theorem 3.0.1,
we make the following definition.

5.1.1 Definition. Let & be a presentable co-category. We say that a stratified topological space s: X — P
is &-exodromic if the stratified co-topos

s:fyp : Shhyp(X ) — Fun(P, Spc)
is &-exodromic. In this case, we write
T (X, P) == ,(Sh™P(X), P) .
We also have the topological version of Definition 3.6.1:
5.1.2 Definition. Let (X, P) be an exodromic stratified space. We say that (X, P) is:

(1) Categorically finite if 11 (X, P) is a finite object of Cat,,. (See Recollection A.3.1.)
(2) Categorically compact if 11, (X, P) is a compact object of Cat,.

The following class of presentable co-categories is well-behaved from the perspective of exodromy in
topology:
5.1.3 Definition. Let P be a poset. We say that a presentable co-category & is P-admissible if for every

conically P-stratified space (X, P) the hyperrestriction functors

{i*’hyp: Sh™P(x; &) - Sh™P(x ;3)}
p PN p

are jointly conservative. We say that a presentable co-category € is admissible if for every poset P, the
oo-category & is P-admissible.

5.1.4 Example [21, Lemma 5.21; 19, Lemma 2.12]. Let & be a presentable co-category.
(1) If & is compactly assembled, then & is admissible.

(2) If & is stable or an oco-topos, then for every noetherian poset P, the co-category £ is P-admissible.

5.1.5 Example [32, Theorem 5.17 & Remark 5.18]. Let (X, P) be a conically stratified space with locally
weakly contractible strata and let £ be a P-admissible co-category. Then (X, P) is £-exodromic.

When the strata of (X, P) are locally weakly contractible, we get a particularly nice description of the
objects of the exit-path co-category:
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5.1.6 Observation (the objects of IT (X, P)). Let (X, P) be an exodromic stratified space with locally weakly
contractible strata. Combining Example 1.3.9-(1) with Observation 3.1.18, we see that there is a natural
identification

(X, P)* = [ [ T (X))
peP

between the maximal sub-co-groupoid of IT, (X, P) and the coproduct of the underlying homotopy types
of the strata of (X, P).

Hence each point x € X gives rise to an object [x] € Consf,yp (X), and every object of I, (X, P) is of this
form. Moreover, it follows from the functoriality of the monodromy equivalence that the functor

h
ConsPyp(X ) = Spc

corepresented by [x] is equivalent to the stalk functor x* : Consﬁyp(X ) — Spc. As a consequence, given a
P-hyperconstructible hypersheaf F, every morphism [x] — [y] gives rise to a specialization map x*F — y*F
on stalks.

The stability theorem for exodromic stratified co-topoi has the following topological consequence:

5.1.7 Theorem (stability properties of exodromic stratified spaces).

(1) Stability under pulling back to locally closed subposets: If (X, P) is an exodromic stratified space, then
for each locally closed subposet S C P, the stratified space (X, S) is exodromic and the induced functor

Hoo(XS’S) - Hoo(X’P)S
is an equivalence. In particular, the induced functor I1,(X, P) — P is conservative.

(2) Stability under coarsening and localization formula: Let (X, R) be an exodromic stratified space and let
¢ : R — P be a map of posets. Then (X, P) is exodromic and there is a natural equivalence

oo (X, RW;'] = o (X, P).
(3) Functoriality: The exodromy equivalence is functorial in all stratified maps between exodromic stratified
spaces.
(4) van Kampen: Let (X, P) be a stratified space and let
. AP
U.: Ainj - Top/X
be an semi-simplicial étale hypercovering of X. If for each n > 0, the stratified space (U, P) is exodromic,
then the stratified space (X, P) is exodromic. Moreover, the natural functor
colim I (U, P) — (X, P)

op
[n]eAinj
is an equivalence of co-categories.

(5) Stability of finiteness/compactness: Let (X, P) be a stratified space.
(a) If (X, P) is exodromic and categorically finite (resp., compact), then for any locally closed subposet
S C P, the stratified space (X, S) is exodromic and categorically finite (resp., compact).

(b) Let Uy, ..., Uy be a finite open cover of X. Assume that each intersection (U N --- N U;, , P) admits
an refinement which is exodromic and categorically finite (vesp., compact). Then (X, P) is exodromic
and categorically finite (resp., compact).

Proof. Ttem (1) is a special case of Corollary 3.1.17, item (2) is a special case of Theorem 3.3.5, item (3)
is a special case of Theorem 3.2.3, item (4) is a special case of Corollary 3.4.4, and item (5) follows from
Lemmas 3.6.2 and 3.6.3 and Proposition 3.6.4. O

Provided X is also locally weakly contractible, the classifying space of the exit-path co-category of (X, P)
coincides with the underlying homotopy type of X:
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5.1.8 Corollary. Let (X, P) be an exodromic stratified space. If X locally weakly contractible, then the space
Env(I1., (X, P)) is naturally equivalent to the underlying homotopy type of X.

Proof. Note that Theorem 5.1.7-(2) shows that there is a natural equivalence

between the space obtained by inverting all morphisms in I1, (X, P) and the shape of the co-topos Shhyp(X ).
To conclude, recall that since X is locally weakly contractible, by Example 1.3.9-(1), the shape of Shhyp(X )
is naturally equivalent to the underlying homotopy type of X. O

We conclude this subsection with some remarks about the stability theorem.

5.1.9 Remark. Theorem 3.0.1 also applies to other topological contexts. For example, given a topological
space or stack X stratified by a noetherian poset P, @rsnes Jansen [28; 29; 30] and Clausen-@rsnes Jansen
[14] consider the stratified co-topos (Sh(X), P). Theorem 3.0.1 applies in that setting as well, giving a variant
of Theorem 5.1.7 for sheaves rather than hypersheaves. In that context, many of these results were already
proven by Clausen-@rsnes Jansen and @rsnes Jansen; see [14, Proposition 3.6; 29, Propositions 3.13 & 3.20].

5.1.10 Remark (the Kiinneth formula). Let (X, P) and (Y, Q) be exodromic stratified spaces. The astute
reader may have noticed that, unlike in Theorem 3.0.1, in Theorem 5.1.7 we have not stated that (X XY, PXQ)
is exodromic. Neither have we stated that there is a Kiinneth formula

M (X XY,PxQ) =~ (X,P)x I,(Y,Q).

This is because, in complete generality, we do not know if this is true.
The issue is the following: there are natural colimit-preserving functors

(5.1.11) Sh(X) ® Sh(Y) - Sh(X xY) and  Sh™P(X)® sh™P(Y) — Sh™P(X x V),

however, in general neither of these functors need be an equivalence. In particular, in the topological setting,
we do not immediately deduce a Kiinneth formula from Proposition 3.5.5. Nonetheless, Kiinneth formulas
still hold in many contexts. For example, if X is locally compact Hausdorff, then the left-hand functor in
(5.1.11) is an equivalence [HTT, Proposition 7.3.1.11]. So if X is locally compact Hausdorff and both Sh(X)
and Sh(Y) are hypercomplete, then Theorem 3.0.1 implies the Kiinneth formula for the exit-path co-catego-
ry of (X X Y, P X Q). For another important example, in §5.2 we show that if (X, P) and (Y, Q) locally admit
refinements by conical stratifications, then we have a Kiinneth formula. See Proposition 5.2.11.

5.2 Locally conically refineable stratifications: formal properties. Recall that if (X, P) is a conically
stratified space, then for any open subset U C X, the stratified space (U, P) is also conically stratified. It
is not clear if our definition of an exodromic stratified space is stable under passage to open subsets (cf.
Question 3.0.3). So we introduce the following strengthening of exodromicity that applies to many examples
from geometry.

5.2.1 Definition. Let & be a presentable co-category. A stratified space (X, P) is locally &-exodromic if there
exists a basis B C Open(X) such that for each U e B, the stratified space (U, P) is £-exodromic.

5.2.2 Example. Let (X, P) be a conically stratified space with locally weakly contractible strata and let € be
a P-admissible presentable co-category in the sense of Definition 5.1.3. Then (X, P) is locally &-exodromic.

In light of Theorem 5.1.7, we have the following stability properties of locally exodromic stratifications:

5.2.3 Proposition. Let & be a presentable co-category and (X, P) a stratified space.
(1) If (X, P) is locally &-exodromic, then (X, P) is E-exodromic.

(2) If there exists an open cover U of X such that for each U e U, the stratified space (U, P) is locally &-
exodromic, then (X, P) is locally E-exodromic.

(3) If (X, P) is locally &-exodromic, then for any open subset U C X, the stratified space (U, P) is locally
&-exodromic.
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(4) Assume that & is compatible with recollements. If (X, P) is locally E-exodromic, then for any locally closed
subposet S C P, the stratified space (X, S) is locally E-exodromic.

(5) If(X, P) is locally E-exodromic, then for any map of posets ¢ : P — P’, the stratified space (X, P") is locally
&-exodromic.

Proof. Ttem (1) is immediate from the fact that £-exodromicity can be checked locally (Corollary 4.1.12).
Items (2) and (3) are immediate from the definitions. Item (4) follows from the definitions and the stability
of &-exodromicity under pulling back to locally closed subposets (Proposition 4.1.9). Item (5) follows from
the definitions and the stability of £-exodromicity under coarsenings (Theorem 5.1.7-(2)). O

For the examples in the rest of this subsection, it is convenient to introduce the following definition.

5.2.4 Definition. Lets: X — P be a stratified space.

(1) A conical refinement of (X, P) is the data of a conical stratification t : X — R of X with locally weakly
contractible strata and a map of posets ¢ : R — P such that s = ¢t. We say that (X, P) is conically
refineable if there exists a conical refinement of (X, P).

(2) We say that (X, P) is locally conically refineable if there exists an open cover U of X such that for each
U e U, the stratified space (U, P) is conically refineable.

First observe that locally conically refineable stratified spaces have locally weakly contractible strata
(hence Observation 5.1.6 applies). In fact, even more is true; we introduce the following definition to axiom-
atize the categorical features of the exit-path co-category of a locally conically refineable stratified space.

5.2.5 Definition. We say that a stratified space (X, P) is locally cone-like if the following conditions are
satisfied:
(1) The stratified space (X, P) is locally exodromic.

(2) The strata of X are locally weakly contractible.

(3) Every point x € X admits a fundamental system of open neighborhoods U, such that for each U € U,,
the object x e I1 (U, P) is initial.

5.2.6 Lemma. Let (X, P) be a conically stratified space with locally weakly contractible strata. Then:
(1) The topological space X is locally weakly contractible.

(2) The stratified space (X, P) is locally cone-like.

Proof. Firstrecall that conically stratified spaces with locally weakly contractible strata are locally exodromic.
We prove both items simultaneously. By [32, Proposition 2.1.18], every point x € X admits a fundamental
system of open neighborhoods U, such that for each U e U,, the object x is initial in II,(U, P). For any
such U, [32, Corollary 6.2.7] provides a canonical equivalence

II,(U) ~ Env(Il(U,P)) ~ *,

where I1,(U) denotes the underlying homotopy type of U. Therefore, each U is weakly contractible, i.e., X
is locally weakly contractible. O

We now analyze the stability properties of the class of locally cone-like stratified spaces. To start, we need
alemma.

5.2.7 Lemma. Let L: C — D be a functor of oco-categories that exhibits D as the localization of C at a
collection of morphisms. If c € C is initial, then L(c) € D is initial.

Proof. Recall that for an co-category &, an object e € £ is initial if and only if the functor e : * — & that
picks out e is a limit-cofinal functor. Since L is a localization, L : € — D is limit-cofinial [5, Proposition

5.13]. Hence the composite

*;C’;@

is limit-cofinal. O
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5.2.8 Lemma.

(1) Let (X, P) be a locally cone-like stratified space. Then for each locally closed subposet S C P, the stratified
space (Xg, S) is locally cone-like.

(2) Let (X, R) be a locally cone-like stratified space and ¢ . R — P is a map of posets. Then the stratified space
(X, P) is locally cone-like.

(3) If (X, P) is a stratified space and {U,},c4 is an open cover of X such that each stratified space (U, P) is
locally cone-like, then (X, P) is locally cone-like.

Proof. For (1), the only nontrivial condition to check is Definition 5.2.5-(3). Let x € Xg and let U, be a
fundamental system of open neighborhoods of x in X such that for each U € U,, the object x € 1 (U, P)
is initial. Write

Uys ={Us|UeUy}.
Notice that Ug = U N X and U, g is a fundamental system of open neighborhoods of x in Xg. By Theo-
rem 5.1.7-(1), for each U e U,, the natural functor

Hoo(Usas) - Hoo(UaP)

is fully faithful. Since x e I1,(Usg, S) and x is initial in the larger co-category I, (U, P), we deduce that x
is also initial in I, (Ug, S).

For (2), again the only nontrivial condition to check is Definition 5.2.5-(3). Let x € X and let U, be a
fundamental system of open neighborhoods of x in X such that for each U € U,, the object x € I1(U,R)
is initial. Then Lemma 5.2.7 shows that x € I1 (U, P) is also initial.

Item (3) is immediate from the definitions. O

Now we record the fundamental properties of the class of locally conically refineable stratified spaces.

5.2.9 Proposition (properties of locally conically refineable stratified spaces).

(1) Let (X, P) be a stratified space and let & be an admissible presentable co-category. If (X, P) is locally
conically refineable, then (X, P) is locally E-exodromic.

(2) Let(X,P)bealocally conically refineable stratified space. Then for each open subspace U C X, the stratified
space (U, P) is locally conically refineable.

(3) Let (X, P) be alocally conically refineable stratified space. Then for each locally closed subposet S C P, the
stratified space (X, S) is locally conically refineable.

(4) Let (X,R) be a locally conically refineable stratified space and ¢ : R — P is a map of posets. Then the
stratified space (X, P) is locally conically refineable.

(5) If (X, P) is a stratified space and {U},c4 is an open cover of X such that each stratified space (U, P) is
locally conically refineable, then (X, P) is locally conically refineable.

(6) If (X, P) is locally conically refineable, then X is locally weakly contractible. Moreover, the space
Env(IT,, (X, P))
is naturally equivalent to the underlying homotopy type of X.
(7) If(X, P) is a locally conically refineable stratified space, then (X, P) is locally cone-like.

Proof. Item (1) follows from Proposition 5.2.3 and the fact that conically stratified spaces with locally weakly
contractible strata are £-exodromic.

For (2), note that since the statement is local, it suffices to prove the claim when (X, P) admits a global
conical refinement (X, R). Now note that since (X, R) is conically stratified, for any open subset U C X, the
stratified space (U, R) is also conical.

For (3), note that since the statement is local, it suffices to prove the claim when (X, P) admits a global
conical refinement (X, R). In this case, [32, Lemma 2.1.11] shows that the stratified space (Xg, Rg) is conical
with locally weakly contractible strata. To conclude, note that (X, Rg) is a refinement of (X, S).
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Items (4) and (5) are immediate from the definitions. For (6), note that by Lemma 5.2.6-(1), X admits
an open cover by locally weakly contractible topological spaces. Hence the claim is a special case of Corol-
lary 5.1.8. Item (7) follows from the fact that conically stratified spaces are locally cone-like (Lemma 5.2.6-(2))
and the stability properties of locally cone-like stratified spaces (Lemma 5.2.8). O

We conclude this subsection with a Kiinneth formula for the exit-path co-category of a product of locally
conically refineable stratified spaces. Due the issues mentioned in Remark 5.1.10, our proof does not rely
on the Kiinneth formula for exodromic stratified co-topoi (Proposition 3.5.5). Instead, we make use of the
localization formula for the exit-path co-category of a coarsening and the following lemma.

5.2.10 Lemma. Let G, and G, be co-categories and let W; C Mor(C;) be collections of morphisms. Then the
natural functor
(€1 X CI(W1 X W) — e [W ] x &,[W; ]

is an equivalence.

Proof. This is an immediate consequence of [Ker, Tag 02LV]. O

5.2.11 Proposition (Kiinneth formula for locally conically refineable stratifications). Let (X, P) and (Y, Q)
be locally conically refineable stratified spaces. Then:

(1) The product stratified space (X X Y, P X Q) is locally conically refineable.
(2) The natural functor
M (X XY,P X Q) > I (X,P) x II.,(Y, Q)
is an equivalence of co-categories.

(3) The natural functor
h h h
[X: Cons,”’(X)® ConsQyp Y) - ConsPZ(pQ(X XY)
is an equivalence of co-categories.

Proof. Ttem (1) is immediate from the definitions and the fact that a product of conically stratified spaces is
still conically stratified.
For (2), let

. AOP . AP
U.: Ainj — Top /x and V.: Ainj — Top Iy

be open semi-simplicial hypercoverings of X and Y respectively, such that for each n > 0 the stratified
spaces (U,, P) and (V,,, Q) are conically refineable. Since Ajy; is sifted, Ajyj-indexed colimits commute with
finite products in Cat,; hence Theorem 5.1.7-(4) shows that the natural functor

[C(])liAm ., (U,, P) x I (V,,,Q) = M (X X Y,P X Q)
nj€Ajnj
is an equivalence. We can therefore assume that (X, P) and (Y, Q) are (globally) conically refineable.
Let (X, P") and (Y, Q") be conical refinements of (X, P) and (Y, Q), respectively. Then (X X Y, P’ x Q') is

conical and thus it is a conical refinement of (X X Y, P X Q). It follows from [32, Theorem 5.4.1] and the
explicit geometrical definition of the exit-path co-category that the natural functor

M (X XY,P' XxQ") = II.(X,P") x I,(Y, Q")

is an equivalence. Unraveling the definitions, we see that Wp,o = Wp X W, as collection of morphisms in
I, (X,P") x I1,(Y,Q"). The conclusion now follows from Lemma 5.2.10.

Item (3) is immediate from (2) and the fact that the functor Fun(—, Spc) carries products of co-categories
to tensor products in Pr. (]


http://kerodon.net/tag/02LV
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5.3 Locally conically refineable stratifications: examples. We give some examples of locally conically
refineable (hence locally exodromic) stratifications.

5.3.1 Notation (simplicial complexes). Let (V,S) be an simplicial complex, and regard S as a poset ordered
by inclusion. Write A(>5) for the geometric realization of (V, S). There is a natural stratification A>S) — §
with locally contractible strata; see [HA, Definition A.6.7].

5.3.2 Example. Let (V,S) be a locally finite simplicial complex and let £ be an admissible presentable
oo-category. Then the natural stratification AVS) - S is conical [HA, Proposition A.6.8]. Moreover, [HA,
Theorem A.6.10] shows that

(5.3.3) M, (AVS) §) ~ S

By Proposition 5.2.9, we see that for any map of posets S — P, the stratified space (A">5), P) is locally
&-exodromic. That is, any stratified space admitting a refinement by a locally finite triangulation is locally
&-exodromic.

5.3.4 Observation. In light of (5.3.3), given a locally finite simplicial complex (V, S), the stratified space
(A9, S) is categorically finite if and only if the set S is finite.

5.3.5 Example. The tree stratification of a finite simplicial complex considered by Favero-Huang [16, §4.4]
is conically refineable, hence locally exodromic. Moreover, Theorem 5.1.7-(5) and Observation 5.3.4 show
that the tree stratification is categorically finite.

One source of locally exodromic stratifications comes from subanalytic stratifications of real analytic
spaces. Recall that subanalytic stratifications need not be conical; see Figure 1.

5.3.6 Definition. Let X be a topological space. We say that a stratification X — P is locally finite if for every
point x € X, there is an open neighborhood U of x such that U intersects only finitely many strata of (X, P).

5.3.7 Definition. A subanalytic stratified space is the data of a triple (M, X, P) where M is a smooth real
analytic space, X C M is a locally closed subanalytic subset, and X — P is a locally finite stratification by
subanalytic subsets of M.

Subanalytic stratified spaces provide many examples of (locally) categorically finite stratified spaces:

5.3.8 Definition. Let (X, P) be alocally exodromic stratified space. We say that (X, P) is locally categorically
finite (resp., compact) if there exists an open cover U such that for each U € U, the exodromic stratified
space (U, P) is categorically finite (resp., compact).

5.3.9 Theorem. Let (M, X, P) be a subanalytic stratified space. Then:
(1) The stratified space (X, P) admits a refinement by a locally finite triangulation.

(2) For any admissible co-category &, the stratified space (X, P) is locally E-exodromic.

(3) IfX is compact, then (X, P) admits a refinement by a finite triangulation. Hence (X, P) is categorically
finite.

(4) The stratified space (X, P) is locally categorically finite.
(5) IfU € X is a relatively compact subanalytic open subset, then (U, P) is categorically finite.

Proof. Ttem (1) follows from [17, §1.7] combined with [18]. Item (2) follows from (1) and Proposition 5.2.9.
For (3), note that by (1), the stratified space (X, P) admits a triangulation by a locally finite simplicial complex
(A5 S). Since X is compact, the poset S is finite. The final statement in (3) follows from Theorem 5.1.7-(5)
and Observation 5.3.4.

Now we prove (4). At the cost of shrinking M, we can assume that X is closed in M. Let x € X and let
B C M be a small ball centered at x such that X N B intersects only finitely many strata. We claim that
(X n B, P) is categorically finite. Note that since X N B intersects only finitely many strata, we may assume
that P is finite. Extend X N B — P to a finite stratification B — P> sending B \ (X N B) to the terminal object
of P>. Since P is closed in P>, Theorem 5.1.7-(5) reduces the claim to the case where X = B. We thus need
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to show that (B, P™) is categorically finite. Write Q := P> and extend B — Q to a finite stratification B — Q<
by sending 3B to the initial object of Q<. Since Q is open in Q<, Theorem 5.1.7-(5) reduces the claim to the
case where X = B. An application of (3) now shows that (B,QY)is categorically finite.

Finally, we prove (5). The closure Uis again a subanalytic (see e.g., the discussion following [9, Definition
3.1]), and it is compact by assumption. In particular, it intersects only finitely many strata. As before, we
can thus assume that P is finite. Extend U — P to a finite stratification U — P< sending the boundary
8U := U \ U to the initial object of P<. Then P is open in P9, so Theorem 5.1.7-(5) reduces us to verify that
(U,P)is categorically finite, and this follows directly from (3). O

5.3.10 Example. The Bondal-Ruan stratification of the n-torus considered by Favero-Huang [10; 16, §5.2]
is subanalytic, hence locally exodromic, categorically finite, and locally categorically finite.

Stratifications of real algebraic varieties are especially well-behaved:

5.3.11 Definition. An algebraic stratified space is the data of a stratified space (X, P) where X is (the real
points of) an algebraic variety over R and X — P is a finite stratification by Zariski locally closed subsets.

5.3.12 Warning. Unlike a subanalytic stratified space, an algebraic stratified space (X, P) is not presented
as a subspace of a smooth algebraic variety. Note that if X is singular, such a presentation may not exist.

5.3.13 Theorem. Let (X, P) be an algebraic stratified space. Then:
(1) If X is affine, (X, P) admits a categorically finite conical refinement (X, R) with R finite. Hence (X, P) is
categorically finite.

(2) The stratified space (X, P) is locally conically refineable.

(3) Forany admissible co-category &, the stratified space (X, P) is locally E-exodromic and locally categorically
finite.

(4) The stratified space (X, P) is categorically finite.

Proof. For (1), let us view X as a closed subset of A", Let X be the closure of X in P". Define Q := (P*)<
and let us extend X — P as a stratification P* — Q by sending X \ X to the initial object of Q and P* ~\ X
to the terminal object of Q. Then, (P", Q) is a compact subanalytic stratified space. By Theorem 5.3.9-(3),
(P",Q) admits a refinement Q" — Q by a finite triangulation. Thus, (P",Q’) is conically stratified with
locally weakly contractible strata. Moreover, Observation 5.3.4 shows that (P", Q") is categorically finite.
Since P C Q is locally closed, (X, Q;,) is also conically stratified with locally weakly contractible strata.
Moreover, Proposition A.3.17 shows that (X, Q;,) is categorically finite. Finally, since Q is finite, so is Q;,.
Item (2) is an immediate consequence of (1). Item (3) follows from (1) and Proposition 5.2.9. Since X
admits a finite cover by affine subsets whose iterated intersections are again affine, (4) follows from (1) and
Theorem 5.1.7-(5). O

5.4 Moduli of constructible & perverse sheaves. We now use exodromy and the finiteness results of
§ 5.3 to study derived moduli stacks of constructible and perverse sheaves. We begin by recalling a few
notions from [32, §7].

5.4.1 Recollection. Let B be an animated commutative ring (i.e., simplicial commutative ring). Write
Modp for the co-category of B-modules and Perfz C Modp for the smallest stable full subcategory containing
B and closed under retracts. The co-category Modp is compactly generated with full subcategory of compact
objects Perfz [HA, Proposition 7.2.4.2; SAG, Notation 25.2.1.1]. Also note that the shifts B[n] for n € Z
generate Modp under colimits and retracts.

We are interested in the moduli of constructible sheaves with perfect stalks:
5.4.2 Notation. Given a stratified space (X, P) and an animated commutative ring B, we write
h h
ConsP’yol;(X ;Modg) C Conspyp(X ; Modg)

for the full subcategory spanned by the hyperconstructible hypersheaves on (X, P) whose stalks are compact
objects of Modp.
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5.4.3 Recollection. Let X be a topological space and let L : &€ — D be a morphism in Pr". We denote by
LPYP = (—)W¥PoLo—: ShM™P(X;&) — Sh™P(X; D)

the induced a morphism in Pr". As recalled in [32, §2.5], the formation of LWYP commutes with hypersheaf
pullback. For a stratification X — P, the functor L"YP preserves P-hyperconstructible hypersheaves, that is,
restricts to a functor

Lhyp: Cons?yp(X &) > Cons?yp(X ;D).

5.4.4 Notation. For a morphism of animated commutative rings A — B, we define
B®YP (=)= (B®, (—)™P: Sh™P(X;Mod,) — Sh™P(X; Modp) .

5.4.5 Recollection (the derived prestack of constructible sheaves). Let (X, P) be a stratified space and let
A be an animated commutative ring. Following [32, §7.1], we write

Consp(X) : dAff " — Spc

for the derived pr}clestack defined by sending a derived affine scheme Spec(B) over A to the maximal sub-oo-
groupoid of Cons yp(X Modp) and sending a morphism of derived affine schemes Spec(C) — Spec(B) over
A to the map on max1mal sub-co-groupoids induced by

hyP( ): Cons (X; Modg) — Cons;y(f(X; Modc) .

5.4.6. Given a morphism of stratified spaces f : (X,P) - (Y, Q), pullback along f defines a map of derived
prestacks
Cons((Y) — Consp(X) .

In the setting of exodromy, Consp(X) is a derived stack:

5.4.7 Observation. Let (X, P) be a stratified space with locally weakly contractible strata and let B be an
animated commutative ring. If (X, P) is exodromic, then the exodromy equivalence

Fun(I1., (X, P),Modp) ~ Cons?yp(X ; Modg)
restricts to an equivalence
Fun(IT,,(X, P), Perfp) =~ Consi P (X; Modp) .

5.4.8 Lemma. Let (X, P) be a stratified space and let A be an animated commutative ring. If (X, P) is exo-
dromic, then the derived prestack
Consp(X) : dAffZp — Spc

satisfies flat hyperdescent. In particular, Consp(X) is a derived stack.
Proof. Since (X, P) is exodromic, for an animated A-algebra B, we have
Cons?,,ycf (X;Modg) ~ Fun(IT, (X, P), Perfp) .

Hence the right-hand side preserves limits in Perfz. The claim now follows from the fact that the assignment
B — Perfy satisfies flat hyperdescent [SAG, Corollary D.6.3.3 & Proposition 2.8.4.2-(10)]. O

Under compactness assumptions, the derived stack Consp(X) is even locally geometric:

5.4.9 Theorem. Let (X, P) be an exodromic stratified space and let A be an animated commutative ring. If
(X, P) is categorically compact, then:
(1) The derived stack Consp(X) is locally geometric and locally of finite presentation.

(2) Given a point x : Spec(B) — Consp(X) classifying a constructible sheaf F e Cons?,ilj (X;Modp), the
tangent complex at x is given by

x*—I]—COIISP(X) = HomCOns?,yp(X;ModB)(F’ F)[l] .

Here, the right hand side denotes the Modg-enriched Hom of Consp(X; Modp).
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Proof. Same proof as [32, Theorem 7.1.8]; in the end, the result follows combining the categorical compact-
ness assumption with [37, Theorem 3.6 & Corollary 3.17]. O

Since coarsenings of conical stratifications are our main source of exodromic stratified spaces, it is natural
to study how the moduli stacks of hyperconstructible hypersheaves behave under coarsening. To this end,
we show:

5.4.10 Proposition. Let (X, R) be a categorically compact exodromic stratified space with locally weakly
contractible strata. Let ¢ : R — P be a map of posets and let A be an animated commutative ring. Then the
induced map of locally geometric derived stacks

i: Consp(X) & Consgp(X)
is a representable open immersion.

Proof. From Proposition 3.6.4, we see that (X, P) is exodromic and categorically compact. Therefore, Theo-
rem 5.4.9 implies that both Consp(X) and Consg(X) are locally geometric and locally of finite presentation.
In particular, the natural map between them is automatically locally of finite presentation. To prove that i
is an open immersion suffices to prove that i is étale and that the diagonal map

A; : Consp(X) —» Consp(X) X Consp(X)
Consg(X)

R

is an equivalence. Theorem 3.3.5 shows that IT,(X, R) — I1,, (X, P) exhibits I1 (X, P) as the localization
of IT, (X, R) at the collection of morphism Wp. It follows that for every animated A-algebra B, the map

(5.4.11) Consp(X)(Spec(B)) — Consg(X)(Spec(B))

is fully faithful. This immediately implies that A; is an equivalence.

To prove that i is an open immersion, we are left to check that i is étale. Notice that i is automatically
locally of finite presentation. Thus [HAG-II] implies that it suffices to show that i is formally étale, i.e., that
the cotangent complex of i vanishes. We use the criterion provided in [31, Lemma 2.15]. Since (5.4.11) is
fully faithful, the only thing left to check is that for every animated A-algebra B, the map

Consp(X)(Spec(B)) — Consp(Spec(Breq)) X Consy(Spec(B))
Consg(Spec(Bred))

is surjective at the level of connected components. Therefore, let F : TI(X,R) — Perfy be a functor and
assume that the induced functor

Brea ®p F(-) 1 Moo(X, R) — Perfp,

factors through IT, (X, P). Since I1 (X, R) — II (X, P) is a localization at Wp, this is equivalent to say that
Bieq ®p F(—) inverts all arrows in Wp. To complete the proof, it is enough to prove that F also inverts all
arrows in Wp. Therefore, let y : x — y be a morphism in Wp and consider

Fy = fib(F(y) : F(x) > F(y)).
By assumption, F(x) and F(y) belong to Perf, so F, € Perfp as well. Also, we have
Breq ®p Fy ~ fib(Breqg ®p F(x) = Breg ®p F(¥)) ~ 0,
So the conclusion follows from the cohomological Nakayama lemma [SAG, Corollary 2.7.4.4]. O
We now turn our attention to the moduli of perverse sheaves.

5.4.12 Notation. Let (X, P) be a stratified space, let p: P — Z be any function, and let A be an animated
commutative ring. We write

PPervp(X) C Consp(X)
for the derived subprestack of p-perverse sheaves on (X, P). See [32, §7.7] for details.
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5.4.13 Recollection. Let (X, R) be a stratified space, let ¢ : R — P be a map of posets, and let A be an
animated commmutative ring. Let p : P — Z be any function and write ¢ for the composite p¢ : R — Z.
Recall from [32, Proposition 7.7.10] that if for each p € P, the poset R, is noetherian, then the square of
derived prestacks

PPervp(X) «—— *Pervg(X)

(5.4.14) [ [
Consp(X) —— Consyp(X)
is a pullback.

5.4.15 Recollection. Let (X, P) be a stratified space, let p: P — Z be any function, and let A be an
animated commutative ring. By [32, Proposition 7.7.8], the presheaf

PPervp(—): Open(X)°P — PSh(dAff,)
satisfies hyperdescent.

5.4.16 Theorem. Let (X, R) be a conically stratified space with locally weakly contractible strata, let¢ : R — P
be a map of posets, let p : P — Z be any function, and let A be an animated commutative ring. Assume that
Jforeach p € P, the poset R,, is noetherian. Then:

(1) The derived prestack PPervp(X) satisfies flat hyperdescent. In particular, PPervp(X) is a derived stack.
(2) IfI (X, R) has finitely many equivalence classes of objects, then the morphism of derived stacks
PPervp(X) < Consp(X)
is a representable open immersion.

(3) If(X, R) is categorically compact, then the derived stack PPerv p(X) is locally geometric and locally of finite
presentation.

Proof. Write r for the composite p¢: R — Z. For item (1), since (X, R) and (X, P) are exodromic, by
Lemma 5.4.8 the prestacks Consp(X) and Consg(X) satisfy flat hyperdescent. Moreover, [32, Corollary
7.7.16] shows that *Pervy(X) satisfies flat hyperdescent. Since the square (5.4.14) from Recollection 5.4.13
is a pullback, PPervp(X) also satisfies flat hyperdescent. Under the condition of item (2), [32, Theorem
7.7.16] shows that the morphism of derived stacks

"Pervy(X) & Consp(X)

is representable by an open immersion. Since (5.4.14) is a pullback, the conclusion follows.

For (3), assume that (X, R) is categorically compact. By Proposition 3.6.4, the stratified space (X, P) is also
categorically compact. Hence, Theorem 5.4.9 ensures that Consp(X) and Cons(X) are locally geometric
and locally of finite presentation. Moreover, [32, Theorem 7.7.16] shows that *Perv(X) is locally geometric
and locally of finite presentation. Since (5.4.14) is a pullback, the conclusion follows. O

Our work from §5.3 provides a number of examples where Consp(X) and PPervp(X) are locally geomet-
ric and locally of finite presentation:

5.4.17 Corollary. Let (X, P) be a stratified space, let p : P — Z be any function, and let A be an animated
commutative ring. Assume one of the following conditions:

(1) (X, P) admits a categorically compact conical refinement.
(2) (X, P) admits a refinement by a finite triangulation.

(3) The topological space X is compact and (X, P) admits the structure of a subanalytic stratified space in the
sense of Definition 5.3.7.

(4) (X, P) admits the structure of an algebraic stratified space in the sense of Definition 5.3.11.
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Then the derived prestacks Consp(X) and PPervp(X) are derived stacks that are locally geometric and locally
of finite presentation.

Proof. Item (1) follows from Proposition 3.6.4 and Theorems 5.4.9 and 5.4.16. In light of Observation 5.3.4,
item (2) is a special case of (1). Similarly, by Theorem 5.3.9-(3), item (3) is a special case of (2).

Let us now prove (4). Note that by Theorem 5.4.9 and Theorem 5.3.13-(4), the derived prestack Consp(X)
is a derived stack that is locally geometric and locally of finite presentation. Moreover, since the properties
of being a derived stack, being locally geometric, and being locally of finite presentation are stable under
finite limits, Recollection 5.4.15 reduces the claim for PPervp(X) to the case where X is affine. To conclude,
note that Theorem 5.3.13-(1) shows that an affine algebraic stratified space admits a categorically compact
conical refinement; the claim now follows from (1). O

5.5 A criterion for constructibility with respect to a coarsening. Let (X, R) be an exodromic stratified
space with locally weakly contractible strata and let ¢ : R — P be a map of posets. It is often useful to have
a geometric recognition criterion for when an R-hyperconstructible hypersheaf is P-hyperconstructible.
The goal of this subsection is to explain such a criterion: an R-hyperconstructible hypersheaf F on X is
P-hyperconstructible if and only if for each morphism y : x — y in the exit-path co-category I1, (X, R) that
lies in a single stratum of the coarser stratification (X, P), the induced specialization map on stalks

Y*F - x*F
is an equivalence.* This criterion is an easy consequence of the exodromy equivalence and localization
formula for the exit-path co-category of a coarsening.
5.5.1 Notation (cospecialization maps). Let € be a presentable co-category and let (X', R) be an £-exodromic
stratified co-topos.
(1) Write
[—]: (X, R)°P & Consg(X), x + [x]
for the inclusion of the subcategory of atomic objects. For each E € £ and x € II(X,R), we write
[x] ® E for the canonical object in

Consg(X) ® & = Consg(X;E).
(2) Given a morphism y: x — y in I1 (XX, R), we write
cospy == [y]: [y] = [x]

for the corresponding morphism in Consg(X). We refer to cosp;'2 as the cospecialization map associated
to y. Again, for general € and for each E € &, we write cosp£ ® id, for the corresponding morphism in
Consg(X; E).

5.5.2 Observation (specialization maps). Let (X, R) be an exodromic stratified space with locally weakly
contractible strata. In light of Observation 5.1.6, given a R-hyperconstructible hypersheaf F and a morphism
y: x = yin (X, R), applying Map(—, F) to the cospecialization map
cospy : [y] = [x]

yields a specialization map x*F — y*F on stalks.
5.5.3 Recollection. Let D, be a small co-category and let W C Mor(2D,) be a class of morphisms. Write
L: Dy — Dy[W~1] for the localization functor. Then, by the definition of localization, the induced pullback
functor

L*: PSh(Dy[W~1]) — PSh(D,)
is fully faithful with image those F : Dgp — Spc that carry morphisms in W to equivalences.

5.5.4 Proposition. Let D be a small co-category, W C Mor(D,) a class of morphisms, and & a presentable
co-category. Write L : Dy — Dy[W 1] for the localization functor. Then:

4We do not make use of this result in the present paper, but need it in future work.
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(1) Let F € PSh(Dy; &) and let f be a morphism in Dy, Then the full subcategory of £ spanned by those objects
E € & such that F is &(f) ® idg-local is closed under colimits and retracts.

(2) Anobject F € PSh(Dy; &) is in the image of the fully faithful pullback functor
L*: PSh(Dy[W~1]; &) & PSh(Dy; &)
if and only if for each w € W and E € &, the object F is & (w) ® idg-local.

Proof. Immediate from Recollection 5.5.3 and the definitions. O

5.5.5 Corollary. Let & be a presentable co-category, let (X, R) be an E-exodromic stratified co-topos, let

¢ : R — P beamap of posets, let F € Consg(XX; E), and lety : x — y be a morphism in I1, (X, R). Then:

(1) The full subcategory of £ spanned by those objects E € & such that F is (cospi’2 ® idg)-local is closed under
colimits and retracts.

(2) The R-constructible object F is P-constructible if and only if for each y € Wp and E € &, the object F is
cospi’2 ® idg-local.

Proof. In light of the exodromy equivalence and the localization formula for the exit-path co-category of a
coarsening (Theorem 3.3.5), this result is a special case of Proposition 5.5.4. O

5.6 Relationship to Lurie’s simplicial model for exit-paths. We conclude with some remarks and
questions regarding the relationship between the exit-path co-category in the conically refineable setting
and Lurie’s simplicial model for exit-paths Sing(X, R). See [HA, Definition A.6.2; 32, §2] for background on
the simplicial model.

5.6.1 Recollection. Let (X, R) be a conically stratified space with locally weakly contractible strata. Then
Lurie’s exit-path simplicial set Sing(X, R) is an co-category [HA, Theorem A.6.4]. Moreover, (X, R) is exo-
dromic in the sense of Definition 5.1.1 and [32, Theorem 5.4.1] implies that there is an equivalence of
oo-categories

I (X,R) ~ Sing(X,R) .
That is, [32, Theorem 5.4.1] provides an explicit simplicial model for the exit-path co-category.

5.6.2 Observation. Let (X, R) be a conically stratified space with locally weakly contractible strata and let
¢: R — P be amap of posets. In general, the exit-path simplicial set Sing(X, P) need not be an co-category.
Write Sing(X, P) for the fibrant replacement of Sing(X, P) in the Joyal model structure on simplicial sets
over (the nerve of) P. By construction, the composite

I, (X, R) ~ Sing(X,R) —— Sing(X,P) —— Sing(X, P)

carries all morphisms in Wp to equivalences. By Theorem 5.1.7 and the universal property of the localization,
this induces a functor

(X, P) = (X, R)[W5'] — Sing(X,P).
Moreover, [20, Lemma 2.5.2] and Theorem 5.1.7-(1) imply that for each p € P, the induced map on strata
e (X, P) Xp {p} — Sing(X, P) Xp {p}
is an equivalence of co-groupoids.

5.6.3. Note that if the functor I1(X,P) — S?lg(X , P) is an equivalence of co-categories, then Proposi-
tion 5.2.9 implies that there is an equivalence of co-categories

h .
Conspyp(X ) =~ Fun(Sing(X, P), Spc) .

That is, even though Lurie’s exit-path simplicial set Sing(X, P) may not be an co-category, Sing(X, P) still
corepresents hyperconstructible hypersheaves.
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5.6.4 Question. In the setting of Observation 5.6.2, is the functor
I, (X, P) - Sing(X, P)

an equivalence of co-categories? If not, what are some mild conditions on the stratified space (X, P) that
guarantee that this functor is an equivalence?

APPENDIX A INVERTING ARROWS OVER A POSET

Let P be a poset. In Theorem 3.0.1, we are interested in the following situation: we have an co-category C
and functor F : € — P, and we want to form the localization of € at the set Wp of morphisms that F carries
to identities in P. There are two goals of this appendix. First, we show that for each p € P, the fiber of € [W;l]
over p coincides with the classifying space of the fiber C Xp {p}; see Proposition A.2.2. From this we deduce
that the natural functor G[W;l] — P is conservative and that (:’[W;l] is idempotent complete. Second, we
show that if C is finite (resp., compact), then the localization C’[W;l] is also finite (resp., compact). See
Proposition A.3.16.

In §A.1, we review some basic facts about co-categories with a conservative functor to a poset. Subsec-
tion A.2 proves structural results about the localization @[W;l]. In § A.3, we explain various characteriza-
tions of finiteness and compactness in the co-category of co-categories with a conservative functor to the
poset P. We use these characterizations to prove stability properties of finite and compact co-categories with
over P.

A.1 Layered co-categories. We start by collecting background material about the types of co-categories
that arise as exit-path co-categories of stratified spaces.

A.1.1 Recollection. Let F: C — P be a functor from an oco-category to a poset. The following are equiva-
lent:
(1) The functor F : C — P is conservative.

(2) For each p € P, the fiber € Xp {p} is an co-groupoid.

A.1.2 Recollection. Let C be an oo-category. The following are equivalent:
(1) There exists a poset P and a conservative functor ¢ — P.

(2) Foreach x € G, every endomorphism x — X is an equivalence.

If these equivalent conditions are satisfied, we say that € is a layered co-category. By the stratified homotopy
hypothesis, an co-category C is layered if and only if € is equivalent to the exit-path co-category of a stratified
space; see [20, Theorem 0.1.1] for a precise formulation of this result.

An important fact is that layered co-categories are idempotent complete. For this, recall Notation 3.3.6.

A.1.3 Lemma. Let C be layered co-category. Then:

(1) Ife: x — x is a morphism in € such that there exists an equivalence e?

~ e, thene ~id,.
(2) The co-category C is idempotent complete.

Proof. For (1), note that since C is layered, the morphism e is an equivalence. Since e? ~ e, the fact that e
is invertible implies that e ~ id,.. For (2), observe that since C is layered, every idempotent e : Idem — C
factors through the maximal sub-co-groupoid €= of €. Hence e descends to a functor Env(Idem) — C=.
Since Env(Idem) is contractible [HTT, Lemma 4.4.5.10], we conclude that e splits. O

A.2 Strata of localizations. The purpose of this subsection is to prove a fundamental proposition about
the types of localizations that appear in Theorem 3.0.1-(3). To state it, we need to fix some notation.

A.2.1 Notation. Let F: € — P be a functor from an co-category to a poset.
(1) Given asubposet S C P, we write Fg: Cg — S for the basechange of F: € — P to S.

(2) We write Wp C Mor(C) for the set of morphisms in C that F sends to equivalences (i.e., identities) in P.
By construction, functor F uniquely extends to a functor C’[W;l] - P.
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A.2.2 Proposition. Let F: C — P be a functor between oo-categories where P is a poset. Then:
(1) Foreach locally closed subposet S C P, the induced functor @S[ng] - @[W;l] s is an equivalence.

(2) The induced functor C’[lel] — P is conservative. In particular, the co-category G[lel] is idempotent
complete.

Since localizations do not generally commute with pullbacks, Proposition A.2.2 is not completely formal.
To prove Proposition A.2.2, we recall the following description of localizations.

A.2.3 Recollection (localizations as pushouts). Let € be an co-category and let W C Mor(C) be a class of
morphisms. The localization C[W~1] can be defined as the pushout

I ——e

weW

I

H x —— C[W1].
weW

Here, the top horizontal functor is the induced by the functors [1] — € that pick out each morphism w € W.

Hence Proposition A.2.2 amounts to commuting the pullback S Xp (—) past the pushout defining the local-
ization C’[W;l]. To explain why we can do this, we recall some categorical notions.

A.2.4 Recollection. A functor F: € — D is an exponentiable fibration if the right adjoint pullback functor
(64 Xp (—) . Catoo,/p - Catoo,/@
is also a left adjoint. Note that the class of exponentiable fibrations is closed under basechange.

A.2.5 Example [5, Lemma 2.15]. Cartesian and cocartesian fibrations are exponentiable fibrations. In
particular, right and left fibrations are exponentiable fibrations.

Recall that for any co-category C, the unique functor € — = is both a cartesian and a cocartesian fibration.
In this case, the right adjoint to € X (—) : Cat,, — Cat,, /¢ is given by sending B — C to the co-category of
sections Fun ¢(C, B).
A.2.6 Lemma. Let P be a poset.
(1) IfU c P is an open subposet, then the inclusion U < P is a left fibration.
(2) IfZ c P is a closed subposet, then the inclusion Z < P is a right fibration.
(3) If S c Pisalocally closed subposet, then the inclusion S < P is an exponentiable fibration.

Proof. For (1), first observe that the inclusion {1} & {0 < 1} is a left fibration. Let y; : P — {0 < 1} be the
map sending U to 1 and P\ U to 0. Then we have a pullback square

Ue—P
d
l 2
{1} — {0< 1} .
The claim now follows from the fact that the class of left fibrations is closed under basechange.

Item (2) follows from (1) by passing to opposite posets. Item (3) follows from (1), (2), Example A.2.5, and
the fact that exponentiable fibrations are closed under composition. O
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Proof of Proposition A.2.2. For (1), consider the commutative diagram

11 (1 Cs
\

weWyg
™~

ew;'ls S

1T =

|
WeWs Je
N S

1T = ew,'l P.

weWp

Notice that by Recollection A.2.3, the bottom face is a pushout. Moreover, all of the vertical faces are
pullbacks. Since the inclusion S < P is an exponentiable fibration (Lemma A.2.6), the top face is also a
pushout; again applying Recollection A.2.3 completes the proof.

For (2), note that by Recollection A.1.1, to show that C’[W;l] — P is conservative, we need to show that
each fiber G[W;l] p isan co-groupoid. To see this, note that for each p € P, part (1) provides an identification

CWy, = ey
To complete the proof, observe that W, is the set of all morphisms in C,,. O

A.3 Compactness. The goal of this subsection is to characterize the compact objects of Cat,, ,p as well as
the compact objects of the full subcategory spanned by the conservative functors ¢ — P (Lemma A.3.10
and Corollary A.3.11). We then use this to explain why the assingment C +— (:’[W;l] and pulling back to a
locally closed subposet S C P both preserve compactness; see Propositions A.3.16 and A.3.17. We begin by

introducing some notation.

A.3.1 Recollection (finite & compact co-categories). Write Catgcf1 C Cat, for the smallest full subcategory
closed under pushouts and containing the co-categories @, *, and [1]. An co-category C is finite if C € Cati‘f.
In particular, Catgfl is closed under finite colimits in Cat.,. Equivalently, an co-category C is finite if and
only if € is categorically equivalent to a simplicial set with only finitely many nondegenerate simplicies [40,
Corollary 2.3].

Importantly, the full subcategory Catg, C Cat,, of compact co-categories is the smallest full subcategory
containing Catilcl,1 and closed under retracts.

cons

A.3.2 Notation. Let P be a poset and write Cat_ /p C Cat,, /p for the full subcategory spanned by those
objects such that the specified functor € — P is conservative.

We now establish some pleasant features of the inclusion Catzg’,n/sp C Cat,, /p. See [8, §2.2] for a related

discussion.

A.3.3 Observation. Let P be a poset. Then Proposition A.2.2 implies that the functor

cons

Cat,, ,p — Cat_| /P
given by the assignment C — C[W;l] is left adjoint to the inclusion.
We introduce a more convenient notation for this left adjoint.

A.3.4 Notation. Given a poset P, write Envp : Caty, /p — Catgfl/sl, for the left adjoint to the inclusion.

A.3.5 Observation. The inclusion Caty’;, C Cat,, /p also admits a right adjoint

tp: Caty, /p — Catig,n/sp
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defined as follows. Given a functor F : € — P, let 1p(C) C C be the largest subcategory containing all objects
such that the composite

pe) — ¢ £, p
is conservative. Equivalently, 1p(€) C C is the subcategory containing all objects such that a morphism
f: x — yin Cliesin 1p(C) if and only if one of the following disjoint conditions is satisfied:

(1) The morphism f is an equivalence in C.

(2) The elements F(x) and F(y) of the poset P are not equal.

A.3.6 Observation. By definition, that the inclusion 1p(€) — C restricts to an equivalence on maximal
sub-co-groupoids.

In order to understand when Envp(C) is compact, we make use of the following general fact:

A.3.7 Recollection [HTT, Proposition 5.5.7.2]. Let f*: D 2 C : f, be an adjunction between co-cate-
gories that admit filtered colimits. If f,, preserves filtered colimits, then f* preserves compact objects. As a
consequence, if f* admits a further left adjoint fy, then fy preserves compact objects.

A.3.8 Recollection. The right adjoint (—)~ : Cat,, — Spc to the inclusion preserves filtered colimits.

A.3.9 Lemma. Let P be a poset. Then:
(1) The functorp : Caty, ;p — Catcog,n/i, preserves filtered colimits.

(2) The inclusion Catgg,n/i, & Cat,, /p preserves compact objects.

(3) The functor Envp : Caty, /p — Catzgfl/sp preserves compact objects.

Proof. To prove (1), let C. : A — Cat,, /p be a filtered diagram with colimit C,. Write F, : Co — P for
the structure functor, and for each o € A, write 1, : €, — C for the leg of the colimit cone. By the explicit
description of filtered coimits in Cat,,, to show that the natural functor

colim p(C,) = 1p(Cy)
aeA

is an equivalence, it suffices to show that if f: x — y is a morphism in G, and f is an equivalence or
F(x) # F(¥), then f is in the image of one of the canonical functors

p(Cq) — C4 — Coo -

The case where f is an equivalence follows from the fact that the functor (—)~: Cat,, — Spc preserves
filtered colimits and each inclusion 1p(€) — C restricts to an equivalence on maximal sub-co-groupoids
(Observation A.3.6).

In the case where F(x) # F(¥), notice that by the explicit description of filtered coimits in Cat,,,
there exists an index a € A and morphism f’: x’ — y’ in €, such that f ~ 1,(f"); to complete the proof
of (1), it suffices to show that f” is in the subcategory p(C,). Since A,(x") ~ x and 1,(y’) ~ y and we have
F..(x) # F(y), we deduce that the composite F 1, : C, — P carries x’ and y’ to distinct elements of P.
Hence the morphism f” is in the subcategory 1p(C,), as desired.

To finish the proof, observe that Recollection A.3.7 shows that (1) implies (2) and (3). O

Using Lemma A.3.9, we can now give a characterization of the compact objects of Catzgn/sp.

A.3.10 Lemma. Let D be an oo-category. An object F: € — D of Cat,, /5 is compact if and only if the
co-category C is compact in Cat,.

Proof. Since the unique functor D — * is an exponentiable fibration (Example A.2.5), Recollection A.3.7
shows that the forgetful functor Cat,, ;5, — Cat,, preserves compact objects. Hence all that remains to be
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proven is that if € € Cat,, is compact, then F : € — D is compact in Cat,, ;5. For this, consider a filtered
diagram D, : A — Cat,, ;5. Note that we have a pullback square

MapCatm’/D((i’, colimyey D) — MapCatm((:’, colimgey Dy)

| |

{F} MapCatm((z’, D).

Since C is compact in Cat,, the natural map

coli}ln Mapg,, e,D,) - Map (€, colimyey Dy)
ae © ©
is an equivalence. The fact that colimits are universal in Spc completes the proof. O

A.3.11 Corollary. Let P be a poset and let F : C — P be a conservative functor from an co-category. Then
the following are equivalent:

(1) TheobjectF: € — P of Cat‘;g,n/i, is compact.
(2) Theobject F: C — P of Cat,, /p is compact.
(3) The co-category C is a compact object of Cat,.

Proof. The fact that both the inclusion Caty, ;, < Cat,, /p and its left adjoint Envp preserve compact
objects (Lemma A.3.9) shows that (1) & (2). Lemma A.3.10 shows that (2) < (3). O

A.3.12 Remark. Corollary A.3.11 was mentioned in [40, Remark 2.14].
Finiteness is also a well-behaved notion in Cat,, /p:

A.3.13 Definition. Given an co-category D, we say that an object F: € — D of Cat, ,p, is finite if the
oo-category C is finite.
Given a poset P, we say that an object F : € — P of Cat] ), is finite if the co-category C is finite.

A.3.14 Notation. For the sake of convenience, let us write [—1] := @& for the empty poset.
A.3.15 Observation. Let D be an co-category. Then the full subcategory
Catgi/@ C Caty, /p

spanned by the finite objects is the smallest subcategory closed under pushouts and containing all objects
of the form o : [n] — D where —1 < n < 1. Similarly,

Catz’o’/@ C Catg, /p
is the smallest full subcategory containing Catgl’ /D and closed under retracts.

We conclude by recording some important operations that preserve finiteness and compactness.

A.3.16 Proposition. Let F : € — P bea functor from an co-category to a poset. If C is a finite (resp., compact)
object of Cat,,, then the co-category

Envp(C) = C’[W;l]
is a finite (resp., compact) object of Cat.,.

Proof. In light of Observation A.3.15, it suffices to show that Envp preserves finite objects. Moreover, to
prove this, it suffices to show that for —1 < n < 1 and each map of posets ¢ : [n] — P, the localization
Endp([n]) is finite. If n = —1 or n = 0, then Envp([n]) = [n], so the claim is clear.

If n = 1, then there are two cases. First, if the map o : [1] — P is constant, then the class Wp consists of
all morphisms in P, hence Envp([1]) =~ * is finite. Second, if the map o : [1] — P is not constant, then the
class Wp consists of only the identity morphisms in P, hence Envp([1]) ~ [1] is finite. O
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A.3.17 Proposition. Let P be a poset and let S C P be a locally closed subposet. Then the basechange functor
S Xp (—) . Catoo,/P - Catoo,/s
preserves finite and compact objects.

Proof. Since the inclusion S & P is an exponentiable fibration (Lemma A.2.6), the functor S Xp(—) preserves
colimits. Hence by Observation A.3.15, it suffices to prove that S Xp (—) preserves finite objects. Moreover,
to prove this, it suffices to show that for —1 < n < 1 and each map of posets ¢ : [n] — P, the basechange
S Xp [n] is finite. To conclude, observe that since S C P is locally closed, S Xp [n] C [n] is also locally closed;
hence, there exists —1 < m < n such that S Xp [n] = [m]. O

The following application of Proposition A.3.17 is not needed in the present paper, but is quite useful:

A.3.18 Lemma. Let C and D be co-categories. Then the join C % D is finite (resp., compact) if and only if both
C and D are finite (resp., compact).

Proof. By definition, the join C % D is the colimit in Cat, of the diagram

Cx D x{0} Cx Dx{1}
VRN
e exDx[1] D,

where the outermost functors are the projections. Furthermore, the unique functors € — {0} and D — {1}
induce a functor

CxD —— {0} % {1} = [1]

with fibers (€ x D)y ~ € and (€ * D); ~ D. In particular, the forward implication follows from the fact
that finite (resp., compact) co-categories are stable under finite products and finite colimits. The reverse
implcation follows from Proposition A.3.17 applied to the induced functor € x D — [1]. O

Of particular interest are cones:

A.3.19 Corollary. Let C be an co-category. Then C is finite (resp., compact) if and only if the cone €< is finite
(resp., compact).

APPENDIX B COMPLEMENTS ON 00-TOPOI

The purpose of this appendix is to prove some fundamental results about co-topoi that are used in the
main body of the paper. In §B.1, we recall the basics of étale geometric morphisms as well as open and
closed immersions of co-topoi. In § B.2, we explain how hypercompletion interacts with étale geometric
morphisms. In § B.3, we prove that the hypercompletion of a recollement of co-topoi is still a recollement
(Proposition B.3.5). We then use this to explain how hypercompletion interacts with locally closed immer-
sions of co-topoi (Corollary B.3.7 and Lemma 2.4.2).

B.1 Open and closed subtopoi. In this subsection, we recall the notions of open and closed immersions
of co-topoi and how they give rise to recollements. In order to discuss open immersions, we start with the
more general notion of a étale geometric morphisms. For more background on étale geometric morphisms,
the reader should consult [HTT, §6.3.5].

B.1.1 Recollection (étale geometric morphisms). Let X be an co-topos and U € X. Then the overcategory
Xy is an co-topos. Moreover, the forgetful functor py : X,y — X admits a right adjoint p* : X' — Xy
given by the assignment X — X X U. Since colimits are universal in X, the functor p* admits a further right
adjoint p, : X,y — X. See [HTT, Proposition 6.3.5.1]. We always regard the co-topos X',y as an co-topos
over X via the natural geometric morphism p,. : X,y = X.

Lete,: W — X be a geometric morphism of co-topoi. Then the following conditions are equivalent:

(1) There exists an object U € X' and an equivalence W = Xy of co-topoi over XX
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(2) The functor e* admits a left adjoint ey : W — X and the induced functor
eg: W— x/en(lw)
is an equivalence of co-categories.

(3) The functor e* admits a conservative left adjoint e; : W — X and for all maps X — Z in XX, objects
Y € W, and maps f(Y) — Z, the natural map

ey (e*(X) e*>(<Z) Y) — X Xz ey(Y)

is an equivalence.

See [HTT, Proposition 6.3.5.11]. We call a geometric morphism satisfying these equivalent conditions an
étale geometric morphism.

B.1.2 Recollection (open immersions). Let j, : U — X be a geometric morphism of co-topoi. Then the
following conditions are equivalent:

(1) There exists a (—1)-truncated object U € X' and an equivalence U = Xy of co-topoi over X.
(2) The geometric morphism j, : U — X is étale and jy(1y) € X is (—1)-truncated.

(3) The geometric morphism j, : U — X is étale and the functor j, is fully faithful.

We call a geometric morphism satisfying these equivalent conditions an open immersion of co-topoi. Also
notice that in this situation, jy is fully faithful. For open immersions of co-topoi, we write j, = jy.

B.1.3 Recollection (closed immersions). Let X be an co-topos and let U € X be a (—1)-truncated object.
We write
DC\U cX

for the full subcategory spanned by those objects F such that the projection pr, : F X U — U is an equiva-
lence. The inclusion X' ;; C X is accessible and admits a left exact left adjoint [HTT, Proposition 7.3.2.3]. In
particular, X ; is an co-topos and the inclusion X.;; & X is a geometric morphism. We call the co-topos
Xy the closed complement of the open subtopos X/

We say that a geometric morphism of co-topoi i, : Z — X is a closed immersion if there exists a (—1)-
truncated object U € XX such that i, factors through X ; and restricts to an equivalence i,. : & = X .

B.1.4 Definition. Let f, : ' — Y be a geometric morphism of co-topoi. We say that f is a locally closed
immersion if there exists a factorization f, ~ j.i, where i, is a closed immersion and j, is an open immer-
sion.

B.1.5 Recollection. Let X be a topological space and let j: U < X be an open subspace with closed
complementi: Z < X. Also write U € Sh(X) for the sheaf represented by the open subset U C X. Then:
(1) The geometric morphism j, : Sh(U) < Sh(X) is an open immersion that identifies Sh(U) with Sh(X) ;.
(2) The geometric morphism i, : Sh(Z) < Sh(X) is a closed immersion that identifies Sh(Z) with Sh(X).;;.
See [HTT, Corollary 7.3.2.10].
As a consequence, locally closed immersions of topological spaces induce locally closed immersions of
oo-topoi of sheaves.
The key feature of open and closed immersions is that they give rise to recollements:

B.1.6 Recollection (open-closed recollement). Let XX be an co-topos and U € XX a (—1)-truncated object.
Write i, : X,y & X and j, @ Xy — X for the complementary closed and open geometric morphisms.
Then the functors

"X ->Xy and X=Xy
exhibit X as the recollement of X'y and X /.

In light of Recollections B.1.5 and B.1.6, we see:
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B.1.7 Example. Let X be a topological space and leti : Z < X be a closed subspace with open complement
j: U < X. Then the functors

i*: Sh(X) - Sh(2) and Jj* 1 Sh(X) - Sh(U)
exhibit Sh(X) as the recollement of Sh(Z) and Sh(U).
Etale geometric morphisms and closed immersions also behave well under basechange.

B.1.8 Proposition. Let f, : X — Y be a geometric morphism of co-topoi and let V € Y. Then:
(1) Theinduced square
Xypey — X
1 lf*
9y — Y

is a pullback square in RTop .

(2) IfV is (—1)-truncated, then the induced square

"

y\V(—)y

is a pullback square in RTop .

Proof. For (1), see [HTT, Remark 6.3.5.8]. For (2), see [HTT, Proposition 7.3.2.12]. O

B.1.9. As a consequence of Proposition B.1.8 the properties being étale, an open immersion, a closed
immersion, or a locally closed immersion are all stable under basechange in RTop .

In general, the functor sending a topological space X to the co-topos Sh(X) does not preserve pullbacks.
However, Proposition B.1.8 implies that the assignment X — Sh(X) does preserve pullbacks along locally
closed immersions:

B.1.10 Corollary. Let

T
5 X
]

lf

be a pullback square of topological spaces where i is a locally closed immersion. Then the induced square of
co-topoi

N e—— W

—

1

Sh(S) < Sh(X)
j 2
Sh(T) - Sh(Y)
is a pullback square in RTop .

Proof. Note that by factoring i as a closed immersion followed by an open immersion, it suffices to treat
the cases of closed immersions and open immersions separately. Since S = f~!(T), the claim is immediate
from Recollection B.1.5 and Proposition B.1.8. O
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B.2 Hypercompleteness & étale geometric morphisms. The purpose of this subsection is to prove the
following characterization the hypercomplete objects of the slice co-topos over a hypercomplete object.

B.2.1 Proposition. Let X be an co-topos and let U € X be a hypercomplete object. Writee,. : X,y — X for
the natural geometric morphism. For an object [p : X — U] € Xy, the following are equivalent:

(1) Theobject p: X — U is a hypercomplete object of X .

(2) The object X is a hypercomplete object of X.
In particular, there is a natural identification

(XMP) = ()P
as full subcategories of X /.

B.2.2 Corollary. Let X' be an co-topos and let U € X. If X is hypercomplete, then the oco-topos Xy is
hypercomplete.

To prove Proposition B.2.1, we need a few technical lemmas. The first is a slight refinement of the
statement of [HA, Lemma A.2.6]:

B.2.3 Lemma. Lete,: W — X be a geometric morphism of co-topoi. Assume that e* admits a left adjoint
eg: W — X. Then:

(1) Foreach —2 < n < oo, the functor ey preserves n-connected maps.
(2) The functore* : X — W preserves hypercomplete objects.

B.2.4 Lemma. LetF: C — D be a functor between co-categories.

(1) Let J be an oco-category. Assume that C and D admit J-shaped colimits and that F preserves J-shaped
colimits. If F is conservative, then F reflects J-shaped colimits.

(2) Assume that C and D admit pullbacks and geometric realizations of simplicial objects and that F preserves
pullbacks and geometric realizations. If F is conservative, then F reflects effective epimorphisms.

Proof. For (1), letX, : > — € be a diagram, and assume that the composite diagram FoX, : 7> — Disa
colimit diagram. Write X, for the value of the cone point and let 4 : colim;.y X; — X, denote the natural
map. Then F(1) factors as a composite of natural maps

F (cqliiji> — cqliij(Xl-) — F(Xy).
L€ Le
Since F preserves colimits, the left-hand map is an equivalence; since FoX, is a colimit diagram, the right-
hand map is also an equivalence. Since F is conservative, we deduce that 1 is an equivalence, i.e., that X, is
a colimit diagram, as desired.
Item (2) is immediate from the definition of an effective epimorphism combined with item (1) and its
dual. O

B.2.5 Lemma. Let X be an co-topos and let {f} : X' — Xy}q4ea be ajointly conservative family of functors
between co-topoi that each preserve pullbacks and geometric realizations of simplicial objects. Let =2 < n < o0
andlet ¢ : U — V be a morphism in X. Then the following are equivalent:

(1) The morphism ¢ is n-connected.
(2) Foreach a € A, the morphism f(¢) is n-connected.

Proof. Since functors that preserve pullbacks and geometric realizations of simplicial objects preserve n-
connectedness, (1) = (2). For the implication (2) = (1), first note a morphism ¢ is co-connected map if and
only if for each n < o0, the morphism ¢ is n-connected. So it suffices to treat the case of finite n. Write ¥ for
the product of co-categories HaE 4 Xgand f* 1 X — Y for the functor induced by the functors f7 : X' — X,
by the universal property of the product. Note that ¥ is an co-topos and since limits and colimits in Y are
computed levelwise, f* also preserves pullbacks and effective epimorphisms. Moreover, the statement (2)
is equivalent to the statement:


http://www.math.ias.edu/~lurie/papers/HA.pdf#atheorem.A.2.6

68 PETER J. HAINE, MAURO PORTA, AND JEAN-BAPTISTE TEYSSIER

(3) The morphism f*(¢) is n-connected.
So we instead prove that (3) = (1).

We prove the claim by induction on n. The case n = —2 is clear; every morphism is (—2)-connected. For
the case n = —1, recall that a morphism ¢ is (—1)-connected if and only if ¢ is an effective epimorphism.
The claim now follows from Lemma B.2.4-(2).

For the inductive step, assume that n > 0, and that we know that for all k < n, the functor f*: X - Y
reflects k-connectedness. Let ¢ : U — V be a morphism of X such that f*(¢) is n-connected. That is f*(¢)
is an effective epimorphism and the diagonal

Apsgy [H(U) - f*(U)f*>(<V)f*(U)

is (n—1)-connected. By the base case, ¢ is an effective epimorphism. Moreover, since f* preserves pullbacks,
The inductive hypothesis then show that Ay is (n — 1)-connected. Thus ¢ is n-connected, as desired. ~ [J

B.2.6 Corollary. Lete,: W — X be an étale geometric morphism of co-topoi and let ¢ be a morphism in W.
Then for each —2 < n < oo, the morphism ¢ in W is n-connected if and only if es(¢) is n-connected.

Proof. Since the forgetful functor ey : W — X is a conservative left adjoint that preserves pullbacks, this is
a special case of Lemma B.2.5. O

Now we are ready to prove Proposition B.2.1.

Proof of Proposition B.2.1. We start by proving that (1) = (2). Let ¢ : V — V'’ be an co-connected map in X.
We need to show that Map,.(—, X) inverts ¢. Consider the commutative square

Map,.(V/,X) ——— Map..(V',U)
o —of

Map..(V,X) —po— Map..(V,U).

Since ¢ is co-connected and U is hypercomplete, the right-hand vertical map is an equivalence. Thus to
show that the left-hand vertical map is an equivalence, it suffices to show that for eachmap q: V' - U,
the induced map on horizontal fibers is an equivalence.
For this, regard V and V' as objects of Xy via the structure maps q¢ and g, respectively; then ¢ defines
a map
lq¢: V >Ul—Iq: V' - U]
in Xy By the definition of the mapping spaces in an overcategory, we have a commutative square

M VX =~ X M 17409.¢
W, (V' X) ==} X Mapy (V) X)

(B.2.7) —o¢

Mapx/U(V,X) _— {ng}Ma ><V U)Mapx(V,X),

p(V,

where the horizontal maps are equivalences and the vertical maps are given by precomposition with ¢.
Since ¢ is an co-connected map in XX, by Corollary B.2.6, ¢ is also an co-connected map when regarded as a
mapV —» V'inX /u- Since X is a hypercomplete object of X'/y;, we deduce that the left-hand vertical map
in (B.2.7) is an equivalence. Thus the right-hand vertical map is also an equivalence, as desired.

Now we prove that (2) = (1). Assume that X is hypercomplete when regarded as an object of X. Let
¢: V = V' be an co-connected map in X, and write g : V' — V' for the structure map. We need to show
that the functor Map x/U(_’X ) inverts ¢. Again consider the square (B.2.7). Since ¢ is an co-connected map
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of Xy, Corollary B.2.6 shows that ¢ is also co-connected when regarded as a map of X. Since U and X
are hypercomplete when regarded as objects of X, the right-hand vertical map in (B.2.7) is an equivalence;
hence the left-hand vertical map is also an equivalence, as desired. O

B.3 The hypercompletion of a recollement. This subsection has two goals. The first is to show that the
hypercompletion of a recollement of co-topoi is still a recollement (Proposition B.3.5). The second is to show
that hypercompletion preserves pullbacks along locally closed immersions of co-topoi (Proposition B.3.8).

We begin by using Proposition B.2.1 to describe the hypercomplete objects of a locally closed subtopos.
To do this, we first observe that the pushforward along a closed immersion preserves co-connectedness and
detects hypercompleteness.

B.3.1 Lemma. Leti, : Z — X be a closed immersion of co-topoi and ¢ a map in Z. For each —2 < n < oo,
the following are equivalent:

(1) The map ¢ is an n-connected map of Z.

(2) The map i, (¢) is an n-connected map of X.

Proof. First we show that (2) = (1). Let j, : U & X denote the open complement of Z. Since i* and j* are
jointly conservative, by Lemma B.2.5 we need to show that if ¢ is n-connected, then i*i,(¢) and j*i,(¢) are
n-connected. Since i, is fully faithful, i*i,(¢) ~ ¢. Thus our assumption on ¢ says that i*i..(¢) is n-connected.
Also, j*i, is constant with value the terminal object, hence j*i.(¢) is an equivalence.

To see that (2) = (1), note that since ¢ ~ i*i,(¢), the claim immediately follows from the fact that i*
preserves n-connected maps. O

B.3.2 Lemma. Leti, : S — X be a fully faithful geometric morphism of oo-topoi. If i,. preserves co-connected
maps, then an object F € 8 is hypercomplete if and only if i, (F) € X is hypercomplete.

Proof. Since pushforwards preserve hypercompleteness, it suffices to show that if i, (F) is hypercomplete,
then F is hypercomplete. Let ¢ : V — V' be an co-connected map of S. By assumption, the morphism i, (¢)
is also co-connected. Since i, (F) is hypercomplete, we deduce that the induced map
—oi,(¢) 1 Map,(i,(V"), iu(F)) — Map,(i.(V), i.(F))
is an equivalence. Since i, is fully faithful, the map
—o¢: Mapy(V’',F) — Mapy(V, F)
is also an equivalence. O

B.3.3 Proposition. Leti,: 8 < X be a locally closed immersion of co-topoi. Then an object F € 8§ is
hypercomplete if and only if i,.(F) € X is hypercomplete.

Proof. Since pushforwards preserve hypercompleteness, it suffices to show that if i, (F) is hypercomplete,
then F is hypercomplete. By writing i, as the composite of a closed immersion followed by an open immer-
sion, we are reduced to treating the cases where i, is a closed or an open immersion.

If i, is an open immersion, note that by Lemma B.2.3, the functor i* preserves hypercompletenss. Since
i, is fully faithful and i, (F) is hypercomplete, we deduce that i*i, (F) ~ F is hypercomplete.

If i, is a closed immersion, then Lemma B.3.1 shows that i, preserves co-connected maps. The claim
now follows from Lemma B.3.2. O

B.3.4 Corollary. Leti,: 8 < X be a locally closed immersion of co-topoi. If XX is hypercomplete, then § is
hypercomplete.

We are now ready to show that the hypercompletion of a recollement remains a recollement:

B.3.5 Proposition. Let X be an oo-topos and let U € X be a (—1)-truncated object. Write i, : X iy & X and
Jx © Xy & X for the natural geometric morphisms. Then:

(1) There are natural identifications
(Xy)P = (XMP),y  and (X g)MP = (AP
as full subcategories of XX
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(2) The functors
VP XD (X )P and R QYR o ()Y
exhibit X™P as the recollement of (X y)™P and (X ;y)™P.

Proof. For (1), note that the left-hand identification is a special case of Proposition B.2.1. For the right-hand
identification, note that Corollary B.3.4 implies that

(X )P =X 0y,

as full subcategories of . Since U is hypercomplete and X'™P c X is closed under finite products, unpack-
ing definitions we see that
VP Xy = (AP
Finally, (2) is an immediate consequence of (1) and the open-closed recollement associated to a (—1)-
truncated object. O

B.3.6 Example. Let X be a topological space and leti : Z < X be a closed subspace with open complement
j: U o X.From Example B.1.7 and Proposition B.3.5, we deduce that the functors

pohyp s Sh™P(x) — Sh™P(z)  and  jWP: Sh™P(x) — SK™P(D)
exhibit Shhyp(X ) as the recollement of Shhyp(Z ) and Shhyp(U).

In the remainder of this subsection, we use Proposition B.3.5 to prove some compatibilities between
hypercompletion and pulling back along locally closed immersions. Note that since the inclusion of hyper-
complete co-topoi into all co-topoi does not preserve limits, these results do not immediately follow from
formal considerations.

B.3.7 Corollary. Leti,: 8 & X be a locally closed immersion of co-topoi. Then the natural square

ihyp
Shyp « * , ohyp

|

iy
is a pullback square in RTop .

Proof. By factoring i, as the composite of a closed immersion followed by an open immersion, it suffices to
treat the cases of closed and open immersions separately. These cases follow from Proposition B.3.5-(1) and

the explicit description of the pullbacks along open and closed immersions of co-topoi (Proposition B.1.8).
O

B.3.8 Proposition. Let

be a pullback square of co-topoi where i, is a locally closed immersion. Then the induced square

P
Shyp « * , qhyp

I

Jhyp «, yhyp
-hyp

Ly
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is also a pullback square in RTop .

Proof. Consider the commutative cube of co-topoi

7P
Shyp « * xhyp

S < - X

Jhyp « yhyp

T Y.

By assumption, the front vertical face is a pullback square. Since i, and Z, are locally closed immersions,
Corollary B.3.7 shows that the top and bottom horizontal faces are pullback squares. By the gluing lemma
for pullbacks, the back vertical face is also a pullback square. O

In general, the functor sending a topological space X to the co-topos Shhyp(X ) does not preserve pullbacks.
However, the assignment X +— Shhyp(X ) does preserve pullbacks along locally closed immersions:

B.3.9 Corollary. Let

be a pullback square of topological spaces where i is a locally closed immersion. Then the induced square of
00-topoi

h P h
Sh™P(S) —<— sh™P(x)

e

Sh™P(T) T Sh™P(y)
i

is a pullback square in RTop .

Proof. By Corollary B.1.10, the claim is true before hypercompletion. Proposition B.3.8 shows that the claim
remains true after hypercompletion. O
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