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Abstract

Given an open-closed decomposition of the stratifying poset, we construct a new semi-
orthogonal decomposition of the co-category of constructible sheaves on a stratified space
admitting an exit-path oo-category. From this we obtain a direct sum decomposition of the
localizing invariants of the co-category of constructible sheaves. Since the *-pullback to the
open stratum in the usual (recollement) semi-orthogonal decomposition is not strongly left
adjoint, this splitting does not follow from pure sheaf theory considerations. Instead, the split-
ting crucially relies on the exodromy equivalence: it implies that on the level of constructible
sheaves, the x-pullback to a closed stratum and the !-pushforward from an open stratum admit
left adjoints. These new functors provide an additional semi-orthogonal decomposition (with
the roles of open and closed reversed) in which the relevant functors are strongly left adjoint.
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The goal of this paper is to compute localizing invariants of the large co-category of sheaves on a
sufficiently nice stratified topological space constructible with respect to the stratification. The
key tool that allows us to perform this computation is the theory of exit-path co-categories [HA,
Appendix A; 5, §3; 9; 13, §3]. Namely, if (X, P) is a stratified space, then under mild conditions,
there exists an co-category I1, (X, P) called the exit-path co-category of (X, P) so that for any

compactly assembled presentable co-category &, there is a functorial equivalence

(0.1) Consp(X; ) ~ Fun(Il (X, P), &)

between &£-valued constructible sheaves on (X, P) and functors IT, (X, P) — &. With the help of
(0.1), our goal is transformed into understanding localizing invariants of functor co-categories,

which we study in purely categorical terms.
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There is an abundant supply of stratified spaces (X, P) where (0.1) applies (hence our main
results apply as well). Examples include Whitney stratifications of manifolds, locally finite strat-
ifications of a real analytic manifolds by subanalytic subsets [9, Theorem 5.3.9], stratifications
of the R-points of real varieties by Zariski subsets [9, Theorem 5.3.13], among many others. The
exit-path co-category often turns out to be a 1-category, and there are many cases where it can
be explicitly computed. For example, Jansen computed the exit-path co-category of reductive
Borel-Serre compactifications [12, Theorem 4.3].

Despite the concrete goal we have in mind, we choose to work with the very general notion
of exodromic stratified co-topoi (introduced in [9]) throughout the paper. This abstraction not
only cleans up several technicalities, but also allows for applications in other contexts. In one
direction, there are many naturally occurring stratified topological stacks for which there exists
an exodromy equivalence of the form (0.1). For example, the underlying topological stack of the
Deligne-Mumford-Knudsen compactification M, , with the natural stratification by the poset
of stable genus g dual graphs with n marked points [11, Corollary 6.6 & Theorem 6.7], as well
as Lurie and Tanaka’s moduli stack of broken lines [17, Theorem 4.4.1]. On the other hand,
there is a parallel theory of the exodromy equivalence for étale sheaves [1], and computations of
exit-path co-categories in this context [6]. Our formal result can be applied to compute localizing
invariants of co-categories of constructible sheaves arising in both of these contexts.

Now onto our results. We begin by stating our main result for localizing invariants of functor
oo-categories Fun(C, &) where € admits a functor into a poset P, then relate it back to the theory
of constructible sheaves. This setting is an abstraction of the fact that the exit-path co-catego-
ry comes equipped with natural functor to the stratifying poset I1,,(X, P) — P that should be
thought of as recording which stratum a point of X lies in.

Let 7 be a presentable stable co-category and let L : Cat™" — 7 be a finitary localizing
invariant. We write

peont; prdvl g

for Efimov’s extension of L to a localizing invariant defined on the co-category of dualizable pre-
sentable stable co-categories and strongly left adjoint functors (see [7]). The main combinatorial
result of this paper is the following:

0.2 Theorem (Corollary 3.7). Lets: C — P be a functor from a small co-category to a poset.
For each p € P, write C, := s~Y(p). Then for any dualizable presentable stable co-category &, the
functors given by left Kan extension along the inclusions C,, < C induce a natural equivalence

LeoM(Fun(E, &) ~ @Lcont(Fun(C’p, &).
peP

Applying Theorem 0.2 when C is the exit-path co-category of an exodromic stratified oo-
topos, we deduce the following canonical direct sum decomposition for localizing invariants of
the co-category of constructible sheaves:

0.3 Theorem (Corollary 3.8). Let (X, P) be an exodromic stratified co-topos and & be a dualizable
presentable stable co-category. There are natural equivalences

L (Consp(X; &) = @D LML p; €)) = @) L (Fun((X), €)) -
peP peP

Here, X}, denotes the p-th stratum of (X, P), LC(X p; €) is the co-category of locally constant &-
valued sheaves on X, and I1,,(X,) is the shape of the co-topos X p,.
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In other words, localizing invariants of the co-category of constructible sheaves on a stratified co-
topos are canonically identified with the direct sum of localizing invariants of the co-categories
of locally constant sheaves on each stratum.

0.4 Remark (why exodromy is needed). One might be tempted to think that the decomposition
in Theorem 0.3 follows immediately from the usual recollements in sheaf theory; however, this
is not the case. Instead, we need extra functors that are provided by the exodromy equivalence.

To explain this, let us consider the simplest case, where the stratifying poset is {0 < 1}, X
is the co-topos of sheaves on a real analytic manifold X, and the strata X, = Zand X; = U
are subanalytic subspaces. Writei: Z & X and j: U < X for the inclusions. Then there is a
recollement on the level of sheaves

J

A —
Sh(Z; &) —— i+ — Sh(X: &) j*— Sh(U;&).
— i — — >
— Jse

l'!
One might hope to say that this recollement restricts to the subcategory of constructible sheaves
and the pullback functors (i*, j*) : Consy.;(X;E) — LC(Z; &) X LC(U; €) induce an equiva-
lence on continuous localizing invariants. However, there are two problems with this:

(1) Without regularity assumptions on the stratification (e.g., being Whitney), the functor j,
need not preserve constructibility with respect to the given stratifications. For example, if
X =R and U = (0, ) the *-pushforward of a nonzero locally constant sheaf on U is never
constructible.

(2) Continuous localizing invariants are only functorial in strongly left adjoint functors, i.e., left
adjoints whose right adjoint preserves colimits. The functor j* is rarely strongly left adjoint.

So we must argue differently. A special case of the functoriality of the exodromy equivalence
implies that i* : Consy<13(X; €) = LC(Z; £) admits an additional left adjoint i;. This is a new
functor only defined at the level of constructible sheaves, and cannot be extracted from general
sheaf theory considerations. Similarly, j* : Consy1}(X; &) — LC(U; €) admits an additional
right adjoint j$. Moreover, the functors i* and j* do define the pullbacks in a recollement of
Consg<13(X; €) into LC(Z; €) and LC(U; €). However, j* is still not strongly continuous, so this
is not enough to obtain the desired splitting. Together with this recollement, the fact that i*
admits a left adjoint implies that j, admits a left adjoint j!L so that we have functors

it
i€ _—
L N — )y —
LC(Z;&E) e—i* Consy13(X; &) j*— LC(U;E).
— iy — "
PE— Js

ni
it

Moreover, the strongly continuous functors j!L and i* define the pullbacks in a new recolle-
ment, where the roles of the open and closed are reversed. See Proposition 2.6. Using this new

recollement, we are able to show that i; and j, induce the equivalence in Theorem 0.3.

We now explain one of the conceptual consequences of our results, namely, how to deduce
the lattice conjecture [3, Conjecture 1.7] for the oo-category of constructible sheaves on stratified
topological spaces from known cases for co-categories of local systems [15, Proposition 6.16].
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0.5 Corollary (Remark 3.12). Let C be the field of complex numbers and let (X, P) be an exodromic
stratified topological space with finite stratifying poset P. Assume that for each p € P, the co-catego-
ry LC(Xp; Modc)® satisfies the lattice conjecture. Then Consp(X; Mod¢)® also satisfies the lattice
conjecture.

We also record a splitting result for localizing invariants of the co-category Consp(X; £®) of
constructible sheaves with compact stalks.

0.6 Theorem (Corollary 3.18). Let (XX, P) be an exodromic stratified co-topos where P is a finite
poset, and let £ be a compactly generated stable co-category with compact objects E°. There is a
natural equivalence

L(Consp(X; &) = @) LFun(Il, (), £2)) .
peP

0.7. Let us unpack what Theorems 0.3 and 0.6 say in the most accessible case, where (X, P) is a
real analytic manifold with a locally finite subanalytic stratification and X = Sh(X). In this case,
X p is the co-topos of sheaves on the p-th stratum X ,, and I1,(X ) is the underlying homotopy
type I, (X ) of the stratum X ,. So the equivalences read as

LEo(Consp(X; E)) ~ @ L™ (Fun(Il, (X ), €))
peP
and

L(Consp(X; E®)) ~ @ L(Fun(Tl (X ), €°)) .
peP

0.8 Remark. When the coefficient co-category & is the co-category of R-modules for a ring R
and L is K-theory, Theorem 0.3 is a formalization of the following useful mnemonic [4]:

The K-theory of constructible sheaves gives constructible functions with values in the
K-theory of the ring of coefficients.

Compare [2, Lemma 3.3].
We further illustrate our main result with the following concrete example.

0.9 Example. Consider the complex projective space P" equipped with the stratification over
the poset [n] = {0 < --- < n} defined by the standard cell structure

gcP'cPlc...cP".

This is a finite subanalytic stratification of a real analytic manifold. Since each stratum is con-
tractible, we deduce that for any dualizable presentable stable co-category £ we have a splitting

L (Consy ) (P"; €)) = EB Leont(g) .

0<k<n

The reader will immediately notice that there is an interesting and complicated space of exit-
paths between the strata; it is a feature that, viewed from the eyes of localizing invariants, these
strata seem completely detached from each other.

0.10 Remark. This paper is motivated by Beilinson’s paper [2]: we wanted to interpret the
argument from [2, Lemma 3.2] in the setting of large (dualizable) co-categories. See [22] for a
similar result and its application in geometric topology.
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0.11 Remark. Let X be a real analytic manifold and A C T*X be a closed, conic, subanalytic
Lagrangian. Consider the co-category Sh, (X; Sp) of sheaves of spectra on X with microsupport
contained in A. If A is the union of conormals to a y-stratification of X, then Sh (X; Sp) coincides
with the full subcategory spanned by the constructible sheaves [14, Proposition 8.4.1]. So in
this case, Theorems 0.3 and 0.6 provide a formula for localizing invariants of Sh (X; Sp) and
its variant with compact stalks; there is an especially nice formula for topological Hochschild
homology (see Corollary 3.10). It would be very interesting to give a formula for localizing
invariants of Sh (X; Sp) in general.

0.12 Outline. In Section 1, we recall some background material. The aim is to fix our notations
for dualizable co-categories and their localizing invariants, as well as the exodromy equivalence.
We also recall some useful properties of recollements from [HA, Appendix A]. The familiar
reader can safely skip this section. Our work begins in Section 2, where we explain how to
obtain semi-orthogonal decompositions of functor co-categories. Once we have such a general
decomposition result, in Section 3, we combine these semi-orthogonal decompositions with the
exodromy equivalence to prove splitting results for co-categories of constructible sheaves.
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1 Background

For the convenience of the reader, we briefly recall the basics of dualizable co-categories and
localizing invariants (§1.1) as well as exit-path co-categories (§1.2). In §1.3, we also recall a bit
about recollements and prove a few technical results that we need later on.

1.1 Dualizable co-categories and localizing invariants

Our conventions for dualizable co-categories and localizing invariants mostly follow [7]. We also
recommend [10] for a concise presentation.

1.1 Recollection. We write Cat™™" for the oo-category of small idempotent complete stable

oo-categories and exact functors between them. This is a pointed co-category (the category with
one object and only an identity map is the intial and terminal object). Thus it makes sense to
talk about cofiber and fiber sequences in Cat™".

1.2 Recollection. Let J be a cocomplete stable co-category. A localizing invariant (valued in
J) is a pointed functor L : Cat*™ — 7 which takes cofiber-fiber sequences to fiber sequences.
A localizing invariant L is called finitary if L commutes with filtered colimit in Cat™™ (note that
the forgetful functor Cat’™® — Cat,, preserves filtered colimits).

1.3 Recollection. We say that a functor f*: € — D is a strongly left adjoint if f* admits a right
adjoint f, and f. is also a left adjoint.
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1.4 Recollection. We write PrSt for the oo-category of presentable stable co-categories and
left adjoint functors. The co-category Pr. < admits a symmetric monoidal structure given by the
Lurle tensor product. We use the term dualizable co-category to refer to a dualizable object of
PrSt There are many equivalent characterizations of dualizable co-categories; for example a
presentable stable co-category € is a dualizable co-category if and only if C is a retract in PrSt of
a compactly generated stable co-category.

We write Préva! ¢ PrSt for the non-full subcategory with objects dualizable co-categories and
morphisms strongly left adJomt functors. Let 7" be a cocomplete stable co-category. Generalizing
the definition for CatP®" verbatim, a functor L : Pr&¥! - 7 iscalled a localizing invariant if L is
pointed and takes cofiber-fiber sequences to fiber sequences. Similarly, L is finitary if L preserves
filtered colimits.

1.5 Recollection. Forming Ind-completion defines a fully faithful functor

Ind: Cat?®’ o ppd®!

whose image is the full subcategory spanned by the compactly generated dualizable co-cate-
gories. In [7, §4.2], Efimov showed a localizing invariant L : Cat’™ — 7" extends uniquely to a
localizing invariant

.cont - Pl‘dual N

We call L the continuous extension of L. If L is finitary then so is L,

1.6 Example. The functor of taking nonconnective K-theory K : Cat*™ — Sp is a finitary lo-

calizing invariant. Its continuous extension K : privd Sp is often referred to as continuous
K-theory.

1.2 Exodromy

We now briefly review the theory of exodromic stratified co-topoi introduced in [9]. The key
point is that in this setting, the theory of constructible sheaves valued in a dualizable co-catego-
ry with x-pullback functoriality reduces to the theory of copresheaves on co-categories with a
conservative functor to a poset with functoriality given by precomposition.

1.7 Recollection. Let P be a poset. A full subposet U C P is called open if U is upwards-closed,
i.e., p € U and q > p implies that g € U. Dually, Z C P is closed if Z is downward-closed.

1.8 Recollection [9, §2.1]. Let P be a poset. A P-stratified co-topos is a geometric morphism
s, : X — Fun(P, An) where XU is an co-topos. A stratified co-topos is an co-topos stratified over
some poset. We often write a stratified co-topos as a pair (XX, P), leaving the geometric morphism
s, implicit. Given a full subposet S C P, we write

Xg:=X X Fun(S,An),
Fun(P,An)

where the functor Fun(S, An) — Fun(P, An) is given by right Kan extension along the inclusion.
When S = {p} consists of a single element, we write X', := X, and refer to X, as the p-th stratum
of X.
Given a presentable co-category &, the co-category of E-valued sheaves is the Lurie tensor
product
Sh(X;E)=X®¢E.
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Using the stratification s, : XX — Fun(P, An), one can define the full subcategory
Consp(X; ) € Sh(X; €)

of P-constructible sheaves as sheaves whose restrictions to each stratum are locally constant.
When applied to the co-topos of (hyper)sheaves on a stratified space, these definitions recover
the usual ones from topology.

1.9 Recollection. In [9, Definition 2.2.10], the authors introduce a property of a stratified
oo-topos (XX, P) called being exodromic. This guarantees that there exists a small co-category
I, (X, P) called the exit-path co-category of (X, P) together with an exodromy equivalence

Consp(X; ) ~ Fun(Il, (X, P), &)

for every compactly assembled presentable co-category & (in particular, when & is dualizable).
See [9, Definition 2.2.10 & §4.1]. Let us enumerate the formal properties of exit-path co-categories
that we need in this paper:

(1) The exit-path co-category comes equipped with a conservative functor I, (X', P) — P. In
particular, the fibers of this functor are anima.

(2) For each locally closed subposet S C P, the stratified co-topos (Xs, S) is exodromic and there
is a natural equivalence
Hoo(xS’S) = HOO(DC,P) Xp S .

When S = {p} consists of a single element, this implies that the fiber I1,(X, P) Xp {p}
coincides with the shape I1(X,) of the p-th statum.

(3) Functoriality: The assignment (XX, P) — II (X, P) is functorial in all stratified morphisms
between exodromic stratified co-topoi and is compatible with the exodromy equivalence. In
particular, if (f,,¢): (X,P) — (Y,Q) is a morphism of stratified co-topoi and both (X, P)
and (Y, Q) are exodromic, then there is natural induced functor

Moo (fir @) Heo(X, P) = T (Y, Q) -
Moreover, the exodromy equivalence fits into a commutative square

f*

Consg(Y; €) Consp(X; &)

| |

Fun(T1(Y,Q), &) Fun(I1 (X, P), &) .

_onoo(f* a¢)

As a consequence, the functor f* : ConsQ(y; &) - Consp(X; €) admits both a left adjoint
f ; and a right adjoint f¢, corresponding to left and right Kan extension along I, (f, ¢).

1.3 Recollements

We now recall some background about recollements of co-categories.

1.10 Recollection [HA, Definition A.8.1]. Let X' be an oo-category with finite limits. We say
that functors
. X-2 and j i X ->Uu

exhibit X as the recollement of Z and U if the following conditions hold:
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(1) The functors i* and j* admit fully faithful right adjoints i, and j,, respectively.
(2) The functorsi*: X — Zand j*: X — U are left exact and jointly conservative.

(3) The functor j*i, : £ — U is constant with value the terminal object of U.

We also simply say that (i* : X — Z, j*: X — U) is a recollement to mean that X' admits
finite limits and i* and j* exhibit X and the recollement of Z and U. Be careful that this definition
is not symmetric in & and U.

1.11 Notation. Let (i*: X - Z,j* : X — U) be arecollement. If j* or i* admits a left adjoint,
we denote its (necessarily fully faithful) left adjoint by jy : U < X oriy: 2 < X, respectively.
If i, admits a right adjoint, we denote its right adjoint by i' : ' — 2. Recall from [HA, Remark
A.8.5] and [HA, Corollary A.8.13] that:

(1) If X is pointed, then i' exists.
(2) If 2 has an initial object, then jy exists.
In particular, if XX is stable, both Z and U are stable.

1.12. Let us also note that if XX is stable, then saying that (i* : X' - Z,j*: X - U)is a rec-
ollement is equivalent to saying that (im(i,.), im(j,)) form a semi-orthogonal decomposition of XX.
See [SAG, §7.2].

1.13 Remark. Notation 1.11 follows the now-standard convention in six-functor formalisms of
denoting the left adjoint to f* by fy, if it exists. When a map f is étale, one usually writes f
for fy; so in the setting of recollements, j; would typically be denoted by ji. In this paper, we’ll
depart from that convention. The reason is that in the geometric situation we're interested in,
i* and j* always admit left adjoints, and under exodromy these correspond to functors given by
left Kan extension along functors at the level of exit-path co-categories. So it is also desirable to
have a uniform notation for these functors (see Notation 2.1).

1.14 Recollection. As explained in [HA, Remark A.8.5],if (i*: X —» Z,j*: X - WU)isa
recollement, then the functor

i,: Z—-ker(j*) ={X eX|j*X) =~ =}

is an equivalence. Similarly, if Z has an initial object @, then the functor
Jg U= ker((™) ={XeX|I*"X)~0}

is an equivalence.

We now address the interaction between dualizability and recollements. To do so, we need
the following technical lemma.

1.15 Lemma. Let (i*: X — Z,j*: X — U) be a recollement. Let A be a weakly contractible
oo-category, and assume that X admits A-shaped colimits. Then i, . Z < X preserves A-shaped
colimits.
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Proof. Let f: A — Z be adiagram in Z indexed by A. We need to show that the natural map
colimy i,of — i.(colimy, f) is an equivalence in X. It suffices to check this map becomes an
equivalence after applying i* and j* separately. Note that i* preserves colimits and i*i,, ~ idy,
so the first case is clear. For the second case, note that j* preserves colimits and j*i, f ~ = is the
constant functor with value the terminal object of U. So we need to show

colim 4 % — =

is an equivalence in U. This follows from the assumption that A is weakly contractible. O
1.16 Corollary. Let (i*: X — Z, j*: X — U) be a recollement. Then:

(1) If X is presentable, then i, preserves weakly contractible colimits and both Z and U are pre-
sentable.

(2) If X is a dualizable oo-category, then Z and U are both dualizable co-categories.

Proof. For (1), first note that Lemma 1.15 shows that i,, preserves weakly contractible colimits. In
particular, i, preserves filtered colimits. Thus Z is an w-accessible localization of the presentable
oo-category XX, hence also presentable. To see that U is presentable, note that by Recollection 1.14,
there is a pullback square of co-categories

u
JJ
ES

—
%}

=

—
%

N

s

where the bottom horizontal functor picks out the initial object of Z. Note that X and Z are
presentable and @ : * — Z and i* are left adjoints. The presentability of U thus follows from
the fact that the forgetful functor Pr’ - CAT,, preserves limits [HTT, Proposition 5.5.3.13].
For (2), first note that since X is stable, i, admits a right adjoint i' and both Z and U are stable
(see Notation 1.11). By (1), both Z and U are also presentable. Note that since i, and jy are fully
faithful, we have i*i, ~ idy and j* jy ~ idy,. Since i*, i,, j*, and jy are all left adjoints, 2 and U
are retracts of X in Pr;“t. Since X is dualizable, we deduce that 2 and U are also dualizable. [

We now recall the important fact that continuous localizing invariants split recollements
with the property that j* is strongly left adjoint.

1.17 Lemma [7, Proposition 4.6 & Remark 1.76]. Let X be a dualizable co-category and let
i : X - Z,j": X > U) bearecollement. If j* is strongly left adjoint, then the induced map

(Lcont(i*)’Lcont(j*)) . Lcont(x) N Lcont(z) @ Lcont(u)
is an equivalence.

Proof. Set (i1, 1) = (i, jy) in [7, Remark 1.76]. The conditions there are easily verified; we omit
the details. O
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2 Semi-orthogonal decompositions

Lets: C — P be a functor from an co-category to a poset, and let Z C P be a closed subposet
with open complement U = P\ Z. In this section we show that for any presentable stable co-cat-
egory &, the functor co-category Fun(C, £) decomposes as a recollement of Fun(C Xp Z, £) and
Fun(€ xp U, &). See Lemma 2.4. We also explain why this implies that the §-pushforward from
the open piece admits an additional left adjoint, and there is another recollement decomposing
Fun(G, &) into Fun(Cxp U, &) and Fun(Cxp Z, &), with the roles of the open and closed swapped.
See Proposition 2.6 and Example 2.8.
We begin by fixing some general notation.

2.1 Notation. Let f: C — D be a functor between co-categories, and let £ be an co-category.
We write
f*: Fun(D, &) - Fun(C, &)

for the functor given by precomposition with f. If f* admits a left adjoint, we denote it by f7,
and if f* admits a right adjoint, we denote it by f...

2.2 Notation. Lets: C — P be a functor from a small co-category to a poset. Given a subposet
S C P, we write Cg := € Xp S. For p € P, we simply write Cp, := Cyp;.

2.3 Convention. Lets: C — P be a functor from a small co-category to a poset, and let Z C P
be a closed subposet with open complement U := P\ Z. We writei: C; & Cand j: Cy < €
for the inclusions.

Now for our recollement description of Fun(C, £). Since we want this result to be as widely
applicable as possible (e.g., when & is small or not stable), we’ve stated this result with minimal
assumptions on &.

2.4 Lemma. Lets: C — P be a functor from a small co-category to a poset, and let Z C P be a
closed subposet with open complement U := P\ Z. Let £ be an co-category. Then:

(1) The pullback functors i* . Fun(CG, £) — Fun(Cy, &) and j* : Fun(C, &) — Fun(Cy, &) are
Jjointly conservative.

(2) If € admits a terminal object *, then i* admits a fully faithful right adjoint i, given by

F(c), ceCy
%, C¢ez.

In particular, j*i, : Fun(Cz, &) — Fun(Cy, &) is constant with value the terminal object.

L(F)(c) =

(3) If € admits an initial object @, then j* admits a fully faithful left adjoint jy given by

F(c), ceCy

Ja(F)e) = 5. cdey.

In particular, i* jy © Fun(Cy, &) — Fun(Cy, ) is constant with value the initial object.

(4) Assume that & admits finite limits and j* : Fun(C, &) - Fun(Cy, &) admits a fully faithful
right adjoint j,. Then the functors

i*: Fun(G, &) - Fun(Cy, &) and j* 1 Fun(G, &) » Fun(Cy, &)
exhibit Fun(C, &) as the recollement of Fun(C, £) and Fun(Cy, &).
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Proof. The first item follows from the fact that equivalences between functors can be checked
pointwise. The next two items follow from the formulas for pointwise Kan extensions. Item (4)
is immediate from the previous items. O

We now explain why given a recollement of stable co-categories, the functor i* admits a left
adjoint if and only if j also admits a left adjoint. Moreover, these extra adjoints give rise to a new
recollement with the roles of the open and closed pieces swapped. We start with a convenient
lemma.

2.5 Lemma. Let C and D be stable co-categories and let R,R’ : € — D be right adjoint functors
with left adjoints L and L', respectively. Then for any natural transformation « : R — R’ with
corresponding natural transformation & : L' — L:

(1) The functor cofib(é : L' — L) is left adjoint to fib(e : R — R').
(2) The functor fib(& : L' — L) is left adjoint to cofib(c : R — R').

Proof. To prove (1), letc € € and d € D. We compute
Map,(cofib(a : L'(d) — L(d)), ) ~ fib(Map,(L(d), ¢) N Map,(L'(d),c)))

~ fib( Map,,(d, R(c)) —22=— Map,(d, R'(¢))))
~ Map,,(d, fib(a : R(c) — R'(c))),

as desired.

To prove (2), first note that since D is stable, Fun(C, D) is stable. Also note that for an ad-
junction G 4 F between stable co-categories, we have G[—1] 4 F[1]. Moreover for any map f in
a stable co-category we have natural equivalences

fib(f) ~ cofib(f)[—1] and cofib(f) ~ fib(f)[1] .
Hence (2) follows from (1) applied to the adjunctions L[—1] 4 R[1] and L'[-1] 4 R[1]. O

2.6 Proposition. Let X be a stable co-category and let (i* : X — Z, j* . X' — U) be a recollement.
Then:
(1) Ifi* admits a left adjoint iy : & < X, then jy admits a left adjoint jg{ : X — U defined by the
formula
Jj¥counit .
)

Jy = cofib( j*ii*

(2) If jy admits a left adjoint j;“ : X = U, then i* admits a left adjoint iy : 2 — X defined by the

formula
unit i,

iy = fib( i, ———— 'ﬁjﬁi* ).

(3) The functor i* admits a left adjoint if and only if j; admits a left adjoint.

(4) Ifi* and jy admit left adjoints, then the functors jé‘ 1 X > Uandi*: X — Zexhibit X as the
recollement of Z and U.

11



Proof. For (1), we apply Lemma 2.5 to the standard equivalence

unitj,

Jg = fib( j, ——— i,i*), )

coming from the recollement [20, 1.17]. Similarly, for (2), note that the recollement provides a
cofiber sequence

. counit . unit ..
* ldx *

.]]i.] xl
[20, 1.17]. Applying i' to this cofiber sequence and using that i, is fully faithful, we deduce that

.l .
i‘counit

e NI PR
. SR U MARSE AN
(2.7) cofib( i' jyj D ESE S MARSE

So the claim follows by applying Lemma 2.5 to the equivalence (2.7).
Item (3) is then immediate from items (1) and (2). To prove (4), we verify the conditions in
Recollection 1.10:

« The functor j& has a fully faithful right adjoint Jg- The functor i* has a fully faithful right
adjoint i,.

« Since X is stable and both jI and i* are left adjoints, they are exact. Now we show that they
are jointly conservative. Given an object x € X such that both i*(x) = 0 and ji(x) = 0 we
will show that x = 0. Since i*(x) = 0, we know that x € im(jz). So we may write x = ju(u)
for some u € U. It follows that

0~ ]é(x) ~ jé‘jﬂ(u) ~ Y.
So x = 0, as desired.
« The functor i* jy is left adjoint to j*i, = 0, so itself has to be the zero functor. O

Here’s our main example of when Proposition 2.6 applies:

2.8 Example. Lets: C — P be a functor from a small co-category to a poset, and let Z C P be
a closed subposet with open complement U := P\ Z. Let £ be a stable presentable co-category.
Combining Lemma 2.4 and Proposition 2.6, we deduce that there are functors

;L

Iy
iy . i
[N, — jj ——
Fun(Cz, &) «——i* Fun(G, &) j*— Fun(Cy, &) .
— iy — — >
-— Jx

.l
it

Here, all functors lie above their right adjoints. Moreover i* and j* exhibit Fun(C, &) as the
recollement of Fun(C, &) and Fun(Cy;, &) and jé‘ and i* exhibit Fun(C, &) as the recollement of
Fun(Cy, &) and Fun(Cy, &).
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3 Splitting results

‘We now combine our previous results on semi-orthogonal decompositions to deduce splitting
results for localizing invariants of co-categories of constructible sheaves. In §3.1, we treat large
oo-categories of constructible sheaves. In § 3.2, we treat small co-categories of constructible
sheaves whose stalks are also compact.

3.1 Notation. Throughout this section, we fix a localizing invariant L for Cat™ . We write Leont
for the continuous extension of L.

3.1 Large co-categories
We start by using Lemma 1.17 and Proposition 2.6 to prove the following general splitting result.
3.2 Proposition. Let X be a dualizable co-category and let (i*: X — Z,j*: X - U) bea
recollement. If jy admits a left adjoint j;“, then the maps

(LCOIlt(jg{)’ LCOHt(l’*)) : LCOnt(x) N LCOHt(u) @ LCOHt(Z)
and

(Lcont(jﬁ),Lcont(iﬁ)) : Lcont(u) @ Lcont(z) RN Lcont(x)
are inverse equivalences.

Proof. By Proposition 2.6, the pair (jL': X — U,i* : X — ) forms a recollement. Moreover, i*
is strongly left adjoint. The fact that the top map is an equivalence thus follows from Lemma 1.17.

For the bottom map, note that since jy and iy are fully faithful and adjoint to jﬂL and i*,
respectively, there are equivalences

Hence
(L°°“t(j§),LC"“t(i*))O(LC‘J“t(jﬁ),L°°“t(in)) = idpcont(aygreont(z) -

Since (LR(jk), LNY(i*)) is an equivalence, we deduce that (L%™(jy), LP(iy)) is also an equiv-
alence and these maps are inverses. O

In the setting of an exodromic stratified co-topos with finite stratifying poset, Proposition 3.2
implies splitting results for the co-category of constructible objects. In order to deal with infinite
stratifying posets, we need a few continuity results. The following results can also be phrased in
terms of P-indexed semi-orthogonal decompositions as in [7, Definition 1.80 & Proposition 4.14].
We include this material because it is straightforward from what we have done so far.

3.3 Lemma. Let & be a presentable co-category. Then:

(1) The functor Fun(—, ) : Cat,, — Pr' with functoriality given by left Kan extension preserves
colimits.

(2) If&isstable, the functor Fun(—, &) : Cat,, — Pr;“t with functoriality given by left Kan extension
preserves colimits.
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(3) If € is dualizable, the functor Fun(—, ) : Cat,, — Pri"!

extension preserves colimits.

with functoriality given by left Kan

Proof. For (1), note that the functor
Fun(—, &) : Catyr — CAT,,

with pullback functoriality preserves limits. Since the forgetful functor pPrt - CAT,, preserves
limits [HTT, Theorem 5.5.3.18], we see that the functor

Fun(—, &) : Catyl — Pri

with pullback functoriality also preserves limits. Passing to left adjoints we deduce the claim.
Item (2) follows from (1) and the fact that the forgetful functor PrsLt - Prt preserves colimits.

Item (3) follows from (2) and the fact that the forgetful functor prév Pr;“t preserves colimits
[7, Proposition 1.65]. O

3.4 Notation. Let P be a poset. Let Subg,(P) denote the poset of finite subposets of P ordered
by inclusion.

3.5 Corollary. Lets: C — P be a functor from a small co-category to a poset and let € be a
dualizable co-category.

(3.5.1) The natural functor colim_Cqo — C is an equivalence of co-categories.
QeSubgy (P)

(3.5.2) The natural functor

lim Fun(Cg, &) — Fun(C, €
oSk, Fun(Co.£) — Fun(€,)

is an equivalence. Here, the functoriality is given by left Kan extension and the colimit is
computed in Pr®*,

Proof. For (1), first observe that the natural functor

coim Q—>P
QeSubgy (P)

is an equivalence, where the colimit is computed in Cat,,. Hence the fact that that filtered
colimits are left exact in Cat,, implies the claim. Item (2) follows from (1) and Lemma 3.3. [

Now we can deduce our splitting results.

3.6 Notation. For the following, given a functor ¢ — P from an oco-category to a poset and a
subposet Q C P, write i : Co < C for the inclusion

3.7 Corollary. Let & be a dualizable co-category. Let s : C — P be a functor from a small co-cate-
gory to a poset. If P is finite or L is finitary, then the natural map

(L iy D pep @D LOM(Fun(€), £)) — LM (Fun(@, £))
peP

is an equivalence.
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Proof. First we treat the case where P is finite. We prove the claim by induction on the Krull
dimension of P. If dim(P) = 0, then P is just a finite set; the claim then follows from the fact that
localizing invariants preserve direct sums. For the induction step, let Z C P denote the subset
of minimal elements, and let U := P\ Z. Then Z is closed and dim(Z) = 0 and U is open and
dim(U) = dim(P) — 1. Hence it suffices to show that the natural map

(LM (iz ), L™ (iyy ) : L™ (Fun(Cyz, £)) @ L™ (Fun(Cy, £)) — L™ (Fun(C, £))

is an equivalence. By Example 2.8, this is a special case of Proposition 3.2 applied to X' =
Fun(G, €), Z = Fun(Cy, &), and U = Fun(Cy, &).

Now we treat the case where L is finitary. Using the finitaryness of L, the case of a finite
stratifying poset, and Corollary 3.5 we compute

LEOY(Fun(G, &) ~ Lcont( colim Fun(@Q, 8))
QeSubgiy (P)

~ colim L(Fun(Cp, &
QeSubg,(P) (Fun(€o, &)

~ colim L (Fun(C,, &
QeSubﬁn(P);e.é (Fun(C,, &)

~ P Lo (Fun(e,, &) -

peP

Finally, to see that the equivalence is induced by direct sum of the maps Lcom(ip,ﬁ), it suffices
to show the assignment i — iy respects composition: this follows from that its right adjoint i*,
which as a restriction of functors, respects composition. O

3.8 Corollary. Let (XX, P) be an exodromic stratified co-topos and € be a dualizable co-category.
If P is finite or L is fintary, then there is a natural equivalence

LEM(Consp(X; &) = @ LM (Fun(Il(X), €)) -
peP

Here, T, (X p) denotes the shape of the co-topos X p,.

Proof. Since (X, P) is exodromic and €& is dualizable, [9, Corollary 4.1.15] shows that we have
an exodromy equivalence with £-coefficients

Consp(X; €) ~ Fun(Il, (X, P), &) .
Moreover, [9, Corollary 3.1.17] shows that for each p € P, we have a natural equivalence
(X, P)p = Mo (X)) -
Hence the claim is immediate from Corollary 3.7 applied € = II (XX, P). O

We conclude this subsection with some applications to A-theory and topological Hochschild
homology.

3.9 Notation. Let X be an anima. We write £X = Map(S', X) for the anima of free loops on X.
Recall that the A-theory of X is the K-theory spectrum

A(X) == K(Fun(X, Sp)*) ~ K®"(Fun(X, Sp)) € Sp .
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3.10 Corollary. Let (XX, P) be an exodromic stratified co-topos. Then there are natural equivalences

KM (Consp(X;Sp)) = P AT (X)) and THH™(Consp(X;Sp)) = @) TP LT1 () -
peP peP

Proof. The first equivalence is immediate from Corollary 3.8 and the fact that K-theory is fini-
tary. For the second equivalence, note that since THH is finitary, by Corollary 3.8, it suffices to
compute THH(Fun(Il, (X ,); Sp)) for each p € P. Now we recall the fundamental calculation
(see, for example, [16, Corollary 5]) that for an anima X, we have a natural equivalence of spectra

THH™(Fun(X, Sp)) ~ T2 LX . O

3.11. It may be surprising that THH™" of the co-category of constructible sheaves only sees

free loops traveling inside each stratum, but not free loops traveling through different strata.

3.12 Remark (the lattice conjecture). There are more complicated localizing invariants whose
values on oco-categories of constructible sheaves are interesting. For example, periodic cyclic
homology HP and topological K-theory K™P, Let us briefly mention that Blanc’s lattice conjecture
[3, Conjecture 1.7] is formulated with these invariants. More precisely, for C e Cat™" which is
C-linear, it asks if the Chern character

K'?(€) ® C — HP(C)

is an equivalence. Given that the conjecture has been proven for C the co-category of (compact
objects in) Mod¢-valued local systems on a certain class of topological spaces [15, Proposition
6.16], our result shows that the same is true for the co-category of Mod¢-valued constructible
sheaves on certain stratified topological spaces. More precisely, for an exodromic stratified topo-
logical space (X, P) with finite P, such that each stratum X, falls into the above class (whose
oco-category of local systems LC(X ,; Mod)® satisfies the lattice conjecture), the co-category of
constructible sheaves Consp(X; Mod¢)® also satisfies the lattice conjecture. To show this, given
our results above, it suffices to note that both sides decompose into direct sums, and the Chern
character map induces equivalences between corresponding summands by assumption. Com-
pare [15, Remark 6.18].

3.2 Small co-categories

‘We now explain splitting results for small co-categories of constructible sheaves ‘with compact
stalks’. Since a general co-topos need not have enough points, it is better to formulate a definition
using locally constant sheaves that agrees with the stalk-wise definition for exodromic co-topoi.

3.13 Definition. Given an co-topos X and a presentable co-category &, write I';. : € — Sh(X; &)
for the constant sheaf functor, i.e., the left adjoint to global sections. Let &, C & be a full subcat-
egory. We write

LC(X; &) C Sh(X; &)

for the full subcategory spanned by those objects F such that there exists an effective epimor-
phism ]_[l.d U; » 14 in X and for each i € I there exists an object ¢; € £, and an equivalence

FE =Ty @

in Sh(Xy,; €). Here, jI: Sh(X; &) — Sh(X,y,; €) denotes the pullback functor induced by
U; X(—): X — I/Ui.
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3.14 Definition. Let (X, P) be a stratified co-topos, let € be a presentable co-category, and let
&p C & be a full subcategory. We write

Consp(X; &y) € Sh(X; &)

for the full subcategory spanned by those objects F such that for each p € P, the restriction i,(F)
is the in full subcategory LC(X; &y) C Sh(Xp; €).

3.15. If (X, P) is an exodromic stratified oco-topos and € is a compactly generated presentable
oo-category with compact objects £ C &, then the exodromy equivalence

Consp(X; &) ~ Fun(Il (X, P), E)
restricts to an equivalence
Consp(X; £°) ~ Fun(Il, (X, P), £®) .

In the setting of hypersheaves on an exodromic stratified space (X, P) with locally weakly con-
tractible strata, the full subcategory Consp(XX; £°) € Consp(X; £) coincides with the full subcate-
gory spanned by those objects whose stalks are compact objects of €. Compare to [9, Observation
5.4.7].

3.16 Notation. In the rest of this subsection, we fix a compactly generated dualizable co-cate-
gory &, and consider the subcategory of compact objects £ € Cat*™.

3.17 Lemma. Lets: C — P bea functor from a small co-category to a poset. Let Z C P be a closed
poset and U C P be the open complement.

(1) The functors from Example 2.8 restrict to a (one-sided) split Verdier sequence in Cat™"

Jt
. —_—
Fun(Cy, &) —— Fun(C, &) — Fun(Cy, £) .
%}

Ly

(2) The maps L(i*) and L(j*) induce an equivalence

L(Fun(G, £*)) = L(Fun(€z, £*)) & L(Fun(Cy, £*)).
(3) Ifthe poset P is finite, the maps L(iy,) induce a natural equivalence

L(Fun(€, £2)) = P L(Fun(€,, £2)).
peP

Proof. For the first item, note that Fun(C, £¥) is a full subcategory of Fun(C, £) which is charac-
terized by a pointwise condition. In particular, the restriction functors i* and j* preserve these
full subcategories. Moreover, by the formulas in items (2) and (3) of Lemma 2.4, the pushfor-
ward functors i, and jy also preserve these full subcategories. It follows that we have the desired
adjunctions. Because j* has a fully faithful left adjoint js, and i, is precisely the inclusion of the
kernel of j*, this is a split Verdier sequence.

The second item follows immediately from the fact that we have a split Verdier sequence.
Finally, the third item is proven by induction on the Krull dimension of P exactly as in the proof
of Corollary 3.7; we omit the details. O
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3.18 Corollary. Let (X, P) be an exodromic stratified co-topos where P is a finite poset. Then the
maps L(i,) induce a natural equivalence

Consp(X, E®) ~ @ L(Fun(I1, (X ), £9)).
peP

Proof. Immediate from Lemma 3.17. O

3.19 Remark. We discuss here the subtle differences in the co-categories appearing in this
subsection and the previous one. Fix a stratified topological space (X, P) which is hypercomplete
as well as a compactly generated stable co-category .

(€]

()

(3

In general, the oco-category Consp(X; E®) is not (on the nose) the same as Consp(X; €)%,
though they are both full subcategories of Consp(X; £): the latter is defined to be the subcat-
egory of compact objects in the presentable co-category Consp(X; £). Hence we don’t know
if it is possible to deduce the statements for small co-categories from the statements for large
oo-categories or vice versa. It would be very interesting to formulate finiteness conditions
(as those in [21]) on the exit-path co-category to ensure that these two co-categories agree.

The following example is taken from [19, Example 3.19]. In this case there is a natural inclu-
sion from one oo-category to the other, but it is not an equivalence. Consider the topological
circle S! equipped with the trivial stratification (so constructible sheaves are locally constant
shaves), and let the coefficient co-category & be the derived co-category Mod¢ of C-vector
spaces. Now both co-categories can be considered as subcategories of the large co-category
of modules over the group ring C[QS'] = C[Z].

« The category LC(S'; Modg) is the subcategory of objects whose underlying complexes
of C-vector spaces are perfect.

« The oo-category LC(S!; Mod¢)® is the subcategory of perfect complexes of C[Z]-modules.

Note that in this case, there is an inclusion LC(S!; Modg) C LC(S'; Mod)®. However, the
inclusion map induces the zero map on the Grothendieck group K.

When the poset P is infinite, we don’t have a general statement about localizing invariants
of Consp(X; E¥), or equivalently Fun(IT,, (X, P), £*). One can write this co-category as an
cofiltered limit in Cat?®":

Fun(Il (X, P), E®) ~ lim Fun(Il(X,P)p, E®) .
(o0, P),ED > i Fun(le(X, Po, £°)

But we don’t know if we can commute localizing invariants past such cofiltered limits. In
general, this is a delicate problem; let us mention that Efmiov [8] has studied this in the
setting of dualizable co-categories.

In the other direction, if we assume the poset P can be filtered by a sequence of closed
(or open) subsets, then we can ‘renormalize’ the oco-category of constructible sheaves and
describe its localizing invariants, as follows. (This is a common practice in applications, see
for example [18, §2.2].)
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3.20 Notation. Let (X, P) be an exodromic stratified co-topos. Let Z be a filtered family of finite
closed subposets of P such that | J,,, »Z = P. We define the subcategory of constructible sheaves
valued in £® which are *-extended from some X, as

Cons5 ™™ (X(; £9) := cgli%n Consz(Xz; E®).

The colimit is formed along the %-pushforward functors.

3.21 Lemma. In the setting of Notation 3.20, if L is a finitary localizing invariant, then

L(Consy"*™(X; £2)) = @D L(Fun(IT (X ), £2)) .
peP

Proof. Since L is finitary, the statement reduces to the case of finite poset (Corollary 3.18). [
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