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Abstract

Given an open-closed decomposition of the stratifying poset, we construct a new semi-
orthogonal decomposition of the ∞-category of constructible sheaves on a strati�ed space
admitting an exit-path∞-category. From this we obtain a direct sum decomposition of the
localizing invariants of the∞-category of constructible sheaves. Since the ∗-pullback to the
open stratum in the usual (recollement) semi-orthogonal decomposition is not strongly left
adjoint, this splitting does not follow from pure sheaf theory considerations. Instead, the split-
ting crucially relies on the exodromy equivalence: it implies that on the level of constructible
sheaves, the ∗-pullback to a closed stratum and the !-pushforward from an open stratum admit
left adjoints. These new functors provide an additional semi-orthogonal decomposition (with
the roles of open and closed reversed) in which the relevant functors are strongly left adjoint.

Contents

0 Introduction 1

1 Background 5

2 Semi-orthogonal decompositions 10

3 Splitting results 13

References 19

0 Introduction
The goal of this paper is to compute localizing invariants of the large∞-category of sheaves on a
su�ciently nice strati�ed topological space constructible with respect to the strati�cation. The
key tool that allows us to perform this computation is the theory of exit-path∞-categories [HA,
Appendix A; 5, §3; 9; 13, §3]. Namely, if (X, P) is a strati�ed space, then under mild conditions,
there exists an ∞-category Π∞(X, P) called the exit-path ∞-category of (X, P) so that for any
compactly assembled presentable∞-category ℰ, there is a functorial equivalence
(0.1) ConsP(X; ℰ) ≃ Fun(Π∞(X, P), ℰ)
between ℰ-valued constructible sheaves on (X, P) and functors Π∞(X, P) → ℰ. With the help of
(0.1), our goal is transformed into understanding localizing invariants of functor∞-categories,
which we study in purely categorical terms.
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There is an abundant supply of strati�ed spaces (X, P) where (0.1) applies (hence our main
results apply as well). Examples include Whitney strati�cations of manifolds, locally �nite strat-
i�cations of a real analytic manifolds by subanalytic subsets [9, Theorem 5.3.9], strati�cations
of the R-points of real varieties by Zariski subsets [9, Theorem 5.3.13], among many others. The
exit-path∞-category often turns out to be a 1-category, and there are many cases where it can
be explicitly computed. For example, Jansen computed the exit-path∞-category of reductive
Borel–Serre compacti�cations [12, Theorem 4.3].

Despite the concrete goal we have in mind, we choose to work with the very general notion
of exodromic strati�ed∞-topoi (introduced in [9]) throughout the paper. This abstraction not
only cleans up several technicalities, but also allows for applications in other contexts. In one
direction, there are many naturally occurring strati�ed topological stacks for which there exists
an exodromy equivalence of the form (0.1). For example, the underlying topological stack of the
Deligne–Mumford–Knudsen compacti�cationℳg,n with the natural strati�cation by the poset
of stable genus g dual graphs with n marked points [11, Corollary 6.6 & Theorem 6.7], as well
as Lurie and Tanaka’s moduli stack of broken lines [17, Theorem 4.4.1]. On the other hand,
there is a parallel theory of the exodromy equivalence for étale sheaves [1], and computations of
exit-path∞-categories in this context [6]. Our formal result can be applied to compute localizing
invariants of∞-categories of constructible sheaves arising in both of these contexts.

Now onto our results. We begin by stating our main result for localizing invariants of functor∞-categories Fun(C, ℰ)where C admits a functor into a poset P, then relate it back to the theory
of constructible sheaves. This setting is an abstraction of the fact that the exit-path∞-catego-
ry comes equipped with natural functor to the stratifying poset Π∞(X, P) → P that should be
thought of as recording which stratum a point of X lies in.

Let T be a presentable stable ∞-category and let L∶ Catperf → T be a �nitary localizing
invariant. We write Lcont ∶ Prdual → T
for E�mov’s extension of L to a localizing invariant de�ned on the∞-category of dualizable pre-
sentable stable∞-categories and strongly left adjoint functors (see [7]). The main combinatorial
result of this paper is the following:

0.2 Theorem (Corollary 3.7). Let s ∶ C → P be a functor from a small ∞-category to a poset.
For each p ∊ P, write Cp ≔ s−1(p). Then for any dualizable presentable stable∞-category ℰ, the
functors given by left Kan extension along the inclusions Cp ↪ C induce a natural equivalenceLcont(Fun(C, ℰ)) ≃ ⨁p∊P Lcont(Fun(Cp, ℰ)) .

Applying Theorem 0.2 when C is the exit-path ∞-category of an exodromic strati�ed ∞-
topos, we deduce the following canonical direct sum decomposition for localizing invariants of
the∞-category of constructible sheaves:

0.3 Theorem (Corollary 3.8). Let (X, P) be an exodromic strati�ed∞-topos and ℰ be a dualizable
presentable stable∞-category. There are natural equivalencesLcont(ConsP(X; ℰ)) ≃ ⨁p∊P Lcont(LC(Xp; ℰ)) ≃ ⨁p∊P Lcont(Fun(Π∞(Xp), ℰ)) .
Here, Xp denotes the p-th stratum of (X, P), LC(Xp; ℰ) is the ∞-category of locally constant ℰ-
valued sheaves onXp, andΠ∞(Xp) is the shape of the∞-toposXp .
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In other words, localizing invariants of the∞-category of constructible sheaves on a strati�ed∞-
topos are canonically identi�ed with the direct sum of localizing invariants of the∞-categories
of locally constant sheaves on each stratum.

0.4 Remark (why exodromy is needed). One might be tempted to think that the decomposition
in Theorem 0.3 follows immediately from the usual recollements in sheaf theory; however, this
is not the case. Instead, we need extra functors that are provided by the exodromy equivalence.

To explain this, let us consider the simplest case, where the stratifying poset is {0 < 1}, X
is the ∞-topos of sheaves on a real analytic manifold X, and the strata X0 = Z and X1 = U
are subanalytic subspaces. Write i ∶ Z ↪ X and j ∶ U ↪ X for the inclusions. Then there is a
recollement on the level of sheaves

Sh(Z; ℰ) Sh(X; ℰ) Sh(U; ℰ) .i∗ i∗
i!

j∗j∗
j!

One might hope to say that this recollement restricts to the subcategory of constructible sheaves
and the pullback functors (i∗, j∗)∶ Cons{0<1}(X; ℰ) → LC(Z; ℰ) × LC(U; ℰ) induce an equiva-
lence on continuous localizing invariants. However, there are two problems with this:

(1) Without regularity assumptions on the strati�cation (e.g., being Whitney), the functor j∗
need not preserve constructibility with respect to the given strati�cations. For example, ifX = R and U = (0,∞) the ∗-pushforward of a nonzero locally constant sheaf on U is never
constructible.

(2) Continuous localizing invariants are only functorial in strongly left adjoint functors, i.e., left
adjoints whose right adjoint preserves colimits. The functor j∗ is rarely strongly left adjoint.
So we must argue di�erently. A special case of the functoriality of the exodromy equivalence

implies that i∗ ∶ Cons{0<1}(X; ℰ) → LC(Z; ℰ) admits an additional left adjoint ic♯ . This is a new
functor only de�ned at the level of constructible sheaves, and cannot be extracted from general
sheaf theory considerations. Similarly, j∗ ∶ Cons{0<1}(X; ℰ) → LC(U; ℰ) admits an additional
right adjoint jc∗. Moreover, the functors i∗ and j∗ do de�ne the pullbacks in a recollement ofCons{0<1}(X; ℰ) into LC(Z; ℰ) and LC(U; ℰ). However, j∗ is still not strongly continuous, so this
is not enough to obtain the desired splitting. Together with this recollement, the fact that i∗
admits a left adjoint implies that j! admits a left adjoint jL! so that we have functors

LC(Z; ℰ) Cons{0<1}(X; ℰ) LC(U; ℰ) .i∗
ic♯ i∗
i!

j∗
jL!
jc∗

j!

Moreover, the strongly continuous functors jL! and i∗ de�ne the pullbacks in a new recolle-
ment, where the roles of the open and closed are reversed. See Proposition 2.6. Using this new
recollement, we are able to show that ic♯ and j! induce the equivalence in Theorem 0.3.

We now explain one of the conceptual consequences of our results, namely, how to deduce
the lattice conjecture [3, Conjecture 1.7] for the∞-category of constructible sheaves on strati�ed
topological spaces from known cases for∞-categories of local systems [15, Proposition 6.16].

3

https://arxiv.org/pdf/1211.7360#prop.1.7
https://arxiv.org/pdf/2102.01566#prop.6.16


0.5 Corollary (Remark 3.12). LetC be the �eld of complex numbers and let (X, P) be an exodromic
strati�ed topological space with �nite stratifying poset P. Assume that for each p ∊ P, the∞-catego-
ry LC(Xp;ModC)ω satis�es the lattice conjecture. Then ConsP(X;ModC)ω also satis�es the lattice
conjecture.

We also record a splitting result for localizing invariants of the∞-category ConsP(X; ℰω) of
constructible sheaves with compact stalks.

0.6 Theorem (Corollary 3.18). Let (X, P) be an exodromic strati�ed∞-topos where P is a �nite
poset, and let ℰ be a compactly generated stable∞-category with compact objects ℰω. There is a
natural equivalence L(ConsP(X; ℰω)) ≃ ⨁p∊P L(Fun(Π∞(Xp), ℰω)) .
0.7. Let us unpack what Theorems 0.3 and 0.6 say in the most accessible case, where (X, P) is a
real analytic manifold with a locally �nite subanalytic strati�cation andX = Sh(X). In this case,Xp is the∞-topos of sheaves on the p-th stratum Xp, and Π∞(Xp) is the underlying homotopy
type Π∞(Xp) of the stratum Xp. So the equivalences read asLcont(ConsP(X; ℰ)) ≃ ⨁p∊P Lcont(Fun(Π∞(Xp), ℰ))
and L(ConsP(X; ℰω)) ≃ ⨁p∊P L(Fun(Π∞(Xp), ℰω)) .
0.8 Remark. When the coe�cient∞-category ℰ is the∞-category of R-modules for a ring R
and L is K-theory, Theorem 0.3 is a formalization of the following useful mnemonic [4]:

The K-theory of constructible sheaves gives constructible functions with values in theK-theory of the ring of coe�cients.

Compare [2, Lemma 3.3].

We further illustrate our main result with the following concrete example.

0.9 Example. Consider the complex projective space Pn equipped with the strati�cation over
the poset [n] = {0 < ⋯ < n} de�ned by the standard cell structure∅ ⊂ P0 ⊂ P1 ⊂ ⋯ ⊂ Pn .
This is a �nite subanalytic strati�cation of a real analytic manifold. Since each stratum is con-
tractible, we deduce that for any dualizable presentable stable∞-category ℰ we have a splittingLcont(Cons[n](Pn; ℰ)) ≃ ⨁0≤k≤n Lcont(ℰ) .
The reader will immediately notice that there is an interesting and complicated space of exit-
paths between the strata; it is a feature that, viewed from the eyes of localizing invariants, these
strata seem completely detached from each other.

0.10 Remark. This paper is motivated by Beilinson’s paper [2]: we wanted to interpret the
argument from [2, Lemma 3.2] in the setting of large (dualizable)∞-categories. See [22] for a
similar result and its application in geometric topology.
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0.11 Remark. Let X be a real analytic manifold and Λ ⊂ T∗X be a closed, conic, subanalytic
Lagrangian. Consider the∞-category ShΛ(X; Sp) of sheaves of spectra on X with microsupport
contained inΛ. IfΛ is the union of conormals to a µ-strati�cation ofX, then ShΛ(X; Sp) coincides
with the full subcategory spanned by the constructible sheaves [14, Proposition 8.4.1]. So in
this case, Theorems 0.3 and 0.6 provide a formula for localizing invariants of ShΛ(X; Sp) and
its variant with compact stalks; there is an especially nice formula for topological Hochschild
homology (see Corollary 3.10). It would be very interesting to give a formula for localizing
invariants of ShΛ(X; Sp) in general.

0.12 Outline. In Section 1, we recall some background material. The aim is to �x our notations
for dualizable∞-categories and their localizing invariants, as well as the exodromy equivalence.
We also recall some useful properties of recollements from [HA, Appendix A]. The familiar
reader can safely skip this section. Our work begins in Section 2, where we explain how to
obtain semi-orthogonal decompositions of functor∞-categories. Once we have such a general
decomposition result, in Section 3, we combine these semi-orthogonal decompositions with the
exodromy equivalence to prove splitting results for∞-categories of constructible sheaves.
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around the contents of this paper. We thank Li He for correcting a bad typo in an earlier formu-
lation of Proposition 2.6.

QB was supported by the Danish National Research Foundation through the Copenhagen
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Research Fellowship under Grant #DMS-2102957.

1 Background
For the convenience of the reader, we brie�y recall the basics of dualizable∞-categories and
localizing invariants (§1.1) as well as exit-path∞-categories (§1.2). In §1.3, we also recall a bit
about recollements and prove a few technical results that we need later on.

1.1 Dualizable∞-categories and localizing invariants
Our conventions for dualizable∞-categories and localizing invariants mostly follow [7]. We also
recommend [10] for a concise presentation.

1.1 Recollection. We write Catperf for the ∞-category of small idempotent complete stable∞-categories and exact functors between them. This is a pointed∞-category (the category with
one object and only an identity map is the intial and terminal object). Thus it makes sense to
talk about co�ber and �ber sequences in Catperf .
1.2 Recollection. Let T be a cocomplete stable∞-category. A localizing invariant (valued inT) is a pointed functor L∶ Catperf → T which takes co�ber-�ber sequences to �ber sequences.
A localizing invariant L is called �nitary if L commutes with �ltered colimit in Catperf (note that
the forgetful functor Catperf → Cat∞ preserves �ltered colimits).

1.3 Recollection. We say that a functor f∗ ∶ C → D is a strongly left adjoint if f∗ admits a right
adjoint f∗ and f∗ is also a left adjoint.
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1.4 Recollection. We write PrLst for the ∞-category of presentable stable ∞-categories and
left adjoint functors. The∞-category PrLst admits a symmetric monoidal structure given by the
Lurie tensor product. We use the term dualizable∞-category to refer to a dualizable object of
PrLst. There are many equivalent characterizations of dualizable ∞-categories; for example, a
presentable stable∞-category ℰ is a dualizable∞-category if and only if C is a retract in PrLst of
a compactly generated stable∞-category.

We write Prdual ⊂ PrLst for the non-full subcategory with objects dualizable∞-categories and
morphisms strongly left adjoint functors. LetT be a cocomplete stable∞-category. Generalizing
the de�nition forCatperf verbatim, a functor L∶ Prdual → T is called a localizing invariant if L is
pointed and takes co�ber-�ber sequences to �ber sequences. Similarly, L is �nitary if L preserves
�ltered colimits.

1.5 Recollection. Forming Ind-completion de�nes a fully faithful functorInd∶ Catperf ↪ Prdual
whose image is the full subcategory spanned by the compactly generated dualizable ∞-cate-
gories. In [7, §4.2], E�mov showed a localizing invariant L∶ Catperf → T extends uniquely to a
localizing invariant Lcont ∶ Prdual → T .

We call Lcont the continuous extension of L. If L is �nitary then so is Lcont.
1.6 Example. The functor of taking nonconnective K-theory K∶ Catperf → Sp is a �nitary lo-
calizing invariant. Its continuous extensionKcont ∶ Prdual → Sp is often referred to as continuousK-theory.
1.2 Exodromy
We now brie�y review the theory of exodromic strati�ed ∞-topoi introduced in [9]. The key
point is that in this setting, the theory of constructible sheaves valued in a dualizable∞-catego-
ry with ∗-pullback functoriality reduces to the theory of copresheaves on∞-categories with a
conservative functor to a poset with functoriality given by precomposition.

1.7 Recollection. Let P be a poset. A full subposet U ⊂ P is called open if U is upwards-closed,
i.e., p ∊ U and q > p implies that q ∊ U. Dually, Z ⊂ P is closed if Z is downward-closed.

1.8 Recollection [9, §2.1]. Let P be a poset. A P-strati�ed∞-topos is a geometric morphisms∗ ∶ X → Fun(P,An) where X is an∞-topos. A strati�ed∞-topos is an∞-topos strati�ed over
some poset. We often write a strati�ed∞-topos as a pair (X, P), leaving the geometric morphisms∗ implicit. Given a full subposet S ⊂ P, we writeXS ≔ X ×Fun(P,An)Fun(S,An) ,
where the functor Fun(S,An) → Fun(P,An) is given by right Kan extension along the inclusion.
When S = {p} consists of a single element, wewriteXp ≔ X{p} and refer toXp as thep-th stratum
of X.

Given a presentable∞-category ℰ, the∞-category of ℰ-valued sheaves is the Lurie tensor
product Sh(X; ℰ) ≔ X ⊗ ℰ .
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Using the strati�cation s∗ ∶ X → Fun(P,An), one can de�ne the full subcategoryConsP(X; ℰ) ⊂ Sh(X; ℰ)
of P-constructible sheaves as sheaves whose restrictions to each stratum are locally constant.
When applied to the∞-topos of (hyper)sheaves on a strati�ed space, these de�nitions recover
the usual ones from topology.

1.9 Recollection. In [9, De�nition 2.2.10], the authors introduce a property of a strati�ed∞-topos (X, P) called being exodromic. This guarantees that there exists a small ∞-categoryΠ∞(X, P) called the exit-path∞-category of (X, P) together with an exodromy equivalenceConsP(X; ℰ) ≃ Fun(Π∞(X, P), ℰ)
for every compactly assembled presentable∞-category ℰ (in particular, when ℰ is dualizable).
See [9, De�nition 2.2.10& §4.1]. Let us enumerate the formal properties of exit-path∞-categories
that we need in this paper:

(1) The exit-path∞-category comes equipped with a conservative functor Π∞(X, P) → P. In
particular, the �bers of this functor are anima.

(2) For each locally closed subposet S ⊂ P, the strati�ed∞-topos (XS , S) is exodromic and there
is a natural equivalence Π∞(XS , S) ⥲ Π∞(X, P) ×P S .

When S = {p} consists of a single element, this implies that the �ber Π∞(X, P) ×P {p}
coincides with the shape Π∞(Xp) of the p-th statum.

(3) Functoriality: The assignment (X, P) ↦ Π∞(X, P) is functorial in all strati�ed morphisms
between exodromic strati�ed∞-topoi and is compatible with the exodromy equivalence. In
particular, if (f∗, �)∶ (X, P) → (Y,Q) is a morphism of strati�ed∞-topoi and both (X, P)
and (Y, Q) are exodromic, then there is natural induced functorΠ∞(f∗, �)∶ Π∞(X, P) → Π∞(Y, Q) .
Moreover, the exodromy equivalence �ts into a commutative squareConsQ(Y; ℰ) ConsP(X; ℰ)

Fun(Π∞(Y, Q), ℰ) Fun(Π∞(X, P), ℰ) .
f∗

≀ ≀
−◦Π∞(f∗,�)

As a consequence, the functor f∗ ∶ ConsQ(Y; ℰ) → ConsP(X; ℰ) admits both a left adjointfc♯ and a right adjoint fc∗, corresponding to left and right Kan extension along Π∞(f∗, �).
1.3 Recollements
We now recall some background about recollements of∞-categories.

1.10 Recollection [HA, De�nition A.8.1]. Let X be an∞-category with �nite limits. We say
that functors i∗ ∶ X → Z and j∗ ∶ X → U
exhibit X as the recollement of Z and U if the following conditions hold:
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(1) The functors i∗ and j∗ admit fully faithful right adjoints i∗ and j∗, respectively.
(2) The functors i∗ ∶ X → Z and j∗ ∶ X → U are left exact and jointly conservative.

(3) The functor j∗i∗ ∶ Z → U is constant with value the terminal object of U.

We also simply say that (i∗ ∶ X → Z, j∗ ∶ X → U) is a recollement to mean that X admits
�nite limits and i∗ and j∗ exhibitX and the recollement ofZ andU. Be careful that this de�nition
is not symmetric in Z and U.

1.11 Notation. Let (i∗ ∶ X → Z, j∗ ∶ X → U) be a recollement. If j∗ or i∗ admits a left adjoint,
we denote its (necessarily fully faithful) left adjoint by j♯ ∶ U ↪ X or i♯ ∶ Z ↪ X, respectively.
If i∗ admits a right adjoint, we denote its right adjoint by i! ∶ X → Z. Recall from [HA, Remark
A.8.5] and [HA, Corollary A.8.13] that:

(1) If X is pointed, then i! exists.
(2) If Z has an initial object, then j♯ exists.
In particular, if X is stable, both Z and U are stable.

1.12. Let us also note that if X is stable, then saying that (i∗ ∶ X → Z, j∗ ∶ X → U) is a rec-
ollement is equivalent to saying that (im(i∗), im(j∗)) form a semi-orthogonal decomposition ofX.
See [SAG, §7.2].

1.13 Remark. Notation 1.11 follows the now-standard convention in six-functor formalisms of
denoting the left adjoint to f∗ by f♯, if it exists. When a map f is étale, one usually writes f!
for f♯; so in the setting of recollements, j♯ would typically be denoted by j!. In this paper, we’ll
depart from that convention. The reason is that in the geometric situation we’re interested in,i∗ and j∗ always admit left adjoints, and under exodromy these correspond to functors given by
left Kan extension along functors at the level of exit-path∞-categories. So it is also desirable to
have a uniform notation for these functors (see Notation 2.1).

1.14 Recollection. As explained in [HA, Remark A.8.5], if (i∗ ∶ X → Z, j∗ ∶ X → U) is a
recollement, then the functori∗ ∶ Z → ker(j∗) ≔ {X ∊ X | j∗(X) ≃ ∗ }
is an equivalence. Similarly, if Z has an initial object ∅, then the functorj♯ ∶ U → ker(i∗) ≔ {X ∊ X | i∗(X) ≃ ∅ }
is an equivalence.

We now address the interaction between dualizability and recollements. To do so, we need
the following technical lemma.

1.15 Lemma. Let (i∗ ∶ X → Z, j∗ ∶ X → U) be a recollement. Let A be a weakly contractible∞-category, and assume thatX admitsA-shaped colimits. Then i∗ ∶ Z ↪ X preservesA-shaped
colimits.
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Proof. Let f∶ A → Z be a diagram in Z indexed by A. We need to show that the natural mapcolimA i∗◦f → i∗(colimA f) is an equivalence in X. It su�ces to check this map becomes an
equivalence after applying i∗ and j∗ separately. Note that i∗ preserves colimits and i∗i∗ ≃ idZ,
so the �rst case is clear. For the second case, note that j∗ preserves colimits and j∗i∗f ≃ ∗ is the
constant functor with value the terminal object of U. So we need to showcolimA ∗ → ∗
is an equivalence in U. This follows from the assumption that A is weakly contractible.

1.16 Corollary. Let (i∗ ∶ X → Z, j∗ ∶ X → U) be a recollement. Then:

(1) If X is presentable, then i∗ preserves weakly contractible colimits and both Z and U are pre-
sentable.

(2) IfX is a dualizable∞-category, then Z andU are both dualizable∞-categories.

Proof. For (1), �rst note that Lemma 1.15 shows that i∗ preserves weakly contractible colimits. In
particular, i∗ preserves �ltered colimits. Thus Z is an ω-accessible localization of the presentable∞-categoryX, hence also presentable. To see thatU is presentable, note that by Recollection 1.14,
there is a pullback square of∞-categories

U X
∗ Z ,

⌟ j♯
i∗

∅
where the bottom horizontal functor picks out the initial object of Z. Note that X and Z are
presentable and ∅∶ ∗ → Z and i∗ are left adjoints. The presentability of U thus follows from
the fact that the forgetful functor PrL → Cat∞ preserves limits [HTT, Proposition 5.5.3.13].

For (2), �rst note that sinceX is stable, i∗ admits a right adjoint i! and bothZ andU are stable
(see Notation 1.11). By (1), both Z and U are also presentable. Note that since i∗ and j♯ are fully
faithful, we have i∗i∗ ≃ idZ and j∗j♯ ≃ idU . Since i∗, i∗, j∗, and j♯ are all left adjoints, Z and U
are retracts of X in PrLst. Since X is dualizable, we deduce that Z and U are also dualizable.

We now recall the important fact that continuous localizing invariants split recollements
with the property that j∗ is strongly left adjoint.
1.17 Lemma [7, Proposition 4.6 & Remark 1.76]. Let X be a dualizable ∞-category and let(i∗ ∶ X → Z, j∗ ∶ X → U) be a recollement. If j∗ is strongly left adjoint, then the induced map(Lcont(i∗), Lcont(j∗))∶ Lcont(X)⟶ Lcont(Z) ⊕ Lcont(U)
is an equivalence.

Proof. Set (i1, i2) = (i∗, j♯) in [7, Remark 1.76]. The conditions there are easily veri�ed; we omit
the details.
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2 Semi-orthogonal decompositions
Let s ∶ C → P be a functor from an∞-category to a poset, and let Z ⊂ P be a closed subposet
with open complementU = P ∖Z. In this section we show that for any presentable stable∞-cat-
egory ℰ, the functor∞-category Fun(C, ℰ) decomposes as a recollement of Fun(C ×P Z, ℰ) andFun(C ×P U, ℰ). See Lemma 2.4. We also explain why this implies that the ♯-pushforward from
the open piece admits an additional left adjoint, and there is another recollement decomposingFun(C, ℰ) into Fun(C×PU, ℰ) and Fun(C×PZ, ℰ), with the roles of the open and closed swapped.
See Proposition 2.6 and Example 2.8.

We begin by �xing some general notation.

2.1 Notation. Let f∶ C → D be a functor between∞-categories, and let ℰ be an∞-category.
We write f∗ ∶ Fun(D, ℰ) → Fun(C, ℰ)
for the functor given by precomposition with f. If f∗ admits a left adjoint, we denote it by f♯,
and if f∗ admits a right adjoint, we denote it by f∗.
2.2 Notation. Let s ∶ C → P be a functor from a small∞-category to a poset. Given a subposetS ⊂ P, we write CS ≔ C ×P S. For p ∊ P, we simply write Cp ≔ C{p}.
2.3 Convention. Let s ∶ C → P be a functor from a small∞-category to a poset, and let Z ⊂ P
be a closed subposet with open complement U ≔ P ∖ Z. We write i ∶ CZ ↪ C and j ∶ CU ↪ C
for the inclusions.

Now for our recollement description of Fun(C, ℰ). Since we want this result to be as widely
applicable as possible (e.g., when ℰ is small or not stable), we’ve stated this result with minimal
assumptions on ℰ.
2.4 Lemma. Let s ∶ C → P be a functor from a small∞-category to a poset, and let Z ⊂ P be a
closed subposet with open complementU ≔ P ∖ Z. Let ℰ be an∞-category. Then:

(1) The pullback functors i∗ ∶ Fun(C, ℰ) → Fun(CZ , ℰ) and j∗ ∶ Fun(C, ℰ) → Fun(CU , ℰ) are
jointly conservative.

(2) If ℰ admits a terminal object ∗, then i∗ admits a fully faithful right adjoint i∗ given byi∗(F)(c) = {F(c) , c ∊ CZ∗ , c ̸∊ CZ .

In particular, j∗i∗ ∶ Fun(CZ , ℰ) → Fun(CU , ℰ) is constant with value the terminal object.

(3) If ℰ admits an initial object∅, then j∗ admits a fully faithful left adjoint j♯ given byj♯(F)(c) = {F(c) , c ∊ CU∅ , c ̸∊ CU .

In particular, i∗j♯ ∶ Fun(CU , ℰ) → Fun(CZ , ℰ) is constant with value the initial object.

(4) Assume that ℰ admits �nite limits and j∗ ∶ Fun(C, ℰ) → Fun(CU , ℰ) admits a fully faithful
right adjoint j∗. Then the functorsi∗ ∶ Fun(C, ℰ) → Fun(CZ , ℰ) and j∗ ∶ Fun(C, ℰ) → Fun(CU , ℰ)
exhibit Fun(C, ℰ) as the recollement of Fun(CZ , ℰ) and Fun(CU , ℰ).
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Proof. The �rst item follows from the fact that equivalences between functors can be checked
pointwise. The next two items follow from the formulas for pointwise Kan extensions. Item (4)
is immediate from the previous items.

We now explain why given a recollement of stable∞-categories, the functor i∗ admits a left
adjoint if and only if j♯ also admits a left adjoint. Moreover, these extra adjoints give rise to a new
recollement with the roles of the open and closed pieces swapped. We start with a convenient
lemma.

2.5 Lemma. Let C andD be stable∞-categories and let R, R′ ∶ C → D be right adjoint functors
with left adjoints L and L′, respectively. Then for any natural transformation �∶ R → R′ with
corresponding natural transformation �̄ ∶ L′ → L:
(1) The functor co�b(�̄ ∶ L′ → L) is left adjoint to �b(�∶ R → R′).
(2) The functor �b(�̄ ∶ L′ → L) is left adjoint to co�b(�∶ R → R′).
Proof. To prove (1), let c ∊ C and d ∊ D. We computeMapC(co�b(�̄ ∶ L′(d) → L(d)), c) ≃ �b

(MapC(L(d), c) MapC(L′(d), c))−◦�̄ )
≃ �b

(MapD(d, R(c)) MapD(d, R′(c)))�◦− )≃ MapD(d,�b(�∶ R(c) → R′(c))) ,
as desired.

To prove (2), �rst note that since D is stable, Fun(C,D) is stable. Also note that for an ad-
junction G ⫞ F between stable∞-categories, we have G[−1] ⫞ F[1]. Moreover for any map f in
a stable∞-category we have natural equivalences

�b(f) ≃ co�b(f)[−1] and co�b(f) ≃ �b(f)[1] .
Hence (2) follows from (1) applied to the adjunctions L[−1] ⫞ R[1] and L′[−1] ⫞ R′[1].
2.6 Proposition. LetX be a stable∞-category and let (i∗ ∶ X → Z, j∗ ∶ X → U) be a recollement.
Then:

(1) If i∗ admits a left adjoint i♯ ∶ Z ↪ X, then j♯ admits a left adjoint jL♯ ∶ X → U de�ned by the
formula jL♯ ≔ co�b

( j∗i♯i∗ j∗j∗counit )
.

(2) If j♯ admits a left adjoint jL♯ ∶ X → U, then i∗ admits a left adjoint i♯ ∶ Z → X de�ned by the
formula i♯ ≔ �b

( i∗ j♯jL♯ i∗unit i∗ )
.

(3) The functor i∗ admits a left adjoint if and only if j♯ admits a left adjoint.

(4) If i∗ and j♯ admit left adjoints, then the functors jL♯ ∶ X → U and i∗ ∶ X → Z exhibitX as the
recollement of Z andU.
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Proof. For (1), we apply Lemma 2.5 to the standard equivalencej♯ ≃ �b
( j∗ i∗i∗j∗unitj∗ )

coming from the recollement [20, 1.17]. Similarly, for (2), note that the recollement provides a
co�ber sequence j♯j∗ idX i∗i∗counit unit
[20, 1.17]. Applying i! to this co�ber sequence and using that i∗ is fully faithful, we deduce that
(2.7) co�b

( i!j♯j∗ i!i!counit ) ≃ i!i∗i∗ ≃ i∗ .
So the claim follows by applying Lemma 2.5 to the equivalence (2.7).

Item (3) is then immediate from items (1) and (2). To prove (4), we verify the conditions in
Recollection 1.10:

• The functor jL♯ has a fully faithful right adjoint j♯. The functor i∗ has a fully faithful right
adjoint i∗.

• Since X is stable and both jL♯ and i∗ are left adjoints, they are exact. Now we show that they
are jointly conservative. Given an object x ∊ X such that both i∗(x) = 0 and jL♯ (x) = 0 we
will show that x = 0. Since i∗(x) = 0, we know that x ∊ im(j♯). So we may write x = j♯(u)
for some u ∊ U. It follows that 0 ≃ jL♯ (x) ≃ jL♯ j♯(u) ≃ u .

So x = 0, as desired.
• The functor i∗j♯ is left adjoint to j∗i∗ = 0, so itself has to be the zero functor.
Here’s our main example of when Proposition 2.6 applies:

2.8 Example. Let s ∶ C → P be a functor from a small∞-category to a poset, and let Z ⊂ P be
a closed subposet with open complement U ≔ P ∖ Z. Let ℰ be a stable presentable∞-category.
Combining Lemma 2.4 and Proposition 2.6, we deduce that there are functors

Fun(CZ , ℰ) Fun(C, ℰ) Fun(CU , ℰ) .i∗
i♯ i∗
i!

j∗
jL♯
j∗

j♯

Here, all functors lie above their right adjoints. Moreover i∗ and j∗ exhibit Fun(C, ℰ) as the
recollement of Fun(CZ , ℰ) and Fun(CU , ℰ) and jL♯ and i∗ exhibit Fun(C, ℰ) as the recollement ofFun(CU , ℰ) and Fun(CZ , ℰ).
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3 Splitting results
We now combine our previous results on semi-orthogonal decompositions to deduce splitting
results for localizing invariants of∞-categories of constructible sheaves. In §3.1, we treat large∞-categories of constructible sheaves. In § 3.2, we treat small ∞-categories of constructible
sheaves whose stalks are also compact.

3.1 Notation. Throughout this section, we �x a localizing invariant L forCatperf . We write Lcont
for the continuous extension of L.
3.1 Large∞-categories
We start by using Lemma 1.17 and Proposition 2.6 to prove the following general splitting result.

3.2 Proposition. Let X be a dualizable ∞-category and let (i∗ ∶ X → Z, j∗ ∶ X → U) be a
recollement. If j♯ admits a left adjoint jL♯ , then the maps(Lcont(jL♯ ), Lcont(i∗))∶ Lcont(X)⟶ Lcont(U) ⊕ Lcont(Z)
and (Lcont(j♯), Lcont(i♯))∶ Lcont(U) ⊕ Lcont(Z)⟶ Lcont(X)
are inverse equivalences.

Proof. By Proposition 2.6, the pair (jL♯ ∶ X → U, i∗ ∶ X → Z) forms a recollement. Moreover, i∗
is strongly left adjoint. The fact that the topmap is an equivalence thus follows from Lemma 1.17.

For the bottom map, note that since j♯ and i♯ are fully faithful and adjoint to jL♯ and i∗,
respectively, there are equivalencesjL♯ j♯ ≃ idU and i∗i♯ ≃ idZ .

Hence (Lcont(jL♯ ), Lcont(i∗))◦(Lcont(j♯), Lcont(i♯)) ≃ idLcont(U)⊕Lcont(Z) .
Since (Lcont(jL♯ ), Lcont(i∗)) is an equivalence, we deduce that (Lcont(j♯), Lcont(i♯)) is also an equiv-
alence and these maps are inverses.

In the setting of an exodromic strati�ed∞-topos with �nite stratifying poset, Proposition 3.2
implies splitting results for the∞-category of constructible objects. In order to deal with in�nite
stratifying posets, we need a few continuity results. The following results can also be phrased in
terms of P-indexed semi-orthogonal decompositions as in [7, De�nition 1.80 & Proposition 4.14].
We include this material because it is straightforward from what we have done so far.

3.3 Lemma. Let ℰ be a presentable∞-category. Then:

(1) The functor Fun(−, ℰ)∶ Cat∞ → PrL with functoriality given by left Kan extension preserves
colimits.

(2) Ifℰ is stable, the functorFun(−, ℰ)∶ Cat∞ → PrLstwith functoriality given by left Kan extension
preserves colimits.
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(3) If ℰ is dualizable, the functor Fun(−, ℰ)∶ Cat∞ → Prdual with functoriality given by left Kan
extension preserves colimits.

Proof. For (1), note that the functorFun(−, ℰ)∶ Catop∞ → Cat∞
with pullback functoriality preserves limits. Since the forgetful functor PrR → Cat∞ preserves
limits [HTT, Theorem 5.5.3.18], we see that the functorFun(−, ℰ)∶ Catop∞ → PrR
with pullback functoriality also preserves limits. Passing to left adjoints we deduce the claim.

Item (2) follows from (1) and the fact that the forgetful functorPrLst → PrL preserves colimits.
Item (3) follows from (2) and the fact that the forgetful functor Prdual → PrLst preserves colimits
[7, Proposition 1.65].

3.4 Notation. Let P be a poset. Let Sub�n(P) denote the poset of �nite subposets of P ordered
by inclusion.

3.5 Corollary. Let s ∶ C → P be a functor from a small ∞-category to a poset and let ℰ be a
dualizable∞-category.

(3.5.1) The natural functor colimQ∊Sub�n(P)CQ → C is an equivalence of∞-categories.

(3.5.2) The natural functor colimQ∊Sub�n(P)Fun(CQ, ℰ) → Fun(C, ℰ)
is an equivalence. Here, the functoriality is given by left Kan extension and the colimit is
computed in Prdual.

Proof. For (1), �rst observe that the natural functorcolimQ∊Sub�n(P)Q → P
is an equivalence, where the colimit is computed in Cat∞. Hence the fact that that �ltered
colimits are left exact in Cat∞ implies the claim. Item (2) follows from (1) and Lemma 3.3.

Now we can deduce our splitting results.

3.6 Notation. For the following, given a functor C → P from an∞-category to a poset and a
subposet Q ⊂ P, write iQ ∶ CQ ↪ C for the inclusion

3.7 Corollary. Let ℰ be a dualizable∞-category. Let s ∶ C → P be a functor from a small∞-cate-
gory to a poset. If P is �nite or L is �nitary, then the natural map(Lcont(ip,♯))p∊P ∶ ⨁p∊P Lcont(Fun(Cp, ℰ))⟶ Lcont(Fun(C, ℰ))
is an equivalence.
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Proof. First we treat the case where P is �nite. We prove the claim by induction on the Krull
dimension of P. If dim(P) = 0, then P is just a �nite set; the claim then follows from the fact that
localizing invariants preserve direct sums. For the induction step, let Z ⊂ P denote the subset
of minimal elements, and let U ≔ P ∖ Z. Then Z is closed and dim(Z) = 0 and U is open anddim(U) = dim(P) − 1. Hence it su�ces to show that the natural map(Lcont(iZ,♯), Lcont(iU,♯))∶ Lcont(Fun(CZ , ℰ)) ⊕ Lcont(Fun(CU , ℰ))⟶ Lcont(Fun(C, ℰ))
is an equivalence. By Example 2.8, this is a special case of Proposition 3.2 applied to X =Fun(C, ℰ), Z = Fun(CZ , ℰ), and U = Fun(CU , ℰ).

Now we treat the case where L is �nitary. Using the �nitaryness of L, the case of a �nite
stratifying poset, and Corollary 3.5 we compute

Lcont(Fun(C, ℰ)) ≃ Lcont ( colimQ∊Sub�n(P)Fun(CQ, ℰ))≃ colimQ∊Sub�n(P)Lcont(Fun(CQ, ℰ))≃ colimQ∊Sub�n(P)⨁q∊Q Lcont(Fun(Cq, ℰ))≃ ⨁p∊P Lcont(Fun(Cp, ℰ)) .
Finally, to see that the equivalence is induced by direct sum of the maps Lcont(ip,♯), it su�ces
to show the assignment i ↦ i♯ respects composition: this follows from that its right adjoint i∗,
which as a restriction of functors, respects composition.

3.8 Corollary. Let (X, P) be an exodromic strati�ed∞-topos and ℰ be a dualizable∞-category.
If P is �nite or L is �ntary, then there is a natural equivalenceLcont(ConsP(X; ℰ)) ≃ ⨁p∊P Lcont(Fun(Π∞(Xp), ℰ)) .
Here,Π∞(Xp) denotes the shape of the∞-toposXp .
Proof. Since (X, P) is exodromic and ℰ is dualizable, [9, Corollary 4.1.15] shows that we have
an exodromy equivalence with ℰ-coe�cientsConsP(X; ℰ) ≃ Fun(Π∞(X, P), ℰ) .
Moreover, [9, Corollary 3.1.17] shows that for each p ∊ P, we have a natural equivalenceΠ∞(X, P)p ≃ Π∞(Xp) .
Hence the claim is immediate from Corollary 3.7 applied C = Π∞(X, P).

We conclude this subsection with some applications to A-theory and topological Hochschild
homology.

3.9 Notation. Let X be an anima. We write ℒX = Map(S1, X) for the anima of free loops on X.
Recall that the A-theory of X is the K-theory spectrumA(X) ≔ K(Fun(X, Sp)ω) ≃ Kcont(Fun(X, Sp)) ∊ Sp .
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3.10 Corollary. Let (X, P) be an exodromic strati�ed∞-topos. Then there are natural equivalencesKcont(ConsP(X; Sp)) ≃ ⨁p∊P A(Π∞(Xp)) and THHcont(ConsP(X; Sp)) ≃ ⨁p∊P Σ∞+ ℒΠ∞(Xp) .
Proof. The �rst equivalence is immediate from Corollary 3.8 and the fact that K-theory is �ni-
tary. For the second equivalence, note that since THH is �nitary, by Corollary 3.8, it su�ces to
compute THH(Fun(Π∞(Xp); Sp)) for each p ∊ P. Now we recall the fundamental calculation
(see, for example, [16, Corollary 5]) that for an animaX, we have a natural equivalence of spectraTHHcont(Fun(X, Sp)) ≃ Σ∞+ ℒX .

3.11. It may be surprising that THHcont of the ∞-category of constructible sheaves only sees
free loops traveling inside each stratum, but not free loops traveling through di�erent strata.

3.12 Remark (the lattice conjecture). There are more complicated localizing invariants whose
values on ∞-categories of constructible sheaves are interesting. For example, periodic cyclic
homologyHP and topologicalK-theoryKtop. Let us brie�ymention that Blanc’s lattice conjecture
[3, Conjecture 1.7] is formulated with these invariants. More precisely, for C ∊ Catperf which isC-linear, it asks if the Chern characterKtop(C) ⊗ C⟶HP(C)
is an equivalence. Given that the conjecture has been proven for C the∞-category of (compact
objects in)ModC-valued local systems on a certain class of topological spaces [15, Proposition
6.16], our result shows that the same is true for the∞-category ofModC-valued constructible
sheaves on certain strati�ed topological spaces. More precisely, for an exodromic strati�ed topo-
logical space (X, P) with �nite P, such that each stratum Xp falls into the above class (whose∞-category of local systems LC(Xp;ModC)ω satis�es the lattice conjecture), the∞-category of
constructible sheaves ConsP(X;ModC)ω also satis�es the lattice conjecture. To show this, given
our results above, it su�ces to note that both sides decompose into direct sums, and the Chern
character map induces equivalences between corresponding summands by assumption. Com-
pare [15, Remark 6.18].

3.2 Small∞-categories
We now explain splitting results for small∞-categories of constructible sheaves ‘with compact
stalks’. Since a general∞-topos need not have enough points, it is better to formulate a de�nition
using locally constant sheaves that agrees with the stalk-wise de�nition for exodromic∞-topoi.

3.13De�nition. Given an∞-toposX and a presentable∞-categoryℰ, writeΓ∗X ∶ ℰ → Sh(X; ℰ)
for the constant sheaf functor, i.e., the left adjoint to global sections. Let ℰ0 ⊂ ℰ be a full subcat-
egory. We write LC(X; ℰ0) ⊂ Sh(X; ℰ)
for the full subcategory spanned by those objects F such that there exists an e�ective epimor-
phism

∐i∊I Ui ↠ 1X in X and for each i ∊ I there exists an object ei ∊ ℰ0 and an equivalencej∗i (F) ≃ Γ∗X∕Ui (ei)
in Sh(X∕Ui ; ℰ). Here, j∗i ∶ Sh(X; ℰ) → Sh(X∕Ui ; ℰ) denotes the pullback functor induced byUi × (−)∶ X → X∕Ui .
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3.14 De�nition. Let (X, P) be a strati�ed∞-topos, let ℰ be a presentable∞-category, and letℰ0 ⊂ ℰ be a full subcategory. We writeConsP(X; ℰ0) ⊂ Sh(X; ℰ)
for the full subcategory spanned by those objects F such that for each p ∊ P, the restriction i∗p(F)
is the in full subcategory LC(Xp; ℰ0) ⊂ Sh(Xp; ℰ).
3.15. If (X, P) is an exodromic strati�ed∞-topos and ℰ is a compactly generated presentable∞-category with compact objects ℰω ⊂ ℰ, then the exodromy equivalenceConsP(X; ℰ) ≃ Fun(Π∞(X, P), ℰ)
restricts to an equivalence ConsP(X; ℰω) ≃ Fun(Π∞(X, P), ℰω) .
In the setting of hypersheaves on an exodromic strati�ed space (X, P) with locally weakly con-
tractible strata, the full subcategoryConsP(X; ℰω) ⊂ ConsP(X; ℰ) coincides with the full subcate-
gory spanned by those objects whose stalks are compact objects of ℰ. Compare to [9, Observation
5.4.7].

3.16 Notation. In the rest of this subsection, we �x a compactly generated dualizable∞-cate-
gory ℰ, and consider the subcategory of compact objects ℰω ∊ Catperf .
3.17 Lemma. Let s ∶ C → P be a functor from a small∞-category to a poset. Let Z ⊂ P be a closed
poset andU ⊂ P be the open complement.

(1) The functors from Example 2.8 restrict to a (one-sided) split Verdier sequence in Catperf
Fun(CZ , ℰω) Fun(C, ℰω) Fun(CU , ℰω) .i∗

i∗ j∗
j♯

(2) The maps L(i∗) and L(j∗) induce an equivalenceL(Fun(C, ℰω)) ⥲ L(Fun(CZ , ℰω)) ⊕ L(Fun(CU , ℰω)) .
(3) If the poset P is �nite, the maps L(i∗p) induce a natural equivalenceL(Fun(C, ℰω)) ⥲⨁p∊P L(Fun(Cp, ℰω)) .
Proof. For the �rst item, note that Fun(C, ℰω) is a full subcategory of Fun(C, ℰ) which is charac-
terized by a pointwise condition. In particular, the restriction functors i∗ and j∗ preserve these
full subcategories. Moreover, by the formulas in items (2) and (3) of Lemma 2.4, the pushfor-
ward functors i∗ and j♯ also preserve these full subcategories. It follows that we have the desired
adjunctions. Because j∗ has a fully faithful left adjoint j♯, and i∗ is precisely the inclusion of the
kernel of j∗, this is a split Verdier sequence.

The second item follows immediately from the fact that we have a split Verdier sequence.
Finally, the third item is proven by induction on the Krull dimension of P exactly as in the proof
of Corollary 3.7; we omit the details.
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3.18 Corollary. Let (X, P) be an exodromic strati�ed∞-topos where P is a �nite poset. Then the
maps L(i∗p) induce a natural equivalenceConsP(X, ℰω) ≃ ⨁p∊P L(Fun(Π∞(Xp), ℰω)) .
Proof. Immediate from Lemma 3.17.

3.19 Remark. We discuss here the subtle di�erences in the ∞-categories appearing in this
subsection and the previous one. Fix a strati�ed topological space (X, P)which is hypercomplete
as well as a compactly generated stable∞-category ℰ.
(1) In general, the ∞-category ConsP(X; ℰω) is not (on the nose) the same as ConsP(X; ℰ)ω,

though they are both full subcategories of ConsP(X; ℰ): the latter is de�ned to be the subcat-
egory of compact objects in the presentable∞-category ConsP(X; ℰ). Hence we don’t know
if it is possible to deduce the statements for small∞-categories from the statements for large∞-categories or vice versa. It would be very interesting to formulate �niteness conditions
(as those in [21]) on the exit-path∞-category to ensure that these two∞-categories agree.

(2) The following example is taken from [19, Example 3.19]. In this case there is a natural inclu-
sion from one∞-category to the other, but it is not an equivalence. Consider the topological
circle S1 equipped with the trivial strati�cation (so constructible sheaves are locally constant
shaves), and let the coe�cient∞-category ℰ be the derived∞-categoryModC of C-vector
spaces. Now both∞-categories can be considered as subcategories of the large∞-category
of modules over the group ring C[ΩS1] = C[Z].
• The category LC(S1;ModωC) is the subcategory of objects whose underlying complexes
of C-vector spaces are perfect.

• The∞-categoryLC(S1;ModC)ω is the subcategory of perfect complexes ofC[Z]-modules.

Note that in this case, there is an inclusion LC(S1;ModωC) ⊂ LC(S1;ModC)ω. However, the
inclusion map induces the zero map on the Grothendieck group K0.

(3) When the poset P is in�nite, we don’t have a general statement about localizing invariants
of ConsP(X; ℰω), or equivalently Fun(Π∞(X, P), ℰω). One can write this∞-category as an
co�ltered limit in Catperf :Fun(Π∞(X, P), ℰω) ≃ limQ∊Sub�n(P)op Fun(Π∞(X, P)Q, ℰω) .
But we don’t know if we can commute localizing invariants past such co�ltered limits. In
general, this is a delicate problem; let us mention that Efmiov [8] has studied this in the
setting of dualizable∞-categories.
In the other direction, if we assume the poset P can be �ltered by a sequence of closed
(or open) subsets, then we can ‘renormalize’ the∞-category of constructible sheaves and
describe its localizing invariants, as follows. (This is a common practice in applications, see
for example [18, §2.2].)
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3.20 Notation. Let (X, P) be an exodromic strati�ed∞-topos. Let Z be a �ltered family of �nite
closed subposets of P such that

⋃Z∊Z Z = P. We de�ne the subcategory of constructible sheaves
valued in ℰω which are ∗-extended from some XZ asConsZ-renP (X; ℰω) ≔ colimZ∊Z ConsZ(XZ ; ℰω) .
The colimit is formed along the ∗-pushforward functors.

3.21 Lemma. In the setting of Notation 3.20, if L is a �nitary localizing invariant, thenL(ConsZ-renP (X; ℰω)) ≃ ⨁p∊P L(Fun(Π∞(Xp), ℰω)) .
Proof. Since L is �nitary, the statement reduces to the case of �nite poset (Corollary 3.18).

References
HTT J. Lurie, Higher topos theory, Annals of Mathematics Studies. Princeton University Press, Prince-

ton, NJ, 2009, vol. 170, pp. xviii+925, isbn: 978-0-691-14049-0; 0-691-14049-9. doi: 10.1515/
9781400830558, math.ias.edu/~lurie/papers/HTT.pdf.

HA , Higher algebra, Sep. 2017, math.ias.edu/~lurie/papers/HA.pdf.

SAG , Spectral algebraic geometry, Feb. 2018, math.ias.edu/~lurie/papers/SAG-rootfile.
pdf.

1. C. Barwick, S. Glasman, and P. J. Haine, Exodromy, Aug. 2020, arXiv:1807.03281v7.

2. A. Beilinson, Topological "-factors, Pure Appl. Math. Q., vol. 3, no. 1, Special Issue: In honor of
Robert D. MacPherson. Part 3, pp. 357–391, 2007. doi: 10.4310/PAMQ.2007.v3.n1.a13.

3. A. Blanc, TopologicalK-theory of complex noncommutative spaces, Compos. Math., vol. 152, no. 3,
pp. 489–555, 2016. doi: 10.1112/S0010437X15007617.

4. D.-C. Cisinski, Comment on Math Over�ow Question 384495: K-theory of D-modules, Feb. 2021,
MO:384495.

5. D. Clausen and M. Ø. Jansen, The reductive Borel–Serre compacti�cation as a model for unstable
algebraic K-theory, Selecta Math. (N.S.), vol. 30, no. 1, Paper No. 10, 93, 2024. doi: 10.1007/
s00029-023-00900-8, arXiv:2108.01924.

6. R. van Dobben de Bruyn, Constructible sheaves on toric varieties, Oct. 2024, arXiv:2410.06280.

7. A. I. E�mov, K-theory and localizing invariants of large categories, May 2024, arXiv:2405.12169.

8. , Localizing invariants of inverse limits, Feb. 2025, arXiv:2502.04123.

9. P. J. Haine,M. Porta, and J.-B. Teyssier,Exodromy beyond conicality, Jan. 2024, arXiv:2401.12825.

10. M. Hoyois,K-theory of dualizable categories (after A. E�mov), Nov. 2018, Notes available at hoyois.
app.uni-regensburg.de/papers/efimov.pdf.

11. M. Ø. Jansen,Moduli stack of stable curves from a strati�ed homotopy viewpoint, Nov. 2023, arXiv:
2308.09551.

12. , The Strati�ed Homotopy Type of the Reductive Borel–Serre Compacti�cation, Int. Math.
Res. Not. IMRN, no. 19, pp. 16 394–16 452, 2023. doi: 10.1093/imrn/rnac289, arXiv:2012.
10777.

19

https://doi.org/10.1515/9781400830558
https://doi.org/10.1515/9781400830558
http://www.math.ias.edu/~lurie/papers/HTT.pdf
http://www.math.ias.edu/~lurie/papers/HA.pdf
http://www.math.ias.edu/~lurie/papers/SAG-rootfile.pdf
http://www.math.ias.edu/~lurie/papers/SAG-rootfile.pdf
https://arxiv.org/abs/1807.03281v7
https://doi.org/10.4310/PAMQ.2007.v3.n1.a13
https://doi.org/10.1112/S0010437X15007617
https://mathoverflow.net/questions/384495/k-theory-of-d-modules#comment979137_384495
https://doi.org/10.1007/s00029-023-00900-8
https://doi.org/10.1007/s00029-023-00900-8
https://arxiv.org/abs/2108.01924
https://arxiv.org/abs/2410.06280
https://arxiv.org/abs/2405.12169
https://arxiv.org/abs/2502.04123
https://arxiv.org/abs/2401.12825
https://hoyois.app.uni-regensburg.de/papers/efimov.pdf
https://hoyois.app.uni-regensburg.de/papers/efimov.pdf
https://arxiv.org/abs/2308.09551
https://arxiv.org/abs/2308.09551
https://doi.org/10.1093/imrn/rnac289
https://arxiv.org/abs/2012.10777
https://arxiv.org/abs/2012.10777


13. , Strati�ed homotopy theory of topological ∞-stacks: A toolbox, J. Pure Appl. Algebra,
vol. 228, no. 11, Paper No. 107710, 28, 2024. doi: 10 . 1016 / j . jpaa . 2024 . 107710, arXiv :
2308.09550.

14. M. Kashiwara and P. Schapira, Sheaves on manifolds, Grundlehren der mathematischen Wis-
senschaften. Springer-Verlag, Berlin, 1994, vol. 292, pp. x+512, isbn: 3-540-51861-4, With a chap-
ter in French by Christian Houzel, Corrected reprint of the 1990 original.

15. A. Konovalov, Nilpotent invariance of semi-topological K-theory of dg-algebras and the lattice con-
jecture, Feb. 2021, arXiv:2102.01566.

16. M. Land,TC of spherical group rings, inOberwolfach Reports. Vol. 15, no. 2, 2, vol. 15, 2018, pp. 805–
940. doi: 10.4171/OWR/2018/15.

17. J. Lurie and H. L. Tanaka, Associative algebras and broken lines, May 2018, arXiv:1805.09587.

18. D. Nadler, Perverse sheaves on real loop Grassmannians, Invent. Math., vol. 159, no. 1, pp. 1–73,
2005. doi: 10.1007/s00222-004-0382-3, arXiv:0202150.

19. ,Wrapped microlocal sheaves on pairs of pants, Apr. 2016, arXiv:1604.00114.

20. J. Quigley and J. Shah,On the parametrized Tate construction and two theories of real p-cyclotomic
spectra, Sep. 2019, arXiv:1909.03920.

21. M. Volpe, Finiteness and �nite domination in strati�ed homotopy theory, Dec. 2024, arXiv:2412.
04745.

22. M. Zetto, L-groups of sheaves on strati�ed spaces, Mar. 2023, Masters Thesis available at markus-
zetto.com/Master-Thesis-L-Groups-of-Stratified-Spaces-Zetto.pdf.

20

https://doi.org/10.1016/j.jpaa.2024.107710
https://arxiv.org/abs/2308.09550
https://arxiv.org/abs/2308.09550
https://arxiv.org/abs/2102.01566
https://doi.org/10.4171/OWR/2018/15
https://arxiv.org/abs/1805.09587
https://doi.org/10.1007/s00222-004-0382-3
https://arxiv.org/abs/2102.01566
https://arxiv.org/abs/1604.00114
https://arxiv.org/abs/1909.03920
https://arxiv.org/abs/2412.04745
https://arxiv.org/abs/2412.04745
https://markus-zetto.com/Master-Thesis-L-Groups-of-Stratified-Spaces-Zetto.pdf
https://markus-zetto.com/Master-Thesis-L-Groups-of-Stratified-Spaces-Zetto.pdf

	0 Introduction
	1 Background
	1.1 Dualizable ∞-categories and localizing invariants
	1.2 Exodromy
	1.3 Recollements

	2 Semi-orthogonal decompositions
	3 Splitting results
	3.1 Large ∞-categories
	3.2 Small ∞-categories

	References

